N

B[:l il
PRIOR APPRO
RAN

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

DOT-TSC-0ST-73-6

5. Report Date
May 1973

6. Performing Organization Code

4. Title and Subtitle

DOS-32 USER'S MANUAL

8. Performing Organization Report No.

DOT-TSC-0ST-73-6

7. Authorls)

J.P. Carlson

9. Performing Organization Name and Address 10. Work Unit No.

Transportation Systems Center
Data Services Division 1. Controct or Grant No.
Kendall Square C2274A

Cambrldge N MA. 02142 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Department of Transportation
Office of the Secretary
Washington, D.C. 20590

Operational Handbook

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This manual gives information a user needs to use a Honeywell
H-632 Disk Operating System (D0S-32). DO0S-32 is a core resident, one
user, console-oriented operating system which allows the user to con-
trol the computer with no interaction with the control panel. A com-
panion document D0S-32 System Manual, describes the internal workings
of DOS-32. DOS-32 consists of an interactive command language, a
file system and disk management system, a collection of system programs
and an extended FORTRAN library. The DOS-32 I/O system controls the
disk, paper tape, line printer, card reader and magnetic tape drives.

The system programs include a FORTRAN compiler, a MACRO assembler,
a loader, an interactive editor, an on-line debugging program, and a
generalized routine that copies data from one storage medium to
another. The extended FORTRAN library includes file accessing rou-
tines, peripheral device I/0O routines, and utility routines to man-
ipulate words, half-words, characters, hexadecimal digits and bits.

17. Key Words 18. Distribution Statement

+ Orneratine System
* Command Language
File System
* Disk Management System
* Run Time Library

APPROVED FOR TRANSPORTATION SYSTEMS
CENTER ONLY. TRANSMITTAL OF THIS
DOCUMENT QUTSIDE THE TSC MUST HAVE
PRIOR APPROVAL OF THE TSC-ADP SYSTEMS
BRANCH.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages

182

22, Price

Form DOT F 1700.7 (s-69)

FOREWORD

This manual gives information a user needs to use a Honeywell
H-632 Disk Operating System (D0S-32). DO0S-32 is a core resident,
one user, console-oriented operating system which allows the user
to control the computer with no interaction with the computer con-

trol panel. A comparison document, DOS-32 System Manual, describes

the internal workings of D0S-32.

Chapter 1 presents an introduction to the general characteris-
tics of the DOS-32 Operating System - the File System, Multiple

Disk Organization, Core Usage and BREAK Key Interrupt features.

Because DOS-32 is an interactive system, one of the first
things to do is get a feeling for what it's like to sit at the
console and communicate with the system. Chapter 2 presents a
session at the console in narrative form. 1In it a typical problem
is introduced and the way to handle it using DOS is described. All
commands issued and all system responses are shown. This orients
you both to general system characteristics and to specific user

commands.

Chapter 3 consists of detailed descriptions of all D0S-32
user commands. The emphasis is to present information needed to

take advantage of all capabilities of DOS.

Chapter 4 presents detailed descriptions of system and utility
routines available for use by user programs. These include file
system, routines, teletype and other peripheral device routines,

bit, character and half-word manipulation routines and other

iii

routines. Section 4.7 describes how to use the file system, tele-

type, card reader and line printer through FORTRAN I/0 statements.

Ten appendixes provide convenient reference for the user.
Appendix A provides a glossary of frequently used terms. Appendix B
lists all DOS-32 commands, their format and a brief description of
each and serves as a memory jogger for the material presented in
Chapter 3. Command abbreviations are presented in Appendix C.
Appendix D gives current system bugs along with useful programming
hints and should be read before using D0OS-32. Appendix E gives
instructions on initializing DOS as is presented at the beginning
of Chapter 2. If the machine is turned off or DO0S-32 disk pack un-
loaded, these instructions must be followed before DOS-32 can be
used. Appendix F lists DOS system routines available to the user.
The user must exercise care not to use any of these names for his
subroutines or improper action may result. Appendix G describes
how to use the DO0S-32 overlay features. Appendix H lists error
codes which may be encountered in FORTRAN compilation and execu-
tion. Appendix I gives a summary of system and library routines.
Appendix J describes modifications made to the Honeywell supplied

FORTRAN Library.

iv

CONTENTS

Section
1 THE DISK OPERATING SYSTEM - DOS-32........000vvuu...
1.1 INTRODUCTION. ...ttt ittt iin it ttnennnnneenns
1.2 DOS-32 FILE SYSTEM. ..ttt inintreenenenns
1.2,1 File Organization.......eeevuveeeenenn..
1.2.2 File StructUTe....uviit it trerennnnnennes
1.2.3 Multiple Disk Organization.............
1.2.4 File System I/0.... vt nnnnnnnneennans
1.3 DOS-32 CORE USAGE. ... it itrinrrneanenenennns
1.4 BREAK KEY INTERRUPT FEATURE.........covvinnn
2 A SESSION AT THE CONSOLE......¢eiiininenennnnnnnnns
2.1 INTRODUCTION. ...ttt ititiineineinnnnennnnnneenns
2.2 INITIAL PROGRAM LOAD. .. 'ttt irinnrenrrnnnnnens
2.3 SYSTEM-USER INTERACTION....ivtivunnnnennnnnnns
3 USER COMMANDS . « i vt vttt ittt ittt nee s nenennnnneennnas
3.1 INTRODUCTION: COMMAND SYNTAX......'evvernennn
3.2 USER COMMANDS . ..ttt it iiietnnnneennennnennenns
3.2.1 FTN: Compiling a FORTRAN
Source Program.........cviviievenrnnnnns
5.2.2 MAC: Assembling a MAC Source Program..
3.2.,3 EDIT: Editing a File.....vevvivennenennn
3.2.4 MEDIA: File-Copy Utility.......vuivunn.
3.2.5 BEDIT: Manipulating and Inspecting
Files of Binary Programs...............
3.2.6 LDR: Loading a File.....v'verueernnnnn
3.2.7 BUGGY: Debugging a Program On-Line....
3.2.8 CONCAT: Preparing Input for the
Loader. . iviiii i iinieireneenennnnenn
3.2.9 SUPDATE: Modifying a Source File......
3.3 I/0 CONTROL COMMANDS .. i iiiverninrnrnnnnnnnenns
3.3.1 1INPUT: Opening an Input File..........
3.3.2 BINARY: Opening an Object-Text File...
5.3.3 LISTING: Opening a Listing File.......
3.3.4 OPEN: Opening Any File......evvvuuunnn
3.3.5 CLOSE: C(Closing a File or Unit.........
3.3.6 COMINPUT: Switching Command Input
from the Console to a File.............
35.3.7 COMOUPUT: Switching Command Output
from the Console to a File.............

CONTENTS (CONT.)

Section
3.4 LOAD-MODULE MANAGEMENT COMMANDS........0.c....
3.4.1 SAVE: Saving a Load Module............
3.4.2 RESTORE: Reading a File into Core.....
3.4.3 START: Executing an In Core File......
3.4.4 RESUME: Restoring and Starting
a File... ..ottt ennnn.
3.4.5 PM: Displaying Program Status
Words and Registers........coveveuuenn.
3.5 USER DIRECTORY-HANDLING COMMANDS.......ovvv...
3.5.1 LOGIN: Getting Started.........v.v0...
3.5.2 LOGOUT: Getting Off the System........
3.5.3 STARTUP: Associating Disk Drives
With DOS. ..ttt ittt it iannennnnns
3.5.4 ATTACH: Gaining Access to a Directory.
3.5.5 LISTFILE: Listing the Files in a
|0 of T o3 o« o
3.5.6 DELETE: Deleting a File from a
0 o o ol o o
3.6 UTILITY PROGRAMSttt iiiininneronnnnennenans
35.6.1 LISTU: Listing the Source Files
in a Directory.. ..t einenrnrennsnns
3.6.2 CNAME: Changing the Name of a File....
3.6.3 MOVEF: Moving a File from One
Directory to Another...........c.ccuv...
3.6.4 MOVEFS: Moving Files from One
Directory to Another..........ovvvvnn.
3.6.5 COPYFS: Copying FileS......veeernnnennn
3.6.6 CARDFS: C(Creating a File from a
Card Deck....coiviiiiiiinininniennennn.
3.6.7 PRINTFS: Listing Source Files on
the Line Printer........cciiiiinnnnnnn.
3.6.8 DMPSAV: Listing a Save File in
Dump Format.......ivt ittt ennnnennens
3.6.9 CPRSAV: Comparing Two Save Files
in Dump Format.....veiieereneenennennnn
4 SYSTEM ROUTINES AND UTILITY FUNCTIONS..............
4.1 INTRODUCTION.. ...t ieiuroenesoenennennnaoennnss
4.2 FORTRAN INTEGERS...... .ttt ientereennennsnn
4.3 FILE-SYSTEM ROUTINESt tiveeveneeeonnnenns
4,3.1 OPEN: Opening a File.....evverernnnnnn
4.,3.2 CLOSE: Closing a File....eeveeveennnn.

vi

Section

4.

4.

4

5

CONTENTS (CONT.)

Page

4.3.3 BRWFIL: Reading, Writing, or

Manipulating a File.......vvvrvunn.. . 4-6
4.3.4 DELETE: Deleting a File........vvv.... 4-9
4.3.5 REWIND: Repositioning a Unit at

the Beginning of a File......ovuvuevnn. 4-9
4.3.6 ATTACH: Gaining Access to a

L o ol o o o I 4-10
4.3.7 COMANL: Performing Lexical Analysis

of User Commands.....ouevireenernennnnn. 4-10
4.3.8 GETERR: Storing Error Information..... 4-12
4.3.9 PRTERR: Typing an Error Message....... 4-12
TELETYPE ROUTINES. ...t iiiitiinietneenennnnnnns 4-13
4.4.1 RDASR: Reading a Line from the

Teletype. . vttt ittt i eienennn 4-13
4.4.2 WRASR: Typing a Line on the

Teletype.. ittt ittt it i, 4-13
4.4.3 TI1IN: Reading a Character from

the Teletype. ..ot iinnnnnnnnnnnnnnn. 4-14
4.4.4 TIOU: Typing a Character on the

Teletype . n ittt ittt it 4-14
4.4.5 TNOU and TNOUA: Typing a Character

String on the Teletype.......vvvevunnn. 4-14
4.4.6 TOHEX: Converting a Word to

Hexadecimal and Typing It.............. 4-15
UTILITY FUNCTIONS . ..ttt ittt tineneannnns 4-15
4.5.1 AND: Forming Logical Product.......... 4-15
4.5.2 OR: Forming Logical Sum............... 4-16
4.5.3 XOR: Forming Exclusive OR............. 4-16
4.5.4 COMPL: Forming Complement............. 4-16
4.5.5 LH: Returning Left-Half of Word....... 4-17
4.5.6 RH: Returning Right-Half of Word...... 4-17
4.5.7 LHC: Returning Left-Half of Word,

Indirect. ...ttt innnennnn. 4-17
4.5.8 RHC: Returning Right-Half of Word,

Indirect...... it iinnnnnnnnn, 4-17
4.5.9 SLH: Storing Number in Left-Half

& b o« 4-17
4.5.10 SRH: Storing Number in Right-Half

of Word.ottt 4-18
4.5.11 MAKWRD: Forming a Word from Two

Halfwords.......oiiiiiiiiniinnnnnnnn.. 4-18
4.5.12 LHWRD: Retrieving a Halfword.......... 4-18
4.5.13 SHWRD: Storing a Halfword............. 4-18
4.5.14 LCHAR: Retrieving a Character......... 4-18

vii

Section

4,

.6

.7

8

CONTENTS (CONT.)

Page

4,5.15 SCHAR: Storing a Character............ 4-19
4.,5.16 PUTC: Inserting a Character in

2 1 o o - 4-19
4.,5.17 LBIT: Retrieving a Bit......o.veuven.. 4-19
4.5.18 SBIT: Storing a Bit............ccuu... 4-19
4.5.19 RT: Retrieving an Integer............. 4-20
4.5.20 SSWS: Testing a Sense Switch.......... 4-20
4.5.21 CHKSUM: Computing Checksum............ 4-20
4.5.22 COMEQV: Comparing Command-Names....... 4-20
4.5.23 NAMEQV: Comparing NameS.........ce0... 4-21
4.5.24 DCNVRT/HCNVRT: Converting a Number

from Internal Format to Decimal or

Hexadecimal.......iiiieinnnnnnrnennenns 4-21
4.5.25 EXIT: Returning to the System......... 4-22
4.5.26 GTHEX: Searching for Hexadecimal

Number in Character String............. 4-22
4.5.27 LHEX: Retrieving a Hexadecimal

L 4-22
4.5.28 GTREGS: Retrieving the Address of

the Register Save Area.........oouveu.. 4-22
4.5.29 GTNAMS: Retrieving Directory and File

from a Character String...........0.0... 4-23
4.,5.30 LOC: Retrieving the Address of a

Variable......oitiiiniiiniinninnnnnnnns 4-23
4.5.31 LIST: Referencing an Absolute Core

Address. .. .iiiii ittt ine i iieinneennnnns 4-23
4.5.32 SRHC: Storing Number in Right-Half

of Word, Indirect......v v vinrennns 4-24
4.5.33 SLHC: Storing Number in Left-Half

of Word, Indirect.......vvivrvrnennn. 4-24
PERIPHERAL DEVICE ROUTINES......viieernnennnns 4-24
4.6.1 DOCARD: Reading a Card..........ove... 4-25
4.6.2 DOPRIN: Printing a Line............... 4-25
4.6.3 MT7I0C: Controlling Magnetic Tape..... 4-25
4.6.4 P1lIN: Reading a Character from

Paper Tape.....ciiiiiiiniriennnnennnnnn 4-28
4.6.5 P10U: Punching a Character............ 4-29
4.6.6 PNOU: Punching a Character String..... 4-29
4.6.7 PI1lINB: Reading a Binary Character

from Paper Tape.....cvvenirienennennnnnn 4-29
4.6.8 PIlOUB: Punching a Binary Character.... 4-29
4.6.9 PNOUB: Punching a Binary String....... 4-30
USING FORTRAN INPUT-OUTPUT STATEMENTS
UNDER DOS. ...t itiii it iiitetoneoneansnennnennns 4-30
OVERLAY -MANAGEMENT ROUTINES ... e veveeneeenns 4-32

viii

Section

Appendix A:

B
C
D:
E

= & T

CONTENTS (CONT.)

Page

4.8.1 RESTOR: Bringing a Load Module

Into CoTe. it i ittt ii ittt et e e 4-32
4.8.2 SAVE: Storing a Load Module on the

DTS Kt ettt ettt e e 4-32
Glossary for DOS-32. ... iiieiitereinnnnnnnnnn. A-1
Summary of User CommandS........oeveveveneeenn.. B-1
Command-Name Abbreviations............vevvun... C-1
Programming Hints and Warnings................. D-1
Initialization Instructions..................,. E-1
DOS System ROUtINES. ... viiue ittt nnerenneneennns F-1
Overlay StrUCTUTES. . tuutinenen e eenensnnnnnnnns, G-1
Fortran Error MesSsagesS.....vueeertnnenenneennns H-1
Summary of System and Library Routines......... I-1
Fortran Library......o.ueiiiiiieineenenennnens J-1

ix

ACKNOWLEDGMENT

In preparing this document, I have acted more as an editor

than a writer. The following people wrote the bulk of the document:

Ms.
Ms.
Mr.
Mr.
Mr.

Mr.

Ilene Lang

Marsha Siegal
John Thron

George Touchstone
Robert Wadsworth

Carey Wyman

The system described by this document is a creation of the

people named above and the following:

Mr.
Mr.
Dr.

Mr.

Barton Bruce
John Keen
John William Poduska

David Udin

Others, too numerous to mention, were also involved.

CHAPTER 1
THE DISK OPERATING SYSTEM - DOS-32

1.1 INTRODUCTION

DOS-32 was developed for the Honeywell CCD Series-32 computers,
the 32-bit word H632 and H832. It is an interactive operating
system which provides an environment for the development of system
and applications programs. Users of DOS-32 are able to create and
manipulate a data base with ease, to incorporate interactive cap-
abilities in FORTRAN and MAC programs, and to control use and main-
tenance of system resources from the console.

DOS-32 consists of a file system, a set of system programs
and utility routines, a set of hardware-level I/0 routines, and an
interactive command language. The file system simplifies the
creation, deletion, and updating of source, object, load-module,
and data files, and provides great flexibility in accessing the
data base. The system programs and utility routines include a
FORTRAN compiler, a MACRO assembler, a loader, an interactive
editor, an on-line debugging program, and a generalized routine
that copies data from one storage medium to another. They can be
invoked and controlled by simple commands issued from the console
and are fully integrated with the file system, which they use for
all input and output. The input/output routines can be called
from user programs to perform I/0 operations at the record or
character level. They include teletype-control routines; user
programs can therefore be interactive. The D0S-32 interactive

command language allows you to perform maintenance operations on

k=d

files and to control the execution of all system programs and
utility routines.

DOS-32 provides two levels of user-system interaction. The
first is the supervisory level, in which you issue instructions
(user commands) to the system by typing them on the console type-
writer. These user commands invoke various capabilities of the
system, such as system programs and maintenance facilities. Thus,

for example, you can type the command
FTN

and thereby invoke the FORTRAN compiler to compile a source pro-

gram; or you can type the command
DELETE file

and thereby erase file by releasing the storage it

occupies and removing its entry from your directory. As a DOS
user, you can create programs, modify them, compile, load, execute,
and store them, simply by typing the appropriate user commands at
the console.

The second level of user-system interaction is the runtime
level, in which a program is in execution. This program invokes
system I/0 routines, file-manipulation routines, and utilities by
calling the appropriate routine, e.g., by specifying it in a FOR-
TRAN CALL or function statement. Thus, for example, a program can

contain the statement
CALL TNOUA ('FILE NAME = ',12)

and the DOS routine TNOUA will type out the specified 12-character

1-2

literal on the teletype.

Central to DOS-32 is its file system. In both modes of user-
system interaction, you deal with the file system. The file system
provides a mechanism for storing organized collections of data under
a name which you specify, and for retrieving that set of data at
some later time. A file can contain a source program, an object
program, a load module, or data. Physically, a file consists of
records, which the system formats and keeps track of for you. In
addition, the file system maintains various directories, in which
files are listed and through which they are accessed. The file
system provides a set of file-manipulation routines which, ‘among
other things, allow you to enter new files in a directory, and

list the contents of a directory.

1.2 DOS-32 FILE SYSTEM

1.2.1 File Organization

A file is simply an ordered linear array of words known by a
name. A file may contain a source program, an object program, a
load module, data records or other information.

The files on a disk are recorded as chained strings of fixed
length records. The first two words of each record are reserved
for DOS. The left half of the first word points to the predecessor
record (zero, if none), the right half of the first word points to
the successor record (zero, if none) and the left half of the
second word is a count of the number of bits of data contained in
the record. The rest of the record contains data of the file.
When the user reads a file, only the data portion of the file is

given to him. The user is not aware of the record structure of

1=3

the file; he knows the file as a linear array of words.

The collection of files belonging to a user is organized into
a User-File-Directory (UFD). Each UFD is a file and contains a
block of information for each file which includes the file name
and starting record address of the file.

The collection of all UFD's on one disk is organized into a
file directory called the Master-File-Directory (MFD). The MFD
contains a block of data for each UFD which includes its name and
starting record address. In addition, the MFD contains a special
file DSKRAT which is a table of disk allocation information for
the disk pack. The file system must select free records when a
file is to be written or extended, and the records of a deleted
file must be returned for later re-use. Records are selected and
returned using this table, which contains one bit for each record
of the disk. The disk contains 8120 records, so the DSKRAT table

is about 508 words in size.

1.2.2 File Structure

DOS provides for reading and writing files in two modes -
word mode and line mode. In word mode, the user specifies that
N words are to be read from the current word pointer of a file
into an array in core. Repeated calls to the DOS routine BRWFIL
for reading N words will cause N word blocks of the file to be
read.
To write in line mode, the user specifies that an array or line
of N words of characters, 4 characters to a word is to be written in
a compressed mode. The line must not contain a new line (linefeed)

character. Whenever a series of 3 or more spaces occur, they are

1-4

replaced by the character with the octal representation 21 (the
ASC11 character DC1), followed by a count of spaces. Trailing
blanks, if any, are eliminated and a line feed character is added.
The line is then written. Because of the compression, the last
word of the compressed line may contain less than four characters.
The BRWFIL routine writes only the number of characters to be
written even if writing must stop in the middle of a word.

To read a file in line mode, the user specifies that the next
line of the file is to be placed in an array in core of size N
words or 4xN characters. The next line of the file is read and
uncompressed into the array. The length N of the array to be
filled must be large enough to receive the line as written. A
short line will be padded with blank characters to fill the array.
Once a file has been written in line mode, it must be read in line
mode. Similarly, once a file has been written in word mode, it

must be read in word mode.

1.2.3 Multiple Disk Organization

DOS-32 can handle either one or two disk drives. Each disk
pack contains its own Master-File-Directory and DSKRAT. All files
in a user file directory reside on that disk and all user file
directories in the MFD reside on that disk.

If one drive is used, it must be drive 0, as the disk hard-
ware bootstrap always attempts to load the operating system from
that drive. The STARTUP command tells the system how many drives
are in use and specifies a default order of searching MFDs in
attempting to ATTACH to a directory. For example, STARTUP 1 0
tells the system 2 drives are active, and that the command ATTACH

UTIL will attach to UTIL on drive 1. 1If there were no UTIL on
1-5

drive 1, it would look for UTIL on drive 0. The search order may
be overridden by supplying the drive number in the ATTACH command.
Thus ATTACH UTIL 0 would look for UTIL on drive 0. If UTIL is not
on that drive, no other drives are searched and an error message
is given.

External commands such as EDIT, FTN and MAC which are core
image files are resumed from the COMDIR directory on drive 0.

Thus only one copy of the system commands must be stored on a set
of disk packs, on the master pack.

If only the master disk pack is in use on drive 0, the appro-
priate STARTUP command (STARTUP 0) need not be given when the
user loads the system.

A user may have more packs than drives, in which case he may
wish to unmount one or more packs and mount others. All packs may
be unmounted. The sequence of commands is LOGOUT followed by the
appropriate STARTUP command for the new configuration of packs.
The LOGOUT command must be given before the disk pack or packs are
unmounted.

Files may be active on two disks at once, allowing files to
be moved from one disk to another with ease. COPYFS, a user command

program has been written for this purpose.

1.2.4 File System I/0

Although the file system can contain an indefinite number of
files, only seven may be active at any one time. A file becomes
active when you connect it to a UNIT represented by the integer
1-7 which functions as a port to the system. One file at a time

may be assigned to each unit, at which time the mode of processing

1-6

is specified (read, write, read and write). Files may be active
on two disks at once. The transfer of data to and from a file
through a unit is accomplished by the BRWFIL routine.

Many DOS commands refer implicitly to specific units. The
command INPUT opens unit 1 for the input file, BINARY opens unit
3 for output and LISTING opens a listing file on unit 2.

Users may call on the file system to manipulate files as

described in section 4.3.

1.3 DOS-32 CORE USAGE

DOS is a core resident operating system. DOS occupies loca-
tions 200 to 4EFE hex. Locations below 200 are reserved for in-
terrupt pointers and CP and IOP status words. When a user is
loading programs, the loader must be resident. The loader
occupies locations 4F00 to 63FE hex. DOS disk I/0 buffers occupy
locations F280 to FFFE hex, leaving a user 6400 to F27E hex for
his programs.

The DOS buffers are only allocated as needed, from the top
of memory downward. If the user's program does not use seven units
at once, his program may occupy more core. DOS requires one sys-
tem buffer plus one buffer for each open file. Each buffer
occupies 1BO hex locations.

A user may specify a load address of 4F00 hex. The loader
will start loading at 6400 hex but generates relocated addresses
as if the load was made starting at 4F00. When control is returned
to DOS, the entire load is '"pulled down" over the loader. Although
no larger programs can be loaded using this feature, the extra
space made available at the top of memory may be used for DOS
buffers or free storage by the user program.

1-7

1.4 BREAK KEY INTERRUPT FEATURE
Following initial program load of DOS-32, the user can control
operation of the H632 System entirely from the console teleprinter.
When the break key on the teleprinter is depressed, program ex-
ecution is immediately interrupted, and one of the following
operations must be selected by the user:
1) Resume program execution
2) Set a specified pseudo sense switch (and resume program
execution)
3) Reset a specified pseudo sense switch (and resume pro-
gram execution)
4) Return control to the DOS supervisor
5) Reinitialize the system and return control to the DOS
supervisor
(Register and storage access operations can be performed from the
console teleprinter using the command BUGGY.) Any unsolicited
type-in will also cause program execution to be interrupted. The
console interrupt service routine invites a system control command
by typing the sequence carriage return, line feed, question mark,
space. At this point, any type-in other than a defined system
control command causes the above-described invitation to be
repeated. System control commands are described in the remainder
of this section

[Space]l: Resuming Program Execution

Depressing the space bar causes a type-out of period, space,
CR, LF, followed by resumption of program execution at the point

of interruption.

S: Setting a Specified Pseudo Sense Switch

The typing of the SET command name is automatically completed
by the output of ET and a space. At this point, any type-in other
than a defined pseudo sense switch identifier causes the command
invitation type-out to be repeated. If the user types one of the
letters A through 0, the corresponding pseudo sense switch is
assigned the value 1 (.TRUE.); then the actions specified for
space (see above) are performed. To check a pseudo sense switch
from a user program, the user calls the logical function SSWS(N)
where N is 1-15 corresponding to pseudo sense switches A-O. SSWS
returns ,TRUE. if the switch was set, .FALSE. otherwise.

R: Resetting a Specified Pseudo Sense Switch

The typing of the RESET comménd name is automatically com-
pleted by the output of ESET and a space. Command execution is
thereafter exactly as for S, except that the identified pseudo
sense switch is assigned the value 0 (.FALSE.).

Q: Returning Control to the DOS Control Program

The typing of the QUIT command is automatically completed by
the output of UIT followed by a space and the sequence period,
space, CR, LF. Control is then transferred to EXIT, resulting in
the familiar 'OK,' solicitation of a new DOS command.

A: Reinitializing the System

The typing of the ABORT command is automatically completed by
the output of BORT. A programmed system initialize is performed.
Then all open files are closed. Finally, the sequence space, &,
space, Q is typed and control is passed to the QUIT command pro-

cessor (see above).

1-9

CHAPTER 2
A SESSION AT THE CONSOLE

2.1 INTRODUCTION

This chapter illustrates a typical set of tasks you will
perform at the console. During this sample console session, you
will open files, compile subroutines, utilize list options, trans-
fer data from cards onto disk and into core, and debug. It should

be noted that this chapter presents representative procedures;

procedures performed by the individual user may vary considerably
from those illustrated in the session below. The intention'of this
chapter is to show a large collection of typical tasks and thus

illustrate for many users the varied capabilities of D0S-32.

2.2 INITIAL PROGRAM LOAD

Before logging into the system and beginning work, the user
should check that the DOS USER disk is running on drive 0 and DOS
is loaded. If you are following another user, the last thing
typed should be LOGOUT followed by OK. If the system is not run-
ning, the user must load DOS by means of the Initial Program Load
or IPL procedure as explained below and in Appendix E.

1) Set the four Device Select switches on the System Control

Panel, from left to right, to ON, OFF, ON, ON. (Down is
ON.)

2) Using the key-operated Power switch, ensure that power
is ON and the switch is in the UNLOCK position.

3) Place the DOS user disk on disk drive #0 of the disk

control unit #0, close the protective cover, and depress

2-1

the Start switch on the disk drive #0 switch panel.
Then, depress the Permit switch on this switch panel.

4) After the Ready light on the disk drive illuminates,
depress the System switch on the SCP, wait for a half-
second, and then depress the Start switch on the SCP.
The teletype should respond by typing "DOS-32 REV G"
followed by "DATE=".

5) User types date in any format less than eight characters.
DOS responds "TIME=".

6) User types time in any format less than eight characters.

DOS responds by typing "OK,".

2.3 SYSTEM-USER INTERACTION

The following is a typical console session
user: LOGIN WYMAN
response: OK

Before we can begin work, we must LOGIN or ATTACH to one of
the user file directories. LOGIN is one of many internal commands
of DOS. WYMAN is the name of one of the user file directories of
DOS. The command LOGIN WYMAN searches the master file directory
MFD for WYMAN, and if found establishes that directory as the
current user file directory. When attached to the user file
directory, we have access to all files in that directory and may
generate new files in it if we wish.
user: load program in card reader
user: CARDFS
response: >

user: PROG

response: >
user: SUBR
response: OK

The user has prepared a FORTRAN main program and one subrou-
tine called by the program on cards of EBCDIC code. Each program
is followed by a $EOF card with an extra $EOF card at the end of
the deck.

CARDFS is the name of an external command. When a user types
a command to DOS, DOS looks the word up in a list of internal
command words. If the name is not in the list, DOS looks the name
up in a special external command directory COMDIR. If the name is
found, DOS reads in a core image file and starts executing the
program with initial PSW1, PSW2 and 16 registers as specified in a
special part of the file. An external command, in other words, is
a command which causes a core image file to be read into core and
begin execution.

CARDFS is loaded into core memory from COMDIR, and begins
execution by typing >. The user gives the name of a file to be
assigned to the first program. CARDFS creates the file and writes
the card images of the first program into that file, in this case
PROG. CARDFS then types > and waits for the name of another file.
The user typed SUBR and CARDFS wrote the second program onto that
file, then returned to DOS upon detecting two $EOF cards in a row.
No $EOF lines are placed in the file. All file names must be 1-8
alphanumeric characters beginning with a letter.
user: INPUT PROG

response: OK

2-3

We are preparing to compile PROG with FORTRAN. The INPUT
command connects the file that is its argument to unit 1 for read-
ing. In order to read or write files, they must first be connected
to a unit, which functions as a port to the system. CARDFS connect-
ed files to units under program control, but FORTRAN expects the
file to be compiled to be connected to unit 1 by the user.
user: BINARY B:PROG
response: OK

The BINARY command connects the file that is its argument to
unit 3 for writing. If the file did not exist, it will be created
by this command. FORTRAN expects unit 3 to be open for writing
and writes binary compiled output through unit 3.
user: FTN ALIST
response: listing on line printer

0 errors
0K

FTN is the external command which calls the FORTRAN compiler
to compile a program. ALIST is a FORTRAN option which causes a
1ist of variables and their relative locations within the program
to be printed. The program PROG is compiled with listing on the
line printer and binary output to file B:PROG. After compilation
is complete, FTN automatically disconnects all units from files
and returns to DOS, which types OK.
user: I SUBR, B B:SUBR, FTN
response: O errors

0K
The internal commands may be abbreviated. INPUT is abbrevi-

ated I, and BINARY B. Each internal command may be abbreviated

2-4

by truncating characters from the right in such a way that the
abbreviation is unique. See appendix C for a complete list of in-
ternal commands and their abbreviations.

Multiple commands may be stacked on the same line, each sep-
arated by a comma.

The group of commands given causes SUBR to be compiled in a
similar way that PROG was compiled.
user: EDXX? EDX"IT
response: INPUT

The editor is invoked by the external command EDIT. The "2?"
character kills all input on the line up to the "?", The "
character erases the last character typed before it. Successive
use of " causes successive preceding characters to be erased.
The editor has just typed INPUT indicating the editor is in high
speed input mode. In this mode, typed lines are entered directly
into the text buffer.
user: B:PROG B:SUBR
user: carriage return
response: EDIT

>

Two carriage returns in succession cause the editor to switch
modes. We have switched to EDIT mode, in which typed lines are
interpreted as commands to the editor. When in the EDIT mode, a
">" is typed at the beginning of the line, indicating the editor
is ready to accept a command.
user: FILE N:PROG

response: OK

2-5

FILE is an editor command which writes a file that contains
the text buffer as data and with the name that is its argument.
The FILE command returns control to DOS at its completion. DOS
types OK
user: CONCAT
response: OUTPUT FILE=
user: C:PROG
response: NAME FILE=
user: N:PROG
response: NAME FILE=
user: Q
response: OK

It is generally convenient to maintain subroutines of a
program as separate files. Thus instead of always compiling all
subroutines in a program, one need compile only those which are
being changed. To facilitate loading, CONCAT is used to comBine
all subroutines of a program into a single output file which is
acceptable to the loader.

CONCAT requests the output file which the user responded by
giving C:PROG. CONCAT then requests a name file which is a file
that contains the names of all files to be combined. The user
typed N:PROG, the name of the file containing the two names B:PROG
and B:SUBR. CONCAT asks the user for another name file to add
more routines to the output file. The user typed Q for QUIT to
indicate there were no other files to be concatenated and to cause
a return to DOS
user: LDR

response: >

2-6

LDR invokes the relocating loader. LDR types > indicating it
is ready to accept requests to load programs,
user: *,PRI, C:PROG, LIB, REF, MAP
response: file is loaded, load map is typed and printed on the
line printer
FUL= 7500
>
The user typed line indicates the following:
® - begin loading at the first available location

PRI, C:PROG

load file C:PROG as the primary file
LIB - search the file LIBRARY in user file directory
LIBDIR to satisfy unresolved references
REF - continue processing of the loader, even if unresolved
references remain
MAP - print out all entry points and unresolved references
LIBRARY contains all the mathematical, conversion and 1/0
routines required by FORTRAN. 1In addition, utility functions and
routines described in section 4.5, and peripheral device routines
described in section 4.6 are in LIBRARY. The loader automatically
resolves references to resident DOS routines described in sections
4.3 and 4.4,
user: SAVE *PROG 6400 7500 6410
response: 0K
SAVE generates a core image file named *PROG containing loca-
tions 6400 to 7500 as data. SAVE also generates a vector of
machine initial conditions for restoration when the file is re-
sumed, putting this information at the beginning of the file.

These conditions are given beginning as the fourth parameter of the

2-7

SAVE command. They are in order PSW1l, PSW2, and RO through R15.
In this case only PSW1 was specified.

The user's save file should start at 6400 unless he has
specified a different load address to the loader. The end address
should be the address indicated following FUL= on the load map.
FUL stands for first unused address. The initial PSW1 or entry
point should be specified as the address following MAIN in the load
map.
user: CARDFS
response: >
user: DATA
response: 0K

The user uses CARDFS to read a data card deck onto disk as
file DATA.
user: INPUT DATA
response: OK
user: RESUME *PROG
response: output to line printer

0K

The user connects unit 1 to file DATA by the INPUT command.
RESUME is a DOS internal command that reads a core image file into
core, sets the machine registers from a part of the file, and be-
gins execution. The program reads input from unit 1 writing out-
put on the line printer. When the program finishes, control re-
turns to DOS and OK is typed.
user: CLOSE ALL

response: 0K

2-8

CLOSE ALL will disconnect all units from all files,
To allow the user to try the procedure described in this
section, the programs PROG and SUBR are given below

C FILE PROG
C
DO 10 I=1,10
READ (1,20) J,K
20 FORMAT (216)
CALL SUB (J,K)
10 CONTINUE

CALL EXIT
END
$EOF
C FILE SUBR
C
SUBROUTINE SUB (J,K)
C

L=J+K
WRITE (101,20) L
20 FORMAT (1X,1I6)

RETURN

END
$EOF
$EOF

In the above program, the statement READ(1,20) J,K will read
from DOS file unit 1. The FORTRAN READ device number corresponds
to a DOS file unit number for the range 1 to 7. In the WRITE
statement, device 101 will output to the line printer. The sub-
routine EXIT will return control to DOS which types "OK". The
data cards should consist of 10 cards followed by $EOF each con-
taining two integers right justified to columns 6 and 12.

An alternate way of using the system is to generate program

and data files at the teletype using the editor. If the program

2-9

is short and consists of only a few subroutines, it may be quicker
to bypass use of CONCAT. The following is an example of this
user: EDIT
response: INPUT
The user invokes the EDITOR as in the first example
user: Do 10 I = 1,10
user: READ (100,20) J,K
user: 21 N\ FORMAT
user: CALL SUB(J,K)

user: 10 N\ CONTIN

user: CALL EXIT

user: END

user: $EOF

user: SUBROUTINE SUB(J,K)
user: C

user: L = J+K

user: WRITE (100,20) L

user: 20 \ FORMAT (I6)
user: RET? RET"TURN
user END
user: $EOF
user: $EOF
user: carriage return
response: EDIT
>
The backslash character "\'" is the logical tab convention for
EDIT. We have entered a program and subroutine using the INPUT

mode of the editor. When finished, two carriage returns in a row

2-10

were typed to enter the EDIT mode, in which typed lines are inter-

preted as commands to the EDITOR. The '">" symbol is typed whenever

the editor is ready to accept commands in the EDIT mode. After a
command is given, the editor takes time to execute the command.
The user should not type another command until the ''>" is given.
This symbol also makes it easy to remember if one is in INPUT or
EDIT mode, as ">" is not typed in INPUT mode.
user: TOP
response: >

TOP is a command which moves a pointer which points to lines
of text in the text buffer. This pointer is moved to point to a
"null" line at the beginning of the text buffer.
user: FIND 31
response: BOTTOM

>

The FIND command moves the pointer forward from the line
following the current line to the first line beginning with the
string "31". The pointer now points to a '"null" line after the
last line of text in the buffer. What I meant to do was type
FIND 21 but mistyped it.
user: TOP
response: >
user: FIND 21, PRINT
response: 21 FORMAT

>
This sequence of commands means go back to the top of the

buffer, look for a line beginning with "21", then print the line.

The second user input shows stacking of commands. Two commands
have been typed on the same line separated by a comma. The com-
mands are not executed until the entire line has been typed. The
commands are then executed left to right
user: RETYPE 20\ FORMAT (21I6)
response: >
user: PRINT
response: 20 FORMAT (216)
>
RETYPE replaces the current line by the string that is the
argument of the retype command.
user: LOCATE CONTIN, PRINT
response: 10 CONTIN
>
LOCATE repositions the current line pointer to the next line
in the text buffer containing an occurrence of the string that is
its argument
user: CHANGE /CONTIN/CONTINUE/,PRINT
response: 10 CONTINUE
>
The CHANGE command is used to replace one string of characters
in the current line by another. '"/" is used in this case as the
delimiter of the strings, but almost any character will do.
user: FILE TEST
response: OK
As before, the FILE command writes the text buffer onto the

file which is its argument, then returns control to DOS.

2-12

This program is different from the first example, as device 100

is used for reading and writing. Device 100 is the teletype.
user: INPUT TEST, BINARY B:TEST, FTN
response: O errors

0K

Compile the program TEST with binary output B:TEST with output

listing on the line printer. The compiler will compile "stacked"
subroutines so long as each is separated by a $EOF card with two
$EOF cards following the last subroutine. Output for both the

main program and the subroutine in this example is written onto

B:TEST,
user: LDR
response: >
user: *,PRI,B:TEST, LIB,REF,MAP
response: > (file B:TEST is loaded, map is printed)
user: carriage return

Binary file B:TEST is loaded as C:PROG was in the first
example. The user can speed up output of the load map by telling
the loader to print it only on the line printer by setting pseudo
sense switch A. This is done by hitting the BREAK key, and typing
S, then A. Pseudo sense switch A may be reset by hitting the
BREAK key and typing R followed by A. The sense switch should be
set before the LDR command is given. The BREAK key feature has
other purposes described in section 1.4,
user: SAVE *TEST 6400 7500 6410
response: QK

Generate the core image file *TEST containing locations 6400

to 7500 with entry point 6410. As before, the first location

2-13

S ——

saved should be 6400, the last location should be that following
FUL= of the load map, and the entry point should be that location
opposite MAIN in the load map.
user: RESUME *TEST
response: none

The program is waiting for teletype input.
user: 00001 00005
response: 6
user: 00100 00300
response: 400
user: BREAK key
response: 7
user: Q
response: 0K

The user wishes to abort his program and return to DOS
command level. He hits the BREAK key, which causes a program
interrupt and a special DOS routine to be entered. This routine
accepts a limited number of special commands. The Q command is
given, which causes control to return to DOS command level. See
section 1.4 for a full description of the BREAK feature.
user: LOGOUT
response: OK

The user gives the LOGOUT command at the end of his session.
This disconnects all units from all files, updates the disk and
detaches DOS from your directory. This prevents the next user

from accidently using your directory.

CHAPTER 3
USER COMMANDS

3.1 INTRODUCTION: COMMAND SYNTAX

A user command is what you type at the console to instruct
DOS to perform some action; it consists of a key word, followed by
a string of arguments, followed by a terminator. The number and
nature of the arguments depend on the command itself. The terminag-
tor is either a comma or a carriage return: use a comma if you
want to type another command on the same line; use a carriage
return if you want to type the next command on a new line.

A key word 1is an alphanumeric string which has special mean-
ing to the system. It begins with an alphabetic character and is
followed by a delimiter (blank, comma, left parenthesis, right
parenthesis, or carriage return); see Appendix B. An argument
is either a name or a parameter. A name is an alphanumeric string
which begins with an alphabetic character and is not a system key
word. A parameter is a number which is represented in either
hexadecimal or octal notation. Hexadecimal numbers must begin with
a digit 0-9 (for AA type OAA); octal numbers must begin with an
apostrophe ('). Although arguments can technically be any length,
only the first eight characters of a name or the rightmost 32 bits
of a parameter are used. Arguments must be separated from each
other by at least one blank.

Commands can be typed in a fairly free format. Two or more
commands can be typed on a single line by separating them with
commas. Commands can be continued from one line to the next by

typing a semicolon (;). A carriage return which is not preceded

3-1

by any semicolon signals the end of a line. When you type a
carriage return, DOS analyzes and executes the commands that you
have typed on the line, one at a time. If there are no syntax
errors in the line, and if each command is executed properly, DOS
types OK. If errors are discovered, DOS types an error message
and the code ER,; it then returns the carriage to the beginning
of the next line (having processed commands up to the error and
ignoring any other commands in the current line) and awaits a new
command. You can erase the most recently typed characters one at
a time by typing one quotation mark (") for each character you wish
to delete. You can delete an entire line by typing a question
mark (7).

The DOS user commands are presented in detail in the sections
of this chapter. In the models, the following conventions are
used. Words in CAPITAL LETTERS are key words. Items in lower-case
italics are arguments. Parentheses are required where shown.
Elements in square brackets [] are optional; elements stacked
within {} are alternatives, of which one must be chosen; and an
ellipsis ... indicates that the preceding element may be repeated.
A carriage return is specified asy -

There are two basic types of commands, internal commands and
external commands. Internal commands are commands executed by éhe
core resident DOS. After a command is typed, DOS looks it up in
its list of command names. If found, the appropriate action is
taken and control is returned to DOS command level. If the name
is not found, DOS looks the name up in a special external command
directory COMDIR. If the name is found, DOS reads in the core

image file and starts executing the program with initial program

3-2

status words and registers as specified in the beginning of the
tile. An external command, in other words, is a command which
causes a core image file to be read into core and begin execution.
System programs and utility commands are external commands; all
others are internal. Each internal command may be abbreviated by
truncating characters from the right in such a way that the
abbreviation is unique. See Appendix C for a complete list of

internal commands and their abbreviations.

3.2 SYSTEM PROGRAMS

DOS-32 currently includes nine system programs: a FORTRAN
compiler (FTN), a MACRO assembler (MAC), a Loader (LDR), a program
for building loader input (CONCAT), an interactive editor (EDIT),
an object-program editor (BEDIT), a media converter (MEDIA), an
on-line debug (BUGGY), and a batch-mode update program (SUPDATE).
Although D0S-32 has ultimate control over the machine, it delegates
control to system programs when they are invoked. Communication
then is between you and the system program. Thus, for example,
you can invoke the editor by typing the command

EDIT
The editor then takes over, and you issue editor commands which
the editor interprets and executes. When you are finished using
the editor, you can get back to DOS by typing

QUIT
This is a signal for the editor to relinquish control, which passes
back to DOS. Subsequently you will type user commands and will be
interacting with the system. If your next command is

MEDIA

the media conversion program will take control, and you will issue

MEDIA commands, etc.

3.2.1 FIN: Compiling a FORTRAN Source Program

Model: FTN [option]...
Examples: B B:SIGMA, FTN Input on cards, listing on printer,
binary on disk (B:SIGMA)
FTN NOBJ Input on cards, listing on printer,
no binary
I S:DELTA Input from disk (S:DELTA)
B B:DELTA ('S:' and 'B:' have no special signi-

FTN ALIST OLIST fiecances; they are chosen by user to
help him identify different types
of files)

FTN invokes the FORTRAN compiler to compile a FORTRAN source
program. Input may be on cards (default) or on disk, in which
case the INPUT command (3.3.1) must be used to identify the file
to the compiler. The listing may be sent to the printer (default)
or to the disk via the LISTING command (3.3.3). The object program
will be written on the disk into the file named in the BINARY com-
mand (3.3.2), unless the NOBJ option has been specified. When
compilation is complete, the compiler will close all files and
return to DOS, which will type OK,.

Several programs may be compiled by one invocation of the
compiler provided they are separated by $EOF records. Object
programs will be written successively into the binary file without
separations. If input is on cards, two successive $EOF cards

represent end-of-file. After each of the programs has been com-

3-4

piled, FTN will type a message telling how many errors were found.
When a group of statements, such as a set of COMMON statements,

appears in several programs, this group may be stored in a separate

file and replaced by a single statement in each program which reads:
INSERT (directory password) filename

where directory and password are optional. On encountering such

a statement, FTN will process the statements in filename as if

they had actually appeared in place of the INSERT statement.
Any combination of the following options (separated by

blanks) may be specified in the command line:

Option Effect
[SLIST] List source program (default).
NSLIST Do not 1list source program.

OLIST List object program by printing generated MAC
[NOLI%T] statements after each FORTRAN statement.

) Do not 1list object program (default).
J prog

[ELIST] List external references (default).
|NELIST Do not list external references.

(ALIST] List storage assignments.

INALIST Do not list storage assignments (default).
[OBJ Generate object program (default).

| NOBJ Do not generate object program.

[ST] Symbol table (not used by D0S-32)

| NST No symbol table (default).

"Dp Double-precision mode for all REAL computation
NDP] and data allocation,

- Normal mode {(default).

(X] Compile X lines.

| NX Do not compile X lines (default).

The use of X and NX options may be unclear to some users. An X
may be placed in column 1 of a FORTRAN statement to indicate the
temporary nature of this statement. If the X compiler option is

specified, lines containing an X in column 1 will be compiled;

3-5

otherwise, these lines will be treated as comments. This facility
is very useful for debugging purposes.

Any line with 'Cl ' in positions 1-4 is treated in a special
way by FIN. It is not printed, and the line which follows it is
printed on a new page. Errors detected during compilation are
printed out in code form after compilation is complete. Each
follows the statement in which it is encountered (these codes are

interpreted in Appendix H).

3.2.2 MAC: Assembling a MAC Source Program

Model: MAC [option]...
Examples: B B:SIGMA, MAC
See FTN for
MAC NOBJ comments on these

examples
I S:DELTA, B B:DELTA, MAC XF SET

MAC invokes the MACRO assembler to assemble a MAC source
program. Input may be on cards (default) or on disk, in which case
the INPUT command (3.3.1) must be used to identify the file to the
assembler. The listing may be sent to the printer (default) or to
the disk via the LISTING command (3.3.3). The object program will
be written on the disk into the file named in the BINARY command
(3.3.2), unless the NOBJ has been specified. When assembly is
complete, the assembler will close all files and return to DOS,
which will type OK,.

Several programs may be assembled by one invocation of the
assembler, provided they are entered on cards and separated by
$EOF records. (If input is on disk, only one subroutine can be
assembled at once.) Object programs will be written successively

into the binary file, without separators (this is not recommended).

3-6

Two successive $EOF cards represent end-of-file. After each of the
programs has heen asscmbled, MAC will type a message telling how
many errors were found.

When a group of statements, such as a set of COMMON statements,
appears in several programs, this group may be stored in a separate
file and replaced by a single statement which reads:

INSERT (directory password) filename
where directory and password are optional. On encountering such
a statement, MAC will process the statements in filename as if
they had actually appeared in place of the INSERT statement.

Any combination of the following options (separated by blanks)

may be specified in the command line:

Option Effect

[LO] List source program (default).

NLO Do not 1list source program.

[OBJ] Generate object text (default).

| NOBJ Do not generate object test.

[SC Symbol concordance (default).

|NSC No symbol concordance.

(ST] Symbol table (not used by D0S-32).

| NST No symbol table (default).

[XF] Output X and K error flags.

NXF Do not output X and K error flags (default).

FPL Pass-1 listing.

NFPL No pass-1 listing (default).

SET Enter SET source lines in concordance.

[NSET] Do not enter SET source lines in concordance
(default).

[TXS} Right-fill text with $20 (default).

TXN Right-fill text with $00

Assembly errors are identified by one-character codes printed

to the left of the relevant lines in the assembly listing. These

3-7

codes are explained in the MAC-32 Assembler Manual. A special class
of system-related errors are reported after assembly by a message
on the console in the form:

CO$ MACS$ code

where code represents one of the following:

Code Meaning

TO1 Bad control card

TO2 Illegal I/0 request
TO3 Symbol table too large
TO4 Bad load of MAC

TOS5 No end-of-group

T06 Bad read

3.2,3 EDIT: Editing a File

Model: EDIT [file]
Examples: EDIT
EDIT BIN1

EDIT invokes the D0S-32 interactive text editor, which allows
you to edit files according to context and to create, edit, and
store new files.

The editor provides two modes of operation, input and edit.
If you are in input mode, lines which you enter at the teletype
are treated as lines of a new file which you are creating. If

you are in edit mode, lines which you enter at the teletype are

treated as editor commands which are to be executed on an existing
file. At any point, you can switch from one mode to the other by
typing two consecutive carriage returns or line feeds. Thus, if
you want to add several successive lines, you can use input mode
rather than the INSERT command.

The editor processes a file, which consists of lines - strings
of characters delimited by new-1line characters (carriage returns
or line feeds). You have access to a file one line at a time and
can specify commands to be executed on that line. The current
line is indicated by a pointer, which can be positioned at any line
in the file. Various commands can be used to move the pointer up
and down. The pointer is not affected by switching between edit
and input modes.

The editor is invoked when you type the command:

EDIT [file]
where the optional file designates a file in the current directory.
If file is specified, you will enter the editor in edit mode.
The editor will respond by typing

EDIT
and positioning the pointer at the first line of the named file
(the first line is always a pseudo-line: '.NULL.'). You then issue
commands (see below) to edit that file. When the end of that file
is reached, the editor will type

BOTTOM
and you can continue in any of a number of ways, depending on the
commands which you subsequently issued.

If you invoke the editor and do not specify a file, you

will enter the editor in input mode. The editor will respond by
typing

INPUT
You then type lines which will be entered in the editor buffer as
a file. You can eventually enter this file in the current
directory. When you are finishing entering lines, enter two new-
line characters. This will signal the end of the file, in response
to which the editor will put you in edit mode. The editor will
then type

EDIT
and the pointer will point at the last line of the file. You can
then process the file with any of the commands described below.

Editor commands are specified in command lines, according
to the following format:

command [,command] ...
where each command is one of the editor commands described
below. When you signal the end of a command line by typing a
new-line character, the editor will begin to execute the commands
on the line.

The ">" character is typed whenever the editor is ready to
accept commands in the EDIT mode. After a command is given, the
editor takes time to execute the command. The user should not type
another command until the ">" is given. This symbol also makes it
easy to remember if one is in INPUT or EDIT mode, as '>" is typed
only when in EDIT mode.

To facilitate ease of input, the editor makes use of tab
stops. These stops are originally set at 6 and 12 characters from

the left, but by using the TABSET command up to 8 tabs can be set

3-10

anywhere along the line. To use the tab feature, the user types a
backslash (\). This character is interpreted as meaning fill in
this line with blanks until the next tab stop. Hence, if one
wishes to input the following FORTRAN code: (periods indicate spaces
in line).
10 CONTINUE
he needs simply type
10 . CONTINUE

Lines typed to the editor may be changed if an error is made,
using the same characters ' and ? as are used on DOS command lines.
The erase character " will cause the preceding letter to be deleted
from the line. Successive use of this character will cause suc-
cessive characters to be removed. A ? will "kill" the input line
up to the ?. The erase and kill characters are effective whether
in the INPUT or EDIT mode. The erase or kill character may be
changed by means of the ERASE or KILL edit command.

~

The character carat is the logical escape with the follow-

ing conventions

~00 hex character
L move to lower case
“L move to upper case

Each of the editor commands may be abbreviated, as shown in
each command,

An error which takes control out of the editor may be re-
covered by starting at S5SASE hexadecimal. This allows the user to
reenter the editor with the text buffer the user was working with
intact. The editor brings the entire file into core for editing.

If the file is too large, the editor will type BUFFER OVERFLOW

3-11

LOADING. The editor can process a file up to about 2000 FORTRAN
statements. If the file is too large, the user must use the SUPDATE
command (3.2.9) to make modifications to the file. It might be
useful to use SUPDATE to break the file into smaller pieces and

use to editor to modify the pieces.

Following are the editor commands

Model: TOP
Abbreviation: T

TOP positions the pointer at the first line of the file.

Model: BOTTOM
Abbreviation: B
BOTTOM positions the pointer at the last line of the file,

a dummy '"null" line.

Model: NEXT [=»]

Abbreviation: N[=n]

Examples: NEXT 5
N -10
N

NEXT moves the pointer forward n lines if n is a positive
integer or backward »n lines if #n is a negative integer. If n is
0 or omitted, the editor assumes 1 and moves the pointer forward
one line. If the end of the file is reached during execution of
this command, the pointer remains at the last line and the editor
types

BOTTOM

If the beginning of the file is reached, the pointer remains at the

3-12

first line and the editor types

TOP

Model: PRINT [=]
Abbreviation: P[n]
Examples: PRINT
P 6
PRINT -6
If n is a positive integer, PRINT types n lines on the tele-
type, beginning with the current line. If n is 0 or omitted, the
current line is typed. If n is a negative integer, the poipter is
moved n lines backward, and that line is typed. The pointer is
left pointing to the last line typed.
If the beginning or the end of the file is reached during
execution of this command, the editor types TOP or BOTTOM,

respectively.

Model: ®
An asterisk (*) can be specified as the last command of a

command line to set up a loop consisting of all the commands in
the line. The commands are then executed in the loop until either
the beginning or end of file is reached. Thus, for example, the
command line

NEXT, PRINT, *
will list a file from the current line through the last line. To
list the entire file, type.

T

N, P, *

Model: RETYPE line
Abbreviation: R line
Examples: RETYPE GO TO 100
RN IF(ERRVEC(3).EQ.12) GO TO 9
RETYPE replaces the current line with Zine and leaves the
pointer positioned at the current line (i.e., ZZne). Note that R
and line are separated by exactly one blank; additional blanks are

part of line.

. [7] }
Model: DELETE {TO 'string’

Abbreviation: D{%g]'string'}

Examples: DELETE 5

D

DELETE TO 'AB4'

If n is a positive integer, DELETE deletes » lines from the

file, beginning with the current line. If »n is 0, the current
line is deleted. If »n is a negative integer, the command is ignored.
DELETE TO 'string' deletes up to, but not including, the line con-
taining 'string'. The pointer is positioned at the line which
follows the last deleted line. If the end of the file is reached
during execution of this command, the pointer remains at the last

line of the file, and the editor types BOTTOM.

Model: LOCATE ¢

Abbreviation: L e

Examples: LOCATE GO TO 7
L CALL BRWFIL

LOCATE positions the pointer at the first line after the
current line which contains the character string ¢ anywhere in the
line, where ¢ can be a string of any length. If the end of the
file is reached during execution of this command, the pointer

remains at the last line of the file, and the editor types BOTTOM,

Model: FIND ¢
Abbreviation: F e
Examples: F 100
FIND 950

FIND positions the pointer at the first line after the cur-
rent line which begins with the character string e, where ¢ can
be a string of any length. If the end of the file is reached
during execution of the command, the pointer remains at the last
line of the file, and the editor types BOTTOM. FIND is particular-
ly useful for retrieving labeled statement lines or error messages

in a compilation listing file.

Model: CHANGE L TC T [n][G]
Abbreviation: C xeqze,x [#][G]

C /100/20/

C AZA9A G

CHANGE examines n lines, beginning with the current line,

where n is a positive integer or 0. If n is 0 or omitted, only the
current line is examined. CHANGE replaces character string eq
with character string Cys where ey and e, can be strings of any
length and need not be the same length. If G is specified, every

occurrence of e; on a line will be replaced; if not, only the

first e; on a line will be replaced. The character strings eq

3-15

and e, are delimited by x, a character which you specify as the
first nonblank character after CHANGE or its abbreviation. This
character must not occur in ¢y OT c,.

The pointer is repositioned to point to the last line which
was examined. If the end of the file is reached during execution
of the command, the pointer remains at the last line of the file,

and the editor types BOTTOM.

Model: INSERT line
Abbreviation: I Zline
Examples: INSERT C THIS ROUTINE SEARCHES FOR A DELIMITER.
I IF (B .NE. 100.0)
INSERT inserts line directly after the current line and re-
positions the pointer to point to ZZne. Note that I and line are
separated by exactly one blank; additional blanks are part of

line.

Model: ERASE ¢
Abbreviation: E ¢
Examples: ERASE

E /

ERASE changes the current erase character to e, any ASCII
character which can be printed. The erase character, when typed,
deletes the last character which was typed. If e¢ is the current
erase or kill character, comma (,), semicolon (;), plus (+),
minus (-), or new line (carriage return or line feed), the command

is ignored. The initial erase character is the quotation mark

("))

Model: KILL e
Abbreviation: K e

Examples: KILL X

KILL changes the current kill character to e, any ASCII
character which can be printed. The kill character, when typed,
deletes the current line. If ¢ is the current erase or kill
character, comma (,), semicolon (;), plus (+), minus (-), or new
line (carriage return or line feed), the command is ignored. The

initial kill character is the question mark (?).

Model: TABSET x [x]
AbLreviation: TA
Example: TABSET 20 40 60

TABSLET sets taks at each x, where z is an integer 1-72. Up
to eight «'s can be specified, and they must be in ascending order.
Tabs are set initially to 6, 12, and 30. To tab on input, type a

backslash (\), not a tab character. For example, to input the

following:

A B C
type:

K\B\CR
Model: PTABSET = [x]

Abbreviation: PT
Example: PTABSET 6 12 18
PTABSET, with the same argument format as TABSET, allows

the user to tell the editor where the physical tab stops are on

the teletype. EDIT will output TAB rather then spaces on output
where appropriate. Initially tabs are set to 6, 11, 21, 31, and

41.

Model: BRIEF
Abbreviation BR

BRIEF suppresses typing of text lines for all but PRINT
commands. When the editor 1s invoked, it will initially be in this

condition.

Model: VERIFY
Abbreviation: V
VERIFY causes CHANGE, NEXT, FIND, LOCATE, and RETYPE commands

to type out the current line after any changes have been made.

Model: INPUT
Abbreviation: IN
INPUT puts the editor in input mode. In response, the editor

types INPUT.

Model: LOAD file
Abbreviation LO
Example: LOAD SCHRS

LOAD loads file into the editor buffer after the current
line and puts the editor into edit mode. In response, the editor
types EDIT. The named file must be listed in the current directory.
After the file is loaded, the text pointer points to a null line

following the loaded file.

Model: FILE [file]
Abbreviation: FILE INB
FILE

FILE checks for file in the current directory and, if found,
replaces the old file with the new edited version. If file is not
found in the directory, an entry for file is created in the di-
rectory and the file is entered. If file is omitted and you have
invoked the editor with the fite specification, the file will be
stored with that file. If you did not specify a file when invok-
ing the editor and you omit a file in the FILE command, the editor
will request a file.

After a FILE command is executed, control automatically

returns to DOS. In response, DOS types OK,.

Model: QUIT
Abbreviation: Q

QUIT returns you to DOS. In response, DOS types 0OK,.

3.2.4 MEDIA: File-Copy Utility

Model: MEDIA

Examples: In all of these examples, system questions are
underlined, user responses are not. Each user
response is assumed to terminate with a carriage
return.

Cards to Magnetic Tape

0K, MEDIA

INP MODE=S

3-19

INP=C
OUT=M
DRIVE=1
RECL=30
REWIND? Y
INP MODE=Q

Cards to Several Files

0K, MEDIA
INP MODE=S
INP=C
OUT=F

SEVERAL FILES? Y

0U=DS1
0U=DS2
0U=DS3
ou=

INP MODE=Q

Magnetic Tape to File

OK, MEDIA
INP MODE=S
INP=M
RECL= 4
DRIVE=0
SKIP(F)=0

SKIP(G)=0
COPY F OR G (ONE) F

OUT=F

QU=DSK5

SEVERAL FILES? N

SEPARATE GROUPS? N

REWIND INP TAPE? Y

INP MODE=Q

File to Print

OK, MEDIA
INP MODE=S
INP=F

SEVERAL FILES? N

OUT=L
CC_CHARS? Y
IN=DS2
INP MODE=Q
MEDIA is a fairly general utility for copying files of data.

It is capable of reading from any of the following devices:

device code
file system (disk) F
card reader C
magnetic tape M

and of writing to any of the following devices

device code
file system (disk) F
line printer L
magnetic tape M

MEDIA is capable of dealing with both files and groups. The
end of a group is always indicated by a single end-of-group record,

while the end of a file is indicated by two consecutive end-of-

3-21

group records written as follows:
medium end-of-group record

file system (disk) record with $EOF in position

1-4
card reader card with $EOF in columns 1-4
line printer top of page
magnetic tape tape mark (standard) or record

with $EOF in position 1-4
(input only)
End-of-file on the disk is determined by exhausting the data count
in the last record of the record chain (or by encountering two
consecutive end-of-group records, if that should occur).

When either one of the devices participating in the data
transfer is the disk (file system), it is possible to associate
groups on one side with files on the other. That is, if one
answers Y to the question SEVERAL FILES? (see below), MEDIA will
treat end-of-group on the input device as end-of-file on the disk,
or end-of-file on the disk as end-of-group on the output device.
For example, this allows one to print several files or to create
several disk files from a multi-group magnetic-tape file without
repeating all of the setup commands. If one is copying from disk
to disk and has answered twice with Y, MEDIA will copy several

input files into an identical number of output files.

Flow of Control: Setup for Operation and Termination

MEDIA operates in either source mode (ASCII) or object mode
(binary). It does not convert from one to the other. When MEDIA

is invoked, and after it completes any copying operation, it asks

INP MODE=
You must respond to this with S or 0, for source or object, re-
spectively, or with Q to return to DOS.

Having determined the data mode, MEDIA will ask for an input
medium and an output medium, together with any supporting informa-
tion required. This sequence proceeds as follows. MEDIA types:

INP=
to which you respond with F,C, or M (see the list of codes above).
If any further information is required about the input source,
such as drive number for magnetic tape, MEDIA now asks for it as
indicated in the device-specific sections below. MEDIA then
types
0UT=
to which you respond with F,L, or M (see the list of codes above).
Again, if further information is required, MEDIA requests it.
MEDIA then proceeds to copy your data according to your specifica-
tions. If either your input device or your output device is the
file system, MEDIA will ask for one or more file names by typing
IN= or 0oU=
to which you must respond with a filename. Depending on the options
you have chosen, you may be asked for more than one name for either
input or output files. Typing carriage return for an input file
will terminate the current operation, while typing carriage return
for an output file will cause one group from the input file to be

skipped.

Device-Specific Considerations

Depending on your choice of input and output devices, MEDIA

3-23

may require some elaboration. This is described below on a device-
by-device basis.

File System

SEVERAL FILES? expects a Y or N response and effectively asks
whether you wish to continue the operation with another
file when finished with the first. For example, to list
several files, you would set up just once and then simply
be asked to specify a new input file (IN=) when the last
one specified is exhausted. This sequence terminates
when you reply to IN= with only a carriage return.

SEPARATE GROUPS? also expects a Y or N response, but is only

asked if you are specifying file system output. This

allows you to write end-of-group records or not, as you
wish. Typically, you should respond Y in source mode and
N in object mode (for example, FTN expects group separa-
tors, but LDR does not).
As indicated earlier, after you have completed your input and
output specifications, you will be asked to identify one or more

input files (IN=) or one or more output files (OU=).

Card Reader

No additional information is needed.

Line Printer

CC CHARS? expects a Y or N answer and is asked only for source
mode. If you specify Y, the first word of each record
will be used as a carriage-control word (see DOPRIN,

4,6.3), and will not be printed. If you specify N, MEDIA

will print 50 lines per page with an appropriate heading
that incorporates the first record in the current group.
When processing several groups, MEDIA will begin each
group on a new page.
When operating in object mode, MEDIA always provides page
control. Records are printed eight words per line with double
spacing between records. If input is from disk, the response typed

for IN= is used for a title. Otherwise, MEDIA asks TITLE=.

Magnetic Tape (Input and Output)

DRIVE= asks you to specify a drive; valid responses are 0,1,
2,3.

RECL allows you to specify a record length (in words). If you
simply type a carriage return, the actual record length
(maximum 100 words) is used for input, and the input re-
cord length is used for output. The latter is determined
as follows: file system source, 35; file system object
20; cards 20; magnetic tape, as specified. If you speci-
fy a record length, records will be truncated or extended
with blanks (source) or zeroes (binary) as appropriate.
You may specify a record length for input or output or
both.

At the end of the operation, you will be asked whether you

wish to REWIND INP TAPE, to which you should answer Y or N.

Current Media Problems

a. Although SEVERAL GROUPS? works in either direction, it

may not work in both directions together.

3-25

b. When copying from the card reader, using several groups,
MEDIA may get confused at the end. If it asks for too
many filenames, abort MEDIA using the BREAK key on the
A command. You cannot specify different responses for

input and output when asked RECL=.

3.2.5 BEDIT: Manipulating and Inspecting Files of Binary Programs

Model: BEDIT
BEDIT invokes the binary edit program which allows inspection
and manipulation of object-program files. Currently, the most
important function of BEDIT is the maintenance of the file LIBRARY
in LIBDIR, which is used by the loader for resolving references to
library routines. An object-program file is a file of one or more
object programs which are not separated by end-of-group records.
When BEDIT is invoked, it asks for the name of an output file
by typing
OUTPUT FILE =
to which you respond by typing the name of a file and a carriage
return. If you want to return to DOS, type QUIT.
If a filename or a blank line has been entered, BEDIT will
request an input file by typing
IN =
to which you respond by typing the name of a file and a carriage
return. If you want to close the current output file, if any,
and open a new output file, just hit a carriage return without
entering a name. BEDIT will respond by requesting a new output

file.

If you have entered an input file name, BEDIT will request an
operation command by typing >. Your response must be a command

line of the following format:

command [parameter]

where each command is one of the commands described below.
When you hit a carriage return, BEDIT begins to process the
commands specified in the line. When a command line has been

processed, BEDIT requests another line by typing >.

Model: T [n]
Examples: T
TS5

T transfer n programs from the input file to the output file,
where n is an integer 1-500. If » is omitted, the rest of the
programs in the input file or 500 programs, whichever is less, are
copied. If the end of the input file is reached, the rest of the

commands on the line are ignored, and a new input file is requested.

Model: S [n]
Examples: S1
S 10

S skips n programs in the input file, where n is integer 1-500.

If n is omitted, BEDIT closes the input file and requests a new one.

3-27

If the end of the input file is reached during execution of S, the
rest of the commands on the line are ignored, and a new input

file is requested.

Model: B [n]
Examples: B 5
B

B backs up n programs in the input file, where »n is an integer
1-500. If n is omitted, 1 is assumed. If the file is positioned
fewer than » programs from the beginning, the file will be backed

up to the beginning.

Model: E [n]
Examples: E1l
E 15

E lists the entry points of » programs in the input file,
where n is an integer 1-500. If n is omitted, the remainder of
the file or 500, whichever is less, is assumed. Entry points are
listed one per line at the left-hand margin of the page, with a

blank line between programs.

Model: R [n]
Examples: R
R 5

R 1lists the entry points and external references of n pro-
grams in the input file, where »n is an integer 1-500. If n is
omitted, the remainder of the file or 500, whichever is less, is
assumed. Entry points and external references are listed one per

line; entry points are typed at the left-hand margin of the page,

and references are typed in a column indented beneath the appropri-

ate entry point. Program listings are separated with a blank line.

Model: Q

Q returns to DOS, which responds by typing OK,. This works
only if BEDIT has just typed >. If BEDIT has typed OUTPUT FILE=,
type a carriage return. If BEDIT has just typed IN=, type the

name of any file in the current UFD; BEDIT will type >,

Model: I

The I (INSERT) command will open a second file for reading
and copy it entirely. Upon completion, the second file is cloéed.
During an I, the binary location pointer is unmoved on the original
input file. After I is typed, BEDIT responds INSERT FILE=. User
types the name of a file. The entire file is copied onto the out-

put file

Model: N

The N command, indicating NEW INPUT FILE, causes BEDIT to
close the current input file and ask for the name of a new one by
typing "IN=". The user responds with the name of a new binary
file. This command is useful for extracting programs from several

libraries and combining them into a new library.

Model: 0

The O (OUTPUT) command will close the current output file
and open a new file for writing. When O is typed, BEDIT responds
"OUTPUT FILE=". User types the name of a new file. The O command

is useful for breaking long binary files into shorter ones, each

containing one or more subroutines.

3-29

Model: K

This special command allows the user to add routines to an
existing file. When BEDIT is invoked, the user specifies the name
of an existing file when OUTPUT FILE= is typed. The K command is
given as the first command to BEDIT and causes BEDIT to skip to the
end of the output file. Subsequent T or I commands will append

routines to the output file.

3,2.6 LDR: Loading a File

Model: LDR

LDR invokes the loader to load a file which contains one or
more object programs (see CONCAT). An object program is generated
by the compiler or the assembler from a source program. It is not
executable because it contains relative addresses and unresolved
external references. That is, references to locations within the
program itself (e.g., statement labels) are expressed in terms of
their relationship to the beginning of the particular program or
one of its associated storage areas, and references to other pro-
grams (e.g., calls to system I/0 routines) are left blank and are
flagged. Before a program can be executed, the loader must convert
each of these references into an actual core address. This in-
volves assigning specific core locations to the program and to any
other programs which are to be executed with it.

After an object program has been loaded into core by LDR,
you can create a copy of it by requesting the LDR save function
or by using the SAVE command (3.4.1). Such a file is usually

referred to as a load module. Under DOS, you can give this type

of file a name and save it by entering its name in your directory,
A load module is executable and need not be processed by the
loader each time you want to execute it.

When the loader has assumed control, it types '">" to request
a control line consisting of one or more control parameters, sep-
arated by commas and terminated by a carriage return. Three types
of control line are accepted:

1) Normal load line

2) Force load line

3) Save control line

Normal Load Line

A normal load line is supplied in the following general form:

*
’

,REF ,0BJ ,MAP , COM ,LIB
$a, PRI,fize
,REEN ,OBJN ,MAPN , COMN ,LIBN

0,
The first parameter of a normal load line is the load para-

meter which determines the address at which loading begins. It

may be specified as one of the following:

1) * asterisk
2) $a where a is 1-5 hexadecimal digits
3) 0 numeric zero

"#" sets the load address at the first even location not
previously used during the current execution of the loader. If
no previous loading has occurred, a default location above the
loader is selected. "$a'" specifies an explicit hexadecimal load
address. '"0" defines a dummy load line. No loading takes place

but the remainder of the line is scanned for other parameters.

An explicit hexadecimal value on the first load line may
specify an address within the loader itself. In this case, the
program will be adjusted for execution at the load address, but
will be loaded into the area above the loader. Once established
this "offset load" mode remains in effect for subsequent load
lines. When loading is successfully completed, the program is
moved down to the correct location for execution. Control is then
passed to DOS.

The default location to load programs is 6400 hex. The user
cannot specify a load address less than 4F00 hex, as the operating
system occupies that space. The loader occupies locations 4F00 to
63FE hex.

Other parameters which may appear on a normal load line are:

PRI,file

PRI,file specifies the name (up to eight characters) of the
primary file to be loaded. The file must exist in the currently
attached directory.

The remaining six pairs of parameters specify loader pro-
cessing options. The initial default value is underlined. Each
specification continues in effect across load lines until
explicitly respecified.

REF/REFN

REF specifies that processing is to be continued even if
unresolved external references remain after processing the current
load line. REFN terminates loading if unresolved references

remain.

OBJ/OBJN

OBJ specifies that processing is to be continued if an object
text error is encountered. (The object record is discarded.)
OBJN terminates loading if an object text error is found.

LIB/LIBN

LIB specifies that the system library (LIBDIR) LIBRARY is to
be searched to resolve any unsatisfied references remaining after
loading primary file specified in the same load line. LIBN dis-
ables the search.

MAP /MAPN

MAP specifies that a symbol table of external names be printed
on the teletype and on the line printer after the current load line
has been processed. Symbols internal to DOS are printed but not
typed. Symbol definition typing can be disabled by setting sense
switch A (type "BREAK", "S'", then "A'"). MAPN suppresses symbol
table printing and typing.

COM/COMN

COM specifies that blank common be allocated immediately
following the end of the first subprogram loaded. COMN postpones
allocation of blank common until the current load line has been
processed.

Force Load Line

The force load line causes specified external names to be
added to the loader's symbol table. Two formats are allowed:

1) file, load,namel,...,namen

2) NO,namel,...,namen

If specified, file must be a file in the currently attached

directory. The names are first added to the symbol table

3-33

et e ————

as unsatisfied external references, and then the file filename

is searched in the same manner as the system library search request-
ed by LIB. The load parameter is specified as in normal load 1lines
by "*" or "$nnmn'" ("0" is not permitted). 'NO" causes the names

to be added to the symbol table but no search is performed.

Save Control Line

After some or all of the object text has been loaded into
core, the SAVE control line can be used to create a save file (an
executable program) in the currently attached directory. The for-
mat of the line is:

SAVE,file,sa,ea,epa

The file is used to open a file in the currently attached
directory using unit 2. Addresses sa,ea, and epa specify (without
leading §) the starting, ending and entry point addresses for the
save file in hexadecimal.

If the program has been loaded in "offset load mode', an
"offset save" is performed. Thus sa,ea are the relocated values,
i.e., the addresses used to load and execute the program.

Following processing of the SAVE control line, the loader
requests another control line. Additional object text may be
loaded or another save may be requested.

Notes on Using the Loader

With the exception of the system library, all files identi-
fied to the loader are presumed to reside in the currently attached
directory. If the name of a specified file (primary or force
load) is not found in the currently attached directory, the loader
will type:

name NOT IN UFD. TYPE NEW NAME OR CR.

3-34

The user may retype a misspelled name and proceed. If a carriage
return is typed, the loader will exit to DOS which responds with
"OK,". The user may then type:

ATTACH directory,START
The loader will then continue processing. Further filename ref-
erences will search the newly attached directory.

Following the processing of each control line, the loader will
request another load line except if unresolved external references
remain and the REFN option is in effect, in which case the loader
returns to DOS. If multiple load lines will be required to load a
program, the REF option should be specified in the first line. To
return to DOS, type a carriage return in response to the next con-
trol line request.

Since the table of external references is retained throughout
a single execution of the loader, unresolved references which Te-
main after processing a load line can be resolved by specifying
the necessary files in the PRI or force load specification in sub-
sequent control lines. After all necessary subprograms have been
loaded, the program may be saved and/or started. The use of the
SAVE command line is recommended since it provides printed docu-
mentation of the save filename, core occupancy, and entry point on
the load map.

References to entry points within the resident DOS are re-
solved by searching a list of system names after each load line
has been processed. The list is internal to the loader. It con-
tains entry names only for routines to which the user should have

access. Caution should be exercised to prevent the use of DOS

3-35

entry names as external names in user written programs. Multiply
defined external references may lead to improper operation of the
loaded programs. See Appendix F for a listing of DOS system rou-
tines.

If the program to be loaded is larger than the available area
of core, it may be possible to restructure some of the routines to
permit overlay operation. The procedure used to build an overlay
structure is described in Appendix G.

Examples of Loading Programs

user: LDR
response: >

The loader is invoked and awaits a control line
user: * PRI, B:PROG, LIB,MAP
response: >

The file B:PROG in the current file directory is loaded
starting at the default load address 6400 hex. The file LIBRARY
in LIBDIR is searched to satisfy unresolved references, then the
loader resolves any references to DOS routines through use of an
internal table. The load map is printed and typed. If pseudo
sense switch A is set, the load map is only printed.
user: SAVE, *PR0G, 6400,7900,6450
response: >

The core image file *PROG is generated containing locations
6400 to 7900 with entry point 6450. To run the program, user
types RESUME *PROG. The first location to be saved is the first
location loaded, normally 6400. The last location is found by
referring to the address following FUL (first unused location) in
the load map. The entry point is the address following MAIN in

the load map.
3-36

user: carriage return
response: OK
User types a blank line to return to DOS.
user: LDR
response: >
user: *, PRI, B:PROG1, REF
response: >
Load B:PROG1l, allow unresolved references, resolve any
references to DOS routines.
user: *, PRI, B:SUBR, LIB, MAP
response: >
Load B:SUBR following B:PROG, search the library and generate
a load map.
user: SAVE, *PROG1,6400,8400,6450
response: >
user: carriage return
response: QK
generate core image file as in first example.
user LDR
response: >
user: $4F00, PRI, B:PROG, MAP, LIB

response: >

Load program starting at 6400 with addresses relocated as if
it were loaded starting at 4F00. Search the library and resolve
references to DOS. Print and type the load map as if the load
was made at 4F00.
user: SAVE, *PROG, 4F00, 5F00, 4FF0
response: >

Generate the core image file *PROG in an "offset save'. The
parameters given to the SAVE command are the relocated values
the addresses used to load and execute the program. The loader
carefully generates the file with the text from locations 6400 to
7400 in this case.
user: carriage return
response: OK

The entire load is moved into the correct area overlaying the
loader, then control is returned to DOS. The user could then give

the DOS SAVE command instead of the loader SAVE command as follows:

user: SAVE *PROG 4F00 SF00 4F00

response: OK

3-38

The correctly located load of the program is saved from 4F00
to 5F00 with entry point 4FF0. Following are some of the error
messages which the loader issues.

ALLOCATION ERROR zzzxxxrzaz
Common request appeared in midst of program. xxxrxrrxr is
COMMON name.

BAD HEX NUMBER
Error in hexadecimal number in load line. Loader returns to
read a new line.

BLANK COMMON ERROR zxxxzrrz YYyyyyyy
Large blank common request appeared in data stream after

common allocated. zxxxxzzzr is allocated size; yyyyyyyy is

new size,
LIBRARY
CHECKSUM ERROR ON ¢{ MAIN FILE
file

The loader got a checksum error while trying to load from a
file. If the error is on the library, contact a systems
programmer. If the file is your own and you decide, after
reconsideration, that it is not a binary file but you do
have another file to load, type:

CLOSE 1

ATTACH directory

INPUT file

START '
and the loader will resume with your new program. If you are

sure that your file is a binary file, the utility DOSUM will

correct the checksums in the file. But be careful - any text,

data, or core image file fed to DOSUM will be hopelessly and
irretrievably ruined.

FILE NOT PROPERLY OPEN
You did not specify a PRI file.

FILE file NOT IN UFD. TYPE NEW NAME OR CR (bell rings)
A file you specified was not in the current UFD. If you
meant another file in your UFD (e.g., if you misspelled it),
type the name and carriage return. If you meant a file of
that name but were attached to the wrong UFD, carriage return
and you will be back in DOS. Then type:

ATTACH directory
START

ILLEGAL LOAD ADDRESS x zxxxxxal

ILLEGAL STRT ADDRESS x xxxxxxxx
Currently these errors are not caught, but the tests will
eventually be implemented.

MEMORY OVERFLOW 0001 xxxxxxax
Load conflict with symbol table. zxxzxxzx is address of end
of symbol table. Terminal error.

MEMORY OVERFLOW 0002 xxxxxzxx Yyyyyyyy
TEM or COM conflict with symbol table. xzzxxzrx is address
of end of table if allocation could be made; yyyyyyyy is
address of end of load. Terminal error.

MEMORY OVERFLOW 0003 xxxxxxxx YyYYyyyyy
Insufficient room in activity area. wzxzxzzx is address of
end of area for TEM or COM allocation if allocation could be

made; yyyyyyyy is address of end of load. Terminal error.

3-40

NO UFD FOR file
No UFD was attached. Type:

ATTACH directory
START

OBJECT ERROR IN zzzxxzzz yyyy
Messed up binary file or nonbinary file; zzxzrzzz is program
name, and yyyy is hexadecimal record number. If OBJ condi-
tion is in effect, loader reads next record; if not, it types
> and waits for a new load line.

PARAM ERROR zzxx
zxxz is the hexadecimal sequence number of an incomprehensible
specification in the load line. Loader returns to read a new
line. If you can discover no error, this message may indicate
that the teletype is malfunctioning. Just in case, try the
line again, and, if you still have trouble, try the TELETEST
program,

REFS zxzxx
zzzxx 1s number of unresolved references.

UNDEFINED NAME IN LOCSET zxxzxrzz
zxxxrxazx is the undefined name. This message should occur

only for MAC programs.

3.2.7 BUGGY: Debugging a Program On-Line

Model: BUGGY

BUGGY invokes the on-line debug package that was developed to
help check out DOS. BUGGY allows you to examine the contents of
any address, change those contents, perform address computation,
and insert and remove break-points. BUGGY is a part of DOS; it
therefore does not take up any space in the user section of core

memory. 2-41

When BUGGY takes control, it saves the contents of all reg-
isters and types:

BUGS
address contents

where address is the location in which the contents of register 0
have been stored. If you want the same information for register 1,
hit a carriage return or line feed (p), and BUGGY will type the
address at which register 1 has been stored and the contents of
register 1, in the same format. Each time you hit a carriage
return or a line feed, BUGGY will go on to list the address and

contents of the next register.

In general, BUGGY types out numbers in hexadecimal representa-
tion and interprets all numbers that you type as hexadecimal num-
bers. If you want to express a number in decimal, precede it with
a period. The examples in this section show numbers of both types,

After BUGGY types out the storage location and contents of a
register, you can change the contents of a register by typing in
the new contents. In the following example, the contents of
register 0 are changed from 491E to 7Al:

BUGS
00003960 0000491E 7Al

Be sure not to space before typing the replacement value because
inserting a space takes BUGGY out of the alter mode, and then any
number that you type will not replace the contents of the most
recently displayed register. The number you type will replace the
contents of the current register only if you (1) do not precede

it with a space and (2) immediately follow it with either a carri-

age return, line feed, or space. If you follow it with any other

3-42

command (e.g., L, see below), the number will be associated with
that other command and will not modify the contents of the register.
It is possible to examine selected registe¥s without having

to wait for BUGGY to list them in sequence. If you want to see
the location and contents of registers 0, and 8, respond as
follows:

BUGS

00003960 0000491Ep

00004396 946273A R8Ly
That is, type R, the register number, and L (for List). You don't
have to space before R in this case because the number is directly
followed by, and thus associated with, another command. An alter-
native is to tell BUGGY to go ahead eight words or sixteen half-
words, by typing one of the following:

*+8WL
*+10L (or, in decimal, *+,16L)

where * is the current address and W designates words.

You can use these same techniques of displaying and changing
contents for any address. Suppose, for example, you have seen
and modified all the registers in which you are interested, and
now you want to examine other locations. You would type the
address followed by an L and BUGGY then would display that address
and its contents. If you want to change those contents, you would
type a number followed by a space. If you wanted to go on to
another location, you would type the new address followed by an L.
Hitting a carriage return or line feed displays the contents of the
next word. In the following sequence, these features are demon-

strated:

0000491E 061FAB61 0600AB62 SBALR
000005BA O000OFFFFp
000005BC 00001092

You can back up a location by typing <, which is the equivalent of
specifying *-2L or *-1WL.

Other BUGGY commands and options are presented below.

Model: ’ ’

BUGGY provides indirect addressing by treating the contents
of a location as an address. If you type ’, BUGGY will treat bits
15-30 of the last number it typed as an address, go to that loca-
tion, and display its contents, as in the following sequence:

BUGS

00003960 6F02491E

0000491E 061FAB61
Model: /

If you want to change the contents of a location, but use the
original contents as the address of another location which you
want to examine, type a slash (/) followed by a command, as
demonstrated in the following sequence:

0000491E 061FAB61 369F /Ly
0000AB61 238E0021

No matter where you are in a line, i.e., regardless of the number
of things you have already typed, / gives you access to the con-
tents of the location which BUGGY typed out at the beginning of the
line.
Model: address [G]

To initiate execution of a routine, depress the CNTRL key and

type G (represented in the Model above as a bracketed G). BUGGY

will go to address and begin execution.

Model: address [B]
[R]

To insert a breakpoint in your routine at address, depress
the CNTRL key and type B (represented in the model above as a
bracketed B). When the routine is being executed, it will break
at address and pass control to you. The instruction at address
will not have been executed when the break occurs. You can do
whatever you like when control is in your hands; to resume exe-
cution with the instruction at address, depress the CNTRL key and
type R (represented in the Model above as a bracketed R). When
the instruction at which a breakpoint has been inserted is executed,
it will be executed out of line; caution must therefore be exer-
cised regarding which instruction has been affected (e.g., the LNJ
command) .

BUGGY allows only one breakpoint at a time. If you insert
several, all but the last will be ignored. When execution of the
routine breaks and control passes to you, you can change the break-
point by typing:

address [B]
Typing [R] in this case will still return you to the instruction
at which the original breakpoint was inserted. To remove a break-
point without inserting another, type the following:

0[B]

(]
1

45

Model: arithmetic expression

BUGGY will evaluate arithmetic expressions. If you have typed
an expression and want to know the result, just type an equals
sign (=), as in the following:

94F261+BF+39762-7Al=
BUGGY will type out the result in hexadecimal immediately follow-
ing the equals sign and will allow you to continue typing expres-
sions using that result. If you space after a result is typed out,
you can begin a new expression.

If you want the result expressed in decimal, type a colon (:)
instead of an equals sign. When doing decimal arithmetic, BUGGY
does not treat numbers as being in integer position, e.g., a FOR-
TRAN 4 will be considered and typed as 8.

Model:
?

If you make a mistake, type ?. It will kill the current
line. If you type something which BUGGY does not recognize, it
will type ? and restart the current line.

Model Q
To return to DOS, type Q. DOS will respond by typing OK,.

3.2,8 CONCAT: Preparing Input for the Loader

Model: CONCAT
Example: OK, CONCAT
OUTPUT FILE=C:LLDX

NAME FILE=N:LLDX
NAME FILE=Q
0K,

3-46

Because of the DOS facilities for file management, it is
generally more convenient to maintain subroutines separately. Thus,
instead of always compiling all of the subroutines in ga program,
one need compile only those which are being changed. The rest can
be kept in the UFD, which acts as a library. 1If this is done,
however, it is useful to have some facility which will collect
several subroutines together so that they can be processed by the
loader. In lieu of such a facility, you must specify the routines
individually to the loader via multiple command lines.

CONCAT allows the user to Create and reuse a list of required
subroutines. Operating with this list, CONCAT copies the named
files into a single output file which is acceptable to the loader.
Thus the user can 1ist his subroutines once, modifying the 1list
only as necessary, and then use the list repeatedly as a basis for
subsequent loads.

When invoked, CONCAT types:

OUTPUT FILE=
In response to this request, you should specify a filename, for
example,

(TSTONE SECRET) PAPERS
CONCAT then types=

NAME FILE=
Now you should specify a second filename. CONCAT will then copy
the files named in the name file into the output file. When this
has been accomplished, it will again type:

NAME FILE=
You may either supply the name of another list of files or type Q

or QUIT, thus returning control to DOS. You may specify as many

3-47

name files as you wish. As is conventional for DOS object files,
no end-of-group records are written in the concatenated output file.
A name file consists of one or more lines, each containing

one or more filenames. Directory names are enclosed in parentheses
as usual. When no directory name is specified with the filename,
the last directory mentioned is used. For example:

(AXEL) LIST SUBJ
indicates two files LIST and SUBJ, both from directory AXEL. If
no directory at all is specified, the current directory is used.
Empty parentheses can also be used to specify the current directory.
For example, the following line:

(AXEL) LIST SUBJ () HELA
will cause HELA to be copied from the current directory after LIST

and SUBJ have been copied from AXEL.

3.2.9 SUPDATE: Modifying a Source File

SUPDATE is a noninteractive alternative to EDIT. It
differs from the EDIT in that all changes must be known before
the beginning of the run. Furthermore, the process is controlled
by sequence numbers appearing in columns 73-80 of both the source
file and the control file (except for the DEL control card). SUP-
DATE can be used to modify files which are too large for EDIT.
It can also be used when you want to keep a reusable copy of your
changes (e.g., a card deck).

SUPDATE uses four disk files which should be OPENed (3.3.4)

on the following units before starting

3-48

unit funetion

1 old master - source to be modified (one group only)
2 control card file

3 new master - the result of UPDATing

4 listing file - essentially a listing of a new

master and not of the control cards
Unit 1 may be omitted if column 29 of the CHG card contains a *,
Units 2, 3 and 4 are required.

Both the old master and the control card file must be in
ascending order by sequence number. Blanks in the sequence field
are not equivalent to zeroes. Nonnumeric characters may be used
in columns 73-75. UPDATE reads both the old master and the control
card file and such operations as replacement of records, insertion
of records, and deletion of records.

Sirnce SUPDATE operates exclusively within the context of the
DOS file system, one may have to use MEDIA (3.2.4) for certain
functions. These might include copying the old master from tape
to disk and creating or listing the control card file.

Use COPYFS to renumber a source file or add sequence numbers
to a source file. See 3.6.5 for a description of COPYFS,

Control card formats are presented below.

Operation Card This card must be the first in an update deck. It

must be punched as follows:

Column(s) Contents
1-2 ./

3 blank
4-6 CHG

7 blank

8-10

11
12-16
17
18-22
23
24-27
28
29

Replaced Record

Column(s)
1-72
73-80

Insert Record

Column(s)
1-72
73-80

optional three-character code to be placed in
columns 73-75 of all records in the new master
blank

optional five-digit initial sequence number

blank

optional five-digit increment for sequence numbers
blank

LIST if new master is to be listed; blank if not
blank

%# if there is no old master and the new master is
to be made up from Insert Records

(file creation rather than file update);

blank if an old master is being used.

Any number of these cards may be present in an up-
date dack. Each card must be keypunched as follows:
Contents

Contents of new record

Sequence number of record to be replaced

Any number of these cards may be present in an up-
date deck. Each card must be keypunched as follows:
Contents

Contents of new record

Sequence number which falls between the sequence
numbers of two consecutive records in the file,
unless file creation is taking place (* in column
29 of CHG card), in which case sequence numbers

on insert cards are optional

Delete Range of Records Any number of these cards may be present

Column(sg)
1-2

3-4

5-7

9-16
17-24

25-80

Begin Printing

Column(s)

Stop Printing

in update deck. Each card must be keypunched as
follows:

Contents

./

blank

DEL

sequence number of first record to be deleted
sequence number of last record to be deleted (or
blank if only one record is to be deleted)

blank

Any number of these cards may be present in an
update deck. The LIST option on the operation
card is overriden. Each card must be keypunched
as follows:

Contents

./

blank

LON

blank

sequence number of record at which printing should
begin

Any number of these cards may be present in an up-
date deck. The LIST option on the operation card
is overridden., Each card must be keypunched as

follows:

Column(s) Contents

1-2 ./

3-4 blank

5-8 LOFF

9-72 blank

73-83 sequence number of record at which printing should
begin

Comment Comment cards are used to describe the modifica-

tions being made. Any number may be present in
the update deck. They are ignored. Each of these

cards must be keypunched as follows:

Column(s) Contents
1-2 ./

3-4 blank

5-7 CoM

8 blank

9-80 any comment

3.3 I1/0 Control Commands

DOS provides a set of commands that control the activity of
files when they function as input or output for other files. A
file becomes active when you connect it to a unit. DOS currently
provides you with 7 units (identified with an integer 1-7).
Typically, a program performs all of its data transfers through a
fixed set of units, with specific units associated with specific
functions. This does not mean, however, that a user may process
only a fixed set of files. At run-time the user is free to

associate any appropriate file with each of the units employed by

the program. For example, the FORTRAN compiler expects disk input
on Unit 1 (see 3.2.1) and the user is free to open any FORTRAN
source file on that unit. Similarly, if your own program contains
the statement

READ (7,1000) X, Y, X
you can assign any appropriate file to unit 7 and have it processed
by your program. When a file is connected to a unit, it is open;
when it is not connected to a unit, it is closed. In many cases
you are responsible for all opening and closing of files. Some
programs, however, ascertain the files to be used and open them
themselves (e.g., DMPSAV),

Most of the DOS I/0 control commands are associated with
specific units. That is, the INPUT command (3.3.1) opens a file
on unit 1, and the LISTING command (3.3.3) opens a file on unit 2.
Other DOS commands, notably the system programs, are similarly
associated with these units. Thus, the FORTRAN compiler (3.2.1)
accepts as input the file which is already open on unit 1. This
means that before invoking the compiler you must open a file on
unit 1, and you will typically do so by issuing an INPUT command
(unless your input is on cards). (You can alternately use an OPEN
command [3.3.4], but in this case you would have to specify unit 1
explicitly.)

At any moment, a given file can be connected to only one unit,
and a given unit can have only one file connected to it; DOS will
flag an error condition if you try to open a file which is already
open or to connect a file to a unit which already has a file con-
nected to it. This can sometimes be confusing, so it is good to

get into the habit of closing files after using them.

3-53

It is good programming practice to avoid the use of I/O control
commands. Users should use subroutines OPEN and CLOSE (see section
4.3) to open and close files. User programs can request the name
of a file to be opened for flexibility by typing a message and
reading the name from the teletype. Subroutine GTNAMS (see

4.5.29) is useful in extracting the filename typed.

3.3.1 INPUT: Opening an Input File

Model: INPUT [(directory password)] file
Examples: INPUT MBED
INPUT (TSTONE) BOPRIN
INPUT connects file to unit 1. If another directory is
specified and the passwords match (currently blank), DOS assumes
that file is located in directory rather than in the current

directory.

3.3.2 BINARY: Opening an Object-Text File

Model: BINARY [(directory password)] file
Examples: BINARY B

BINARY opens unit 3 to write an object file. This file is
written on disk as file. If the name of an alternate
directory is specified and the passwords match (currently blank),
the file is placed in that directory; if not, it is entered in the

current directory.

3.3.3 LISTING: Opening a Listing File

Model: LISTING [(directory password)] file
Examples: LISTING L1

LISTING opens unit 2 to write a source listing. The file is
written on disk as file. If the name of an alternate
directory is specified and the passwords match (currently blank),
the file is placed in that directory; if not, it is entered in the

current directory.

3.3.4 OPEN: Opening Any File

Model: OPEN[(directory password)] file unit key
Examples: OPEN (KEEN) STOPEDL 5 1

OPEN opens the specified unit (integer 1-7) and associates with
it the specified file. You specify a key which indicates the
type of activity for which the file is being opened; specify a
key of 1 for reading, 2 for writing, or 3 for both. If you include
the name of another directory and the passwords match (currently
blank), the file is associated with that directory rather than the
current directory. Thus, if you open file for reading and you do
not specify a directory, DOS will search the current directory for
file; if you specify a directory, it will search that directory
for file. If you open file for writing and you do not specify a
directory, DOS will enter file in the current directory; if you

specify a direetory, it will enter file in that directory.

3.3.5 CLOSE: Closing a File or Unit

Model: file
CLOSE 3 i
untit
Examples: CLOSE 1
CLOSE 2 3

CLOSE SCHRSCE
CLOSE ALL

CLOSE closes the named file(s) or specified unit(s). CLOSE

ALL closes all files and units.

3.3.6 COMINPUT: Switching Command Input from the Console to a

File
ile
Model: COMINPUT{TTY
CONTINUE
Examples: COMINPUT INP

COMINPUT TTY

COMINPUT allows users to prepare a list of commands with the
editor, file it on the disk, and have DOS read teletype input from
this file rather than from the teletype. The command COMINPUT
file causes DOS to take subsequent teletype input from file. The
last command in fZle should be COMINPUT TTY, which tells DOS to
take subsequent commands from the teletype. Example: Using the

editor, a user creates a file PMLIST which consists of the lines:

PM
LISTF
COMINPUT TTY

When the user types
COMINP PMLIST

DOS types back

0K, PM

PSW1 num PSW2 = num
RO-7 NUM, ...y +0.

R8-15 = num, ..., ...

0K, LISTF

List of user files typed out
0K, COMINP TTY

0K,

To have DOS type the results of commands PM and LISTF, the

user can type one command to DOS instead of two.

DOS reads input from file by opening unit 12, causing
subroutine RDASR to pick up lines by reading from unit 12 rather
than from the teletype. When the command COMINP TTY is encoun-
tered, DOS closes unit 12 and takes subsequent commands from the

teletype.

Any DOS error message will cause command input to be switch-
ed to the teletype, but the command input file is left open. A
user may retype the command that caused the error message then
continue reading from the command input file by typing

COMINPUT CONTINUE

Do not use the command CLOSE ALL in a command input file.
This will close the command input unit and cause the message
"COMINP FILE CLOSED". If a user wishes to abort a sequence of
commands, he should push the BREAK key, then type A. DOS will
respond "COMINP FILE CLOSED".

COMINPUT affects all teletype input read through subroutine
RDASR. It does not affect teletype input through subroutine T1IN.
COMINPUT affects teletype input for all commands except MEDIA and
EDIT. COMINPUT also affects teletype input using FORTRAN unit 100.

COMINP is useful for updating large programs which consist
of many files. For example, suppose a user has a program consist-
ing of three FORTRAN source files. To run, a user makes up the

following command input file DPROG.

INPUT MAIN
BINARY B:MAIN

FTN

INPUT SUB1
BINARY B:SUB1
FTN

INPUT SUB2
BINARY B:SUB2
FTN

LDR

*PRI, MAIN, REF
*PRI, SUB1, REF
*PRI, SUB2, LIB, MAP

COMINP TTY

The command COMINP DPROG causes the user's programs to be
compiled, loaded, and the load map to be output. The file DPROG
serves as documentation of the source files that make up the pro-
gram and loading procedure for the program. The user would pro-
bably examine the load map at this point and save his core image.
It is somewhat difficult to enter a blank line in with the editor.
To do so, type a line to the editor in input mode, then go to the
edit mode and give the RETYPE command with no argument. This will

replace the line with a blank line.

3.3.7 COMOUTPUT: Switching Command Output from the Console to a

File
Model: COMOUTPUT file
Examples: COMOUTPUT LPR
COMOUTPUT BFO
COMOUTPUT allows you to divert system responses to commands
to some file. COMOUTPUT connects file to unit 13. The

system's responses to commands are then written on unit 13. Sys-

tem responses continue to be written on unit 13 until an end-of-

-58

w

file on COMINPUT (3.3.6) or an error is encountered. At that time
System responses return to the console.

COMOUTPUT is currently not implemented.

3.4 LOAD-MODULE MANAGEMENT COMMANDS

DOS allows you to maintain files which consist of load
modules. A load module is an executable program which has been
generated by the loader from one or more object programs. The
loader converts an object program into a load module by assigning
an actual core address to each instruction in the program. Thus,
in an object program, a branch to another location in the same
program is represented relative to the beginning of the program or
one of its storage areas, and a call to an external subroutine is
represented as a flag; but in a load module, all of these refer-
énces are represented as core addresses. A load module, in effect,
is a core image of a program which is to be executed along with
all the routines which it uses during its execution.

DOS provides several commands which you can use to handle
load-module files. SAVE (3.4.1) creates a file from a core image,
assigns it a name which you specify, and enters that name in your
directory. RESTORE (3.4.2) reads a saved file into core., START
(3.4.3) initiates execution of the core-resident load module.
RESUME (3.4.4) both reads a saved file into core and initiates its
execution.

When a program is in execution, the contents of two program
status words and sixteen registers reflect the state of the pro-

gram at every instant. The first program status word always in-

dicates the next instruction to be executed. The second program
status word indicates various conditions which occurred earlier in
execution, such as arithmetic overflows and the result of the most
recent comparison. The registers are special locations which
various instructions use as operands. Both the program status
words and the registers change from moment to moment as instruc-
tions are executed, and they always reflect the current state of

a running program. Thus, if you can specify the contents of the
program status words and registers in conjunction with the pro-
gram's core image, you can recreate a program at any moment in

its execution.

When DOS saves a load module as a file, it saves the current
contents of the program status words and registers. When DOS
initializes execution of a load-module file, it resets the program
status words and registers to those contents. This means that
you can use DOS to save a program at any moment in its execution
and, at a later time, use DOS to restart execution from that point.

You will typically want to save load modules before executing
them and then execute them from the beginning. In this case, the
contents of all registers and the second program status word are
not relevant because your program will initialize them. The first
program status word is very important, however, because it indi-
cates the next instruction to be executed - in this case, the
entry point of the program. You must set this value either when
you SAVE the load module or when you START or RESUME it. In gen-
eral, you will want to specify the entry point when you save the
load module; if, for some reason, you want to start execution at

another location, you can override the saved value at that time.

3-60

3.4.1 SAVE: Saving a Load Module

Model: SAVE file gtarting-address ending-address [entry-
point]...
Examples: SAVE RJC 6400 9800 6450

SAVE FORTEST 6400 9AAA 6450 () () 0A
SAVE PRP 6400 7400
SAVE creates a file from the contents of a defined portion of
core, starting at the core location of the starting-address, ending
with the core location of the ending-address, and using the entry-
point, File is entered in the directory to which you are attached.
You can determine values for the starting and ending-addresées
and entry-point from a loader map (3.2.6).
When a program is loaded, LDR creates a map showing core

locations in the following format.

DEF 00000002 LIST
DEF 6400 TML §

DEF 0000A000 MAIN

FUL=A500
Arguments for the SAVE command are obtained as follows. Unless
you specify an explicit load address the starting-address will be
6400. Addresses defined on the map for locations below 6400 are
typically not part of your load module and should be ignored in
specifying addresses. Thus in the example above, 6400 is the

starting-address.

The ending-address is obtained by finding the first unused
location in core; LDR identifies this location by printing FUL=end-
ing-address at the end of the load map. In the example above,

A500 is the ending-address. The entry-point is the location
printed beside the name of the program being loaded. In the ex-
ample shown above, MAIN is the main program and the entry-point.

If you wish to save a program that has been running for some
time, DOS will automatically save the current value of the program-
status words and registers along with the file, but you can over-
ride any of these values by specifying other entry points. If you
plan to execute the saved file from the beginning, you will only
want to specify pswl, an entry point for the program; psw2 and
16 registers are typically not relevant during SAVE.

You can specify values for up to sixteen registers. To re-
quest default values for some registers and specify others, type
a set of empty parentheses for each register for which you want a
default value, as in the second example above. This convention is
used only as a place-holding technique. Thus, in the second ex-
ample, if you want to specify a value of 0A for register 0 rather
than for register 2, you would type:

SAVE FORTEST 6400 9625 6450 OA

3.4.2 RESTORE: Reading a File into Core

Model: RESTORE [(directory password)] file
Examples: RESTORE (TSTONE) FORTEST
RESTORE PTR

RESTORE reads file into core storage; it does not intitiate
its execution. If you specify an alternate directory and the
passwords match (currently blank), DOS searches for the file

3-62

in that directory rather than in the current directory. If you
omit a directory, DOS assumes that file is entered in the
current directory.

RESTORE allows you to bring a program into core and patch it

before executing it,

3.4.3 START: Executing an In-Core File

Model: START [pswl][pst][rn]...
Examples: START 6400

START () () () 61F7

START

START initiates execution of the program which is in core.

It uses values for the program status words and registers which
were SAVEd with the file. You can specify other values for the
program status words and registers in the START command and thus
override any saved values. You would do so if you wanted to begin
execution of a program at a different point from the one at which
it was saved. Type a set of empty parentheses as a place-holder
for each register or program status word in the string which you

want to assume the saved value.
This program might have just been RESTUREd, 1n which case

STARTing it will cause it to begin executing, or it might have
just called EXIT, in which case STARTing it will cause it to con-

tinue from the point at which it suspended itself,

3.4.4 RESUME: Restoring and Starting a File

Model: RESUME [(directory password)] file [pswl]
Examples: RESUME RJC

RESUME (TSTONE)FORTEST 6450

RESUME MTO 7000
3-63

RESUME is the equivalent of RESTORE (3.4.2) and START (3.4.3)
except that psw2 and the registers cannot be specified. It reads
file into core and initiates execution at the saved entry
point or pswl. In all cases, DOS will initialize program status
word 2 and registers with saved values. If a hexadecimal number
immediately follows file, it is interpreted as an entry point
[psw1]. Any other information in the line (up to a comma), repre-

sents input to the program being RESUMEd, for example, option.

DOS will assume that the file is entered in the current
directory; to RESUME a file in another directory, specify

directory and password.

3.4.5 PM: Displaying Program Status Words and Registers

MODEL: PM
PM types out the contents of the program status words and
registers on the console. Each value is typed as an eight-digit

hexadecimal number in the following format:

PSWl=psw1l PSW2=psw2
RO-7=

r, r; Ty Tz T, T T Ty
R8-F=

rg Y9 T, Tp Tp Tp Ty Tp

3.5 USER DIRECTORY-HANDLING COMMANDS

As a DOS user, you will have your own directory in which your
files are listed. When you LOGIN, you are basically '"attaching”
to a directory - typically your own - which becomes the CURRENT
UFD. You can then process the files in that directory, which is

referred to as the current directory. At any point, you can

3-64

become attached to another directory - which will automatically
become the current directory - and thereby gain access to the files

in that directory.

3.5.1 LOGIN: Getting Started

Model: LOGIN directory password [drive]
Example: LOGIN MLS
LOGIN and ATTACH are identical commands. See ATTACH for a

description of this command.

3.5.2 LOGOUT: Getting Off the System

Model: LOGOUT
LOGOUT closes any open files, units, and devices and detaches
you from the current directory. Every session at the console should

end with LOGOUT.

3.5.3 STARTUP: Associating Disk Drives with DOS

Model: STARTUP drivel [driveg]
Example: STARTUP 1 0
The STARTUP command has been discussed in detail in section

1.2.3 Multiple Disk Organization. STARTUP tells the system how

many drives are in use and specifies a default order of searching
MFD's in attempting to ATTACH to a directory. If one drive is
used, it must be drive 0 with the command STARTUP 0. If the system
has just been loaded, and one disk is to be used, the STARTUP
command need not be given.

The number of parameters (one or two) determines the number

of drives in use; and the order in which drive numbers are sup-

3-65

plied (0 1) or (1 0) determines the order of search for the
directory in a subsequent ATTACH command. The sequence specified
in STARTUP can be overridden by ATTACH.

If DOS has been used after initial loading, the STARTUP com-

mand must be preceded by LOGOUT.

3.5.4 ATTACH: Gaining Access to a Directory

Model: ATTACH directory password [drive]
Examples: ATTACH UDIN 1
ATTACH MED

ATTACH gives you access to the files in the specified directory
if the passwords match (currently blank). This directory becomes
the current directory, and subsequent commands which specify a file-
name but not a directory are assumed to refer to the current dir-
ectory. You can access files in another directory on a temporary
basis by specifying another directory in a command. The only way
to change the current directory is to issue another ATTACH command.

In searching for the directory named in an ATTACH command,

DOS uses the order specified in STARTUP (3.5.3). Suppose you
issue the following two commands:

STARTUP 1 0

ATTACH UTIL
DOS will search for the directory named UTIL on drive 1. If the
system cannot find UTIL on drive 1 it will search on the second
drive named by STARTUP - drive 0.

You can override the sequence spécified in STARTUP by includ-
ing the drive number in the ATTACH command. If the user types

ATTACH UTIL 0

3-66

and the command STARTUP 1 0 was the last startup command typed,
DOS will attempt to ATTACH to UTIL on drive 0. If a drive is

explicitly identified in an ATTACH, and the directory cannot be
found on that drive, DOS does not search any other drives, and

an error message is printed.

3.5.5 LISTFILE: Listing the Files in a Directory

Model: LISTFILE
LISTFILE types out the names of all the files which are

entered in the current directory.

3.5.6 DELETE: Deleting a File from a Directory

Model: DELETE file
Examples: DELETE B
DELETE B BFOR L FTB
DELETE removes entries for the files from the current

directory and releases the storage that the files occupy.

3.6 UTILITY PROGRAMS
The following external commands provide a variety of useful

functions for the user.

3.6.1 LISTU: Listing the Source Files in a Directory

Model: LISTU [prefiz]
Examples: LISTU XXX
LISTU

LISTU creates two listing files in the current directory.
The first file contains all source files in the directory and the

second file contains a table of contents for the files listed in

3-67

the first file. These two files are given names which are entered
in the directory. The names are of the form pLIST and pTABL, where
p is a 1-4 character prefix which you can specify. If you omit a
prefiz, the first four characters of the directory name are used
(if the name is less than four characters, the entire name is used).
To obtain printed copies of the two files, you must use
MEDIA. Thus, the first example above would create two listing
files in the current directory named XXXLIST and XXXTABL; XXXLIST
would contain all source files in the directory and XXXTABL would
contain a table of contents for the files in XXXLIST. Similarly,
if the current directory were TSTONE, the second example would

create two files named TSTOLIST and TSTOTABL.

3.6.2 CNAME: Changing the Name of a File

Model: CNAME directory oldfile newfile
Example: CNAME MLS B1 B2

CNAME changes the name of a specified file in the directory.
CNAME will locate oldfile is the appropriate directory and change
it to newfile, without altering the contents of the file in any

way.

3.6.3 MOVEF: Moving a File from One Directory to Another

Model: MOVEF file directoryl directory?d
Example: MOVEF FILEX TSTONE TSTONX

MOVEF will insert an entry for file in directory2 and delete
its entry in the directoryl. The contents of the file will not be
moved. Both direetoryl and directory2 must be on the same disk.

Caution should be exercised if two disks are mounted.

I 3-68

3.6.4 MOVEFS: Moving Files from One Directory to Another

Model: MOVEFS directoryl directory2
Examples: OK, MOVEFS WYMAN UTILITY.

> S:PROG;

v

B:PROG1

PROG1

v

v

0K,
MOVEFS performs the same function for several files as MOVEF
performs for a single file. The precautions mentioned in the
description of MOVEF should be observed. The operation is termin-

ated by a carriage return.

3.6.5 COPYFS: Copying Files

Model: COPYEFS directoryz [drive] directaryz [NUM]
Example: OK, COPYFS WYMAN 1 UTILITY
> S:PROG,

v

B:PROG1

v

PROGl
2
0K,
COPYFS copies one or more files from directoryl on the
specified drive to directoryz on the system disk (drive zero).
The original files are not deleted. Source, binary and save files
may be copied. If the option.NUM is specified on the command line,
for each source file copied, sequence numbers are placed in posi-

tions 73-80 of each line in the file. Sequence numbering starts with

100 and is

3-69

increased by an increment of 100. Sequence number format is compa-

tible with the requirements of the batch SUPDATE program (3.2.9).
In the example given above, three files are copied from the

directory WYMAN on drive 1 to the directory UTILITY on drive 0.

The operation is terminated by a carriage return.

3.6.6 CARDFS: Creating a File From a Card Deck

Model: CARDFS

Example: 0K, CARDFS
> S:FILEq
> N:PROG2
0K,

Before issuing the CARDFS command, one or more card decks
separated by single $EOF cards must be placed in the card reader
followed by two $EOF cards, and the card reader must be readied.

In response to each '">" type the file name to be assigned to the
file created for each deck. All files are entered in the currently
attached directory. Existing files with the same name are over-
written. The operation is terminated by the two successive $EOF

cards.

3.6.7 PRINTFS: Listing Source Files on the Line Printer

Model: PRINTES
Example: 0K, PRINTES
> S:PROG1
> S:PROG2

One or more source files in the currently attached directory

may be listed on the line printer. Line length must be 80 char-
acters or less. The filename, a copy of the first line, the
current date and a page number are supplied as page headings. The

operation is terminated by a carriage return.

3.6.8 DMPSAV: Listing a Save File in Dump Format

Model: DMPSAV
Example: OK, DMPSAV

TITLE; = (WYMAN) PROG,
MORE ? (Y OR N) N

0K,

The specified save files (S) are printed on the line printer
in hexadecimal and character format. Each line is labelled at the
left by a hexadecimal core address. If a directory is not speci-
fied, the file is retrieved from the currently attached directory.
The user's response to TITLE1 = (including an optional comment
following the filename) is used as a page heading. Page numbers
are supplied. If MORE is answered Y, the program requests a new

TITLEl = . N terminates the operation.

3.6.9 CPRSAV: Comparing Two Save Files in Dump Format

Model: CPRSAV
Example: 0K, CPRSAV
TITLE

1 MEDIA (NEW VERSION)

TITLE2

(COMDIR) MEDIA

0K,
The two save files are compared word by word. Whenever a pair

of words are not identical, a line is printed on the line printer,

3-71

exhibiting the differing contents of the two files side by side.
Blanks are inserted or print lines omitted if an exact match is
formed. The print format is similar to DMPSAV format. CPRSAV is

useful in detecting patches which have been applied to save files.

CHAPTER 4
SYSTEM ROUTINES AND UTILITY FUNCTIONS

4.1 INTRODUCTION

The DOS-32 MAC assembler and FTN compiler are special versions

of the Honeywell-supplied 0S1 assembler and compiler. The original

0S1 components have been modified in order to integrate them with
DOS's interactive supervisor and file system. As a result, the

assembler and compiler can be invoked from the console with user

commands; and the source programs which they process and the object

programs which they create are files. Furthermore, FORTRAN and MAC

programs themselves operate on files. Thus, all FORTRAN and MAC
programs which you write use DOS routines to perform their input
and output operations. These routines are described in 4.3.

DOS teletype routines available to the user are described in
section 4.4. Section 4.5 describes utility routines which are
the library (file LIBRARY in directory LIBDIR). Two of these
routines (EXIT and SSWS) are special DOS utility routines instead
of library routines. Section 4.6 describes peripheral device
routines in the library. Section 4.7 describes how to use
FORTRAN Input-Output statements. Section 4.8 describes overlay
management routines.

Because DOS is a FORTRAN-oriented system, the models and
examples in this chapter reflect FORTRAN use. In the models, all
words in CAPITAL letters and all punctuation marks must be coded

as shown; all words in Zlower-cqse italice are arguments, which you

must supply as required. Keypunching and coding must follow stand-

ard Honeywell 632 conventions, as presented in the Series 32 FORTRAN

4-1

Manual (Publication M-423; June, 1969). If you are programming in
MAC, follow standard MAC linkage conventions for accessing sub-

routines, as described in the MAC-32 Assembler Manual (Publication
M-421; November, 1968). Routines which return values as variables

in FORTRAN return them in register 13 in MAC.

4,2 TFORTRAN INTEGERS

FORTRAN stores integer data in bits 0-30 of each word and
sets bit 31 to zero. This means that if you examine the actual bit
configuration of a word, you will find a number with a value which
is twice that of the stored integer. You will have to make appro-
priate mental adjustments - by right-shifting the word or dividing
it by two - whenever you try to deal with the machine-language
equivalent of the program (e.g., debugging the program using a
dump, or communicating with a MAC program). It should be emphasized,
however, that this convention will normally not affect you in any
noticeable way.

Many of the DOS character-manipulation utility routines - e.g.,
LOC (4.5.30), SLH (4.5.9), LCHAR (4.5.14) - expect to find data in
integer position or to store values in integer position. If you
want to use these routines on values that are not stored in integer
position, you will have to compensate for the storage convention
by performing the appropriate shift operation. For those routines
where confusion may occur, int is used for variables in integer
position and word is used for variables in normal position. Array
normally refers to an array of words. See appendix I for a descrip-

tion of other nmenonic names.

4.3 FILE-SYSTEM ROUTINES

All I/0 for programs which are run under DOS is handled by the
DOS file system, which controls all access to files. FTN and MAC
have been modified to process source-program files and to generate
object-program files. 1In addition, run-time routines have been
modified to use file-system routines for I/0. In FORTRAN, this is
an added capability, and you have the choice of using FORTRAN Input-
Output statements (4.7) or DOS routines. 1In MAC, this is a
requirement, and you must use DOS routines instead of the 051
routine URC,

The file system automatically maintains information about the
characteristics of all files and keeps track of where they are
stored. When you want to process a file, you assign it to a unit
(3.3.4). Associated with each unit is a control block. When a
file is assigned to a particular unit, that unit's control block
contains descriptive information about the file. At that time, a
buffer is allocated to the unit. During processing of the file,
the assigned buffer will contain a record which has just been read
from the file or is about to be written onto the file, as appro-
priate.

You can call five file-system routines from your programs to
access and process files. OPEN (4.3.1) associates a file with a
DOS unit and prepares the file for reading or writing, as specified.
CLOSE (4.3.2) terminates operations on a file. BRWFIL (4.3.3)
performs actual reading and writing of records. DELETE (4.3.4)
returns all records in a file to the availability pool and removes
the file entry from the appropriate directory. REWIND (4.3.5)

positions a file at its beginning, OPEN, CLOSE and DELETE can all

4-3

e e

be performed from the console and it may simplify your program if

you take advantage of this. However, a program which does its own
OPENs and CLOSEs is simpler to operate. If you wish to OPEN your

own files, use GTNAMS (4.5.29).

ATTACH (4.3.6) allows a user to change directories under pro-
gram control. COMANL (4.3.7) allows a user to retrieve items from
the DOS command line. This routine js useful in generating new
DOS commands. If the user specifies an alternate return on file
system routines, control will be passed to the alternate return
on an error condition. In the case of OPEN and BRWFIL, more than

one type error can cause control to go to the alternate return.
The user calls GETERR (4.3.8) to retrieve a block of information

about the error. After examining the error, he may wish to print
the error message that would have been printed if alternate re-
turn was zero, then return to DOS command level. PRTERR (4.3.9) is

called for this purpose.
4.3.1 OPEN: Opening a File

Model: CALL OPEN (key, file, untit, altrtn, newfil,
dirvectory, pagsword)
Examples: CALL OPEN (1,'LISTN', 3, STMNT, 0, 0, 0)
CALL OPEN (2, TAB, 6, 0, NFIL, TSTONE, PSWRD)
OPEN associates file with unit and sets up a control
block which contains all relevant information about the open file.
The unit must be an integer 1-7. The key is an integer 1-3 which

specifies the type of operation for which the file is being opened:

Argument Meaning
key l=reading

2=writing
3=reading and writing

4-4

Argument
file

unit

Meaning
The name of the file being opened.

The number (1-7) of the unit through which the
file is to be read or written.

(When specifying the name itself in this call,
put it in single quotes and make sure that the
literal is 8 characters long, including blanks)

Other arguments are specified as follows:

Argument
altrtn

newfil

directory

password

Meaning

Data name which has been assigned (in an ASSIGN
statement) to a statement number in your FORTRAN
program. In case of error, control will pass to
the specified statement. If altrtn is zero (as

in the second example above), an error condition
will cause execution of the program to terminate,
an error message will be typed out on the console,
and control will return to the DOS supervisor.

Array of one or three words in length, used only
when the file is being opened for output. If the
file that you are creating is a program or data
file, newfil must be a one-word array which
contains a zero, If the file that you are creat-
ing is a directory, newfil must be a three-word
array: the first word must contain a two, and
words 2-3 must contain a password. If you are
opening an input file, newfZl must be zero.

The name of the directory in which an input file
is entered, if not the current directory. If
you are using the current directory or are open-
ing a file for output, directory must be zero or
blank.

Two-word array which contains the password for
directory, if directory is nonzero. If directory
is zero, password must be zero.

If altrtn is not zero, ERRVEC, a DOS array is set as follows:

ERRVEC(1)=0PEN

ERRVEC(2)=blanks

ERRVEC(3)=1

if unit already open
if no ufd attached

if name not in ufd

4-5

4.3.2 CLOSE: Closing a File

Model: CALL CLOSE (file-or-unit)
Examples: CALL CLOSE (1)

CALL CLOSE (FILUN)

CALL CLOSE ('ALL"')

CLOSE deactivates an open unit or file. If file-or-unit is an
integer 1-7, it is interpreted as a unit, and CLOSE closes the
specified unit; if file-or-unit is a 1-8 character string (begin-
ning alphabetic), it is interpreted as a filename, and CLOSE closes
the specified file. If the unit or the file is not open, no action
is taken. CLOSE ('ALL') closes all open units and files.

If you want to close a file which is not in the current
directory (i.e., you specified a directory when you OPENed it),

you must close it by unit number, not by name.

4.3.3 BRWFIL: Reading, Writing, or Manipulating a File

Model: CALL BRWFIL (key, unit, array, n, rel, altrtn)
Examples: CALL BRWFIL ('RFWD', 3, BUFF, FSIZ-7, 10, RIN)
CALL BRWFIL (4HWFLN, UNIT, UFDNT(8), 120, 0, 0)
CALL BRWFIL ('CFRW', 1, 0, 0, 0, ERR)
BRWFIL reads, writes, rewinds, or truncates the file which
has been opened on unit (an integer 1-7). The operation to be
performed is determined by key, a four-character code which is

typically represented as a literal. Specify key as follows:

Character(s) Value Meaning
First R Read

W Write

C File control

4-6

Character(s) Value Meaning

Second F Forward
B Backward (currently not
implemented)
Third-Fourth WD Word mode
LN Line mode
TR Truncate
RW Rewind

Reading and writing can be in word mode or line mode. In
word mode, data are stored as bit strings. In line mode, data are
stored in a condensed format. Whereas any type of data can be
transcribed in word mode, only character data can be transcribed
in line mode. Once a file has been written in line mode, it must
be read in line mode. Similarly, once a file has been written in
word mode, it must be read in word mode.

The read operations which are currently supported are RFLN
and RFWD; the write operations are WFLN and WFWD. The following
abbreviations are acceptable: 'W'='WFWD', 'R'='RFWD', 'TRUN'='CFTR'
and 'RWND'='CFRW'. If BRWFIL is operating in word mode, exactly n»
words will be read into or written from array. If BRWFIL is
operating in line mode, one line will be read or written. In a
write operation, line length is determined by n. The array must
not contain newline (linefeed) characters. In read operation, the
length n of the array to be filled must be large enough to receive
the line as written. A short line will be padded with blank charac-
ters to fill array. A line of length greater than array will result
in an error condition.

A file can be repositioned before reading or writing if rel
is nonzero. The file will be moved forward rel words if rel is a

positive integer, or backward rel words if rel is a negative inte-

4-7

ger. Because relocation is by words, rel should be zero if BRWFIL
is operating in line mode.

In DOS, you may change the contents of individual words after
you have created them. You do so by writing in the file again,
possibly after relocating. To make this capability general and
flexible, DOS does not write a new end-of-file when you finish
writing, unless you have written beyond the old end-of-file. If
you want a new end-of-file, you must use the truncate operation.

In a truncate operation, the value of key must be CFTR; in a
rewind operation, the value of key must be CFRW, Truncating a file
is terminating it, by putting an end-of-file after the last data
which were in array. Rewinding a file is repositioning it at its
beginning. When BRWFIL is performing a file-control operation,
the values of array, n, and rel should be zero.

If altrtn is nonzero, control will pass to the specified
statement number in your FORTRAN program when an end-of-file (on
input) or error condition occurs. Specify altrtn as a data name
which has been assigned an integer value in an ASSIGN statement.
If altrtn is zero, an error will cause control to return to the
system,

A description of the error codes returned by BRWFIL through

ERRVEC at abnormal termination is given below.

ERRVEC(1) = BRWF
ERRVEC(2) = IL
ERRVEC(3) = 2 - illegal key code

= 4 - status error
= 5 - line longer than array in RFLN call

= 6 - relocate error

4-8

]
~1
1

ERRVEC (3) rel not equal to O
= 8 - control type error
= 10 - data type error

12 - end of file

In the case of end of file

ERRVEC(4) = unit
ERRVEC(5) = number of words not read
ERRVEC(6) = number of bits in last word.

4.3.4 DELETE: Deleting a File

Model: CALL DELETE (file, altrtn)
Examples: CALL DELETE (BFOR1, RTN1)

DELETE releases all storage which was used by file and re-
moves the file's entry from the current directory. You cannot
delete a file in another directory. If altrtn is nonzero and file
is not found in the directory, control will pass to the specified
statement number in your FORTRAN program. If altrtn is zero, or
if any other type of error occurs, control will return to the

system,

4.3.5 REWIND: Repositioning a Unit at the Beginning of a File

Model: CALL REWIND (unit, altrtin)
Examples: CALL REWIND (5, 0)
CALL REWIND (1, NOPN)
REWIND repositions the file which is connected to unit (an
integer 1-7) at its beginning. If the unit is not open and altrtn
is nonzero, control passes to the specified statement number in

your FORTRAN program. If altrtn is zero and an error occurs, con-

4-9

trol will pass to the system.

4.3.6 ATTACH: Gaining Access to a Directory

Model: CALL ATTACH (directory, drive, password, .TRUE. altrtn)

ATTACH searches the MFD on disk drive for directory. If drive
is -1, all active disks are searched in sequence for directory.
If directory is found and password matches the password associated
with directory, the current file directory is set to directory.
All passwords are currently blank, so password should be a two-word
array containing 8 spaces. Control is sent to aqltrtn if nonzero

and directory is not found in the MFD.

4.3.7 COMANL: Performing Lexical Analysis of User Commands

Model: rtnkey COMANL (key, array)

Example: RTNKEY COMANL (1, VEC2)

COMANL performs lexical analysis of user commands and looks
ahead to the next item in the command line. The value of key
specifies the item type. If the next item is of that type and
key # 0, rtnkey is set to key and the item is put in array, a one
or two-word array. If the next item is not of the type specified

by key, rinkey is set to zero and nothing is put in array.

The key argument can take the following values:

0 next item can be of any type.

1 next item should be a command name (alphanumeric string
beginning with an alphabetic character and followed by
a blank); lower-case letters are changed to capital

letters.

4-10

2 next item should be a name (alphanumeric string beginning
with an alphabetic character); lower-case letters are not
changed to capital letters.

3 next item should be a left parenthesis (indicates intro-
duction of an option).

4 next item should be a right parenthesis (indicates con-

clusion of an option).

5 next item should be a parameter (hexadecimal or octal
number) .
6 next item should be a terminator (comma or end-of-buffer,

which is transmitted as a new-line character).
If key is 6 and a terminator is found, the pointer is not moved
beyond the terminator, and subsequent calls will still show a
terminator as the next item in the command line. If key is 0,
rtnkey is set to the number which corresponds to whatever item
type is found. In this case, an alphanumeric string beginning with
an alphabetic character is treated as a name rather than as a
command name, i.e., rtnkey is set to 2, not 1.
The following program is an example of the use of COMANL

INTEGER NAME (2)

IKEY = COMANL(2,NAME(1))

IF(IKEY EQ. 0) GO TO 10

WRITE(100, 1) NAME(1), NAME(2)

CALL EXIT

10 WRITE(100, 2)
CALL EXIT
1 FORMAT (2A4)

4-11

2 FORMAT (' IMPROPER NAME')
END

Assume the user has loaded and saved the program as *PROG. The user
types

RESUME #*PROG XXX
The program calls COMANL to pick up the next item. DOS has already
called COMANL to process the RESUME and *PROG items. The next

item picked up will be XXX which is a name, so IKEY is set to 2

and the program types XXX and returns to DOS on the call to EXIT

4.3.8 GETERR: Storing Error Information

Model: CALL GETERR (array)
Example: CALL GETERR(VECLOC)

If the user calls subroutine OPEN or BRWFIL with an alternate
return of nonzero, then control will be passed to the alternate
return in case of an error. More than one error causes control to
pass to alternate return in the case of these two subroutines. To
determine the type of error and other information about the error,
the user calls GETERR which transmits the 16 word array ERRVEC
from DOS COMMON to array. Both subroutines OPEN and BRWFIL set

ERRVEC before passing control to alternate return.

4,3,9 PRTERR: Typing an Error Message

Model: CALL PRTERR
If the user specifies a nonzero alternate return for OPEN or
BRWFIL, then an error will cause control to pass to alternate

return. The user determines the type of error encountered by

E=N
1

12

calling GETERR (4.3.8). If the user decides not to continue pro-
cessing after a certain error type has been received, he may have
DOS print out the error message that would have been typed if
alternate return were zero, then return to DOS command level by

calling PRTERR.

4.4 TELETYPE ROUTINES

DOS allows you to access its teletype I/0 routines which con-
trol reading and writing of characters and lines. This facility
enables you to write interactive programs, which can have general-
ized capabilities and depend on the user's response to runtime
questions for the specific parameters of a job. You may also

access the teletype from FORTRAN.

4.4,1 RDASR: Reading a Line from the Teletype

Model: CALL RDASR (array, =)
Examples: CALL RDASR (LST1, 20)
CALL RDASR (TITLE(8), 5)
RDASR reads one line from the teletype and places it in array.
The length of the line must be no greater than »n words; the length
of array must be at least n words. The end of a line of input is
signalled by a carriage return or line feed. There will be 4
characters in each word. If too few characters typed, then blanks

will be inserted.

4,4,2 WRASR: Typing a Line on the Teletype

Model: CALL WRASR (array, n)
Examples: CALL WRASR (OUTP, 20)
CALL WRASR (LINE(10), 35)

4-13

WRASR types out onto the teletype one line of output as stored
in array. The length of this line is = words, where »n is an integer

1-20; if »=0, 20 is used.

4.4.3 TI1IN: Reading a Character from the Teletype

Model: CALL T1IN (int)
Examples: CALL T1IN (X)
CALL TI1IN (ALPHA)

T1IN reads a signal character from the teletype and places it
in integer position in int, a one-character data variable. Null
characters are ignored, and control is returned when a valid
character has been read. Carriage returns and line feeds both set

the value of Znt to indicate a line feed ($0A).

4.4.4 TIOU: Typing a Character on the Teletype

Model: CALL T10U (Znt)
Examples: CALL T10U (A)

T10U types a single character int on the teletype. The charac-
ter must be specified as a data variable in integer position; it
cannot be a literal. A line feed will be preceded by a carriage

return, but a carriage return will not be preceded by a line feed.

4.4.5 TNOU and TNOUA: Typing a Character String on the Teletype

Models: CALL TNOU (array, n)
CALL TNOUA (array, n)
Examples: CALL TNOU (ERMS, 28)
CALL TNOUA ('TYPE Y TO CONTINUE', 18)

TINOU and TNOUA type n characters from array. Characters must

4-14

be packed in the array four per word, but n does not have to be an
even multiple of four. Array may be a literal or may have been
set up by some other means. Exactly n characters will be typed,
and the last word, if incomplete, need not be padded with null or
blank characters.

TNOU provides a carriage return/line feed after typing, but
TNOUA does not. Both routines precede an embedded line feed with
a carriage return but do not precede a carriage return with a line

feed.

4,4.6 TOHEX: Converting a Word to Hexadecimal and Typing It

Model: CALL TOHEX (word)
Example: CALL TOHEX (IRDC)

TOHEX converts the word into an eight-digit hexadecimal
character string and types it. Leading zeroes are typed as

zeroes.

4,5 UTILITY FUNCTIONS

DOS allows you to access a set of utility routines which
provides additional logical, bit- and character-manipulation and
computation capabilities. All of these routines are stored in
LIBRARY, a file which is listed in the system file directory
LIBDIR. If you use any of these routines in your program, you

must specify the LIB option when loading (3.2.6).

4.5.1 AND: Forming Logical Product

Model: worde = AND (worda, wordb)

Example: BIN = AND (LIST, M1)

4-15

AND returns as an integer value the logical product of worda
and wordb. Each bit in X is set to a one if the corresponding bits
in worda and wordb are both ones. If either is zero, the bit is set

to zero.

4.5.2 OR: Forming Logical Sum

Model: worde = OR (worda, wordb)
Example: T = OR (CNT, '$000AE200')

OR returns as an integer value the logical sum of worda and
wordb. Each bit in X is set to a one if either of the correspond-
ing bits in worda or wordb is a one. If both are zeroes, the bit

is set to zero.

4.5.3 XOR: Forming Exclusive OR

Model: worde = XOR (worda, wordb)
Example: X = XOR (AL1, SCN)

XOR returns as an integer value the exclusive OR of worda and
wordb. It sets each bit in X to a one if either but not both of the
corresponding bits in worda and wordb is a one. If both are zeroes

or ones, the bit is set to zero.

4.5.4 COMPL: Forming Complement

Model: wordb = COMPL (worda)
Example: CZ = COMPL (C1)

COMPL returns as an integer value the complement of worda.
It sets each bit in X to a zero if the corresponding bit in worda

is a one, and each bit to a one if the corresponding bit is a zero.

4-16

4.5.5 LH: Retrieving Left-Half of Word

Model: int = LH (word)

Example: Jl = LH (MS1)

LH returns the left-half of word as an integer value in

integer position.

4.5.6 RH: Retrieving Right-Half of Word

Model: int = RH (word)
Example: INUN = RH (NEXT)

RH returns the right-half of word as an integer value in

integer position.

4.5.7 LHC: Retrieving Left-Half of Word, Indirect

Model: int LHC (pointer)

Example: IC2 LHC (E)

LHC returns the left-half of the word that has its address

in pointer as an integer value in integer position.

4.5.8 RHC: Retrieving Right-Half of Word, Indirect

Model: int = RHC (pointer)
Example: ISRW = RHC (MSK2)

RHC returns the right-half of the word that has its address

in pointer as an integer value in integer position.

4.5.9 SLH: Storing Number in Left-Half of Word

Model: CALL SLH (word, int)
Example: CALL SLH (N, SUM)
SLH stores the number in integer position of word Znt in the

left-half of word.

4-17

4.5.10 SRH: Storing Number in Right-Half of Word

Model: CALL SRH (word, int)
Example: CALL SRH (NR, SUM)

SRH stores the number in integer position of word Znt in the

right-half of word.

4.5.11 MAKWRD: Forming a Word from Two Halfwords

Model: word = MAKWRD (inta, intbh)
Example: MSK = MAKWRD (IPT1l, IPT2)

MAKWRD returns as an integer value a word which contains the
value in integer position of word inta in its left-half and the

value in integer position of word Zntb in its right-half.

4.5.12 LHWRD: Retrieving a Halfword

Model: int = LHWRD (array, n)
Example: IPAR = LHWRD (SCAN, 4)

h

LHWRD returns the n'" halfword of array as an integer value

in integer position.

4.5.13 SHWRD: Storing a Halfword

Model: CALL SHWRD (array, n, int)
Example: CALL SHWRD (PLIN, 15, ICNT)
SHWRD stores in the nth halfword of array the value in integer

position of word int.

4.5.14 LCHAR: Retrieving a Character

Model: int = LCHAR (array, n)
Example: K2 = LCHAR (OPTNS, 5)

4-18

LCHAR returns the nth character of array as an integer value

in integer position.

4.5.15 SCHAR: Storing a Character

Model: CALL SCHAR (array, n, int)
Example: CALL SCHAR (ERMSG(6), 7, ICODE)
SCHAR stores in the nth character position of array the charac-

ter in integer position of word <nt. Int may not be a literal.

4.5.16 PUTC: Inserting a Character in an Array

Model: CALL PUTC (int, array)
Example: CALL PUTC (A, CWRD)

PUTC inserts int, a character in integer position, in the first
blank in array, a two word array. Int may not be a literal. PUTC
is typically called eight times in succession, when array has been
blanked before its first call. Calls to PUTC after the eighth are

ignored.

4.5.17 LBIT: Retrieving a Bit

Model: int = LBIT (array, n)
Example: IPTR = LBIT (CODES, 7)
th

LBIT returns the n bit of array as an integer value in inte-

ger position.

4.5.18 SBIT: Storing a Bit

Model: CALL SBIT (array, n, int) n=1l,...32

Example: CALL SBIT (LST(2), 3, 0)

th

SBIT places a zero in the = bit of array if int is zero or a

one if Znt is nonzero.

4,5.19 RT: Retrieving an Integer

RT (n, word)

Model: int

Example: INT RT (16, J)
RT returns as an integer in integer position the rightmost =
bits of word a. The rightmost bit a a is also moved into the

rightmost bit of I.

4,5.20 SSWS: Testing a Sense Switch

Model: logical = SSWS (n)
Example: SW1 = SSWS (1)

DOS maintains fifteen boolean variables to serve in place of

the sense switches on the System Control Panel. These '"pseudo
sense switches'" can be set and reset by the user (see section
1.2.6) and tested by an executing program.

SSWS is the logical function which returns a value of .TRUE.
if pseudo switch n is set, and .FALSE. otherwise; n is any of the
integers 1 through 15, which identify respectively pseudo sense

switches A through O.

4,5,21 CHKSUM: Computing Checksum

Model: int = CHKSUM (array, n)
Example: CS1 = CHKSUM (LIN(7), 3)
CHKSUM adds together the first » words in array and returns

their simple algebraic sum.

4.,5.22 COMEQV: Comparing Command-Names

Model: logieal = COMEQV (arraya, arrayb)
Example: T = COMEQV (KEY(1), 4HLSTN)

COMEQV compares arraya and arrayb. Both arraya and arrayb
must be one- to eight-character strings which have no embedded
blanks, and arraya can be shorter than arrayb. COMEQV returns a
value of .TRUE. if the first n characters of arraya are identical
to the first »n characters of arrayb, where n is the number of non-

blank characters in arraya. If not, it returns .FALSE.

4.5.23 NAMEQV: Comparing Names

Model: logical = NAMEQV (arraya, arrayb)
Example: PAR1 = NAMEQV (PARAM(6), KEY(6))

NAMEQV compares arraya and arrayb, both of which must be one-
to eight-character strings. NAMEQV returns a value of .TRUE. if

arraya and arrayb are identical and .FALSE. if they are not.

4.5.24 DCNVRT/HCNVRT: Converting a Number from Internal Format

to Decimal or Hexadecimal

Model: CALL DCNVRT (Znt, array, n)
CALL HCNVRT (word, array, n)

Examples: CALL DCNVRT (NUM1, OUTL(S5), 4)
CALL HCNVRT (HNST, HLST, 10)

DCNVRT/HCNVRT converts int or word, a number in internal for-
mat, to decimal or hexadecimal representation for printing or typing.
The converted number is right-adjusted in array, an array of =
words in length. Leading zeroes in int or word are suppressed,
and, if necessary, array is left filled with blanks. For decimal
conversion, int is treated as an integer in integer position; all

32 bits of word take part in hexadecimal conversion.

4-21

4.5.25 EXIT: Returning to the System

Model: CALL EXIT
When your program has completed and you wish to return control
to DOS, CALL EXIT. EXIT allows the user to issue commands and to

return via a START command. DOS will type OK.

4.5.26 GTHEX: Searching for Hexadecimal Number in Character String

Model: word =GTHEX (array,n,m)
Examples: X=GTHEX (XARR,7,19)
X=GTHEX (NRY, CNT1,CNT2)
GTHEX searches for the first hexadecimal number in a
character string, starting with the nth character and stopping at

the mth.

If a hexadecimal number is found, GTHEX returns the
number and sets n to the index of the character following the
entry. If none is found, GTHEX returns zero and »n is set to m+l.
Some caution is required in testing the returned value of n, be-

cause the compiler sometimes optimizes in such a way that changes

in arguments of functions may be ignored.

4.5.27 LHEX: Retrieving a Hexadecimal Digit

Model: int=LHEX (array, n)
Example: X=LHEX (STRG,19)
LHEX returns the nth hexadecimal digit of array

where the index n starts at 1.

4.5.28 GTREGS: Retrieving the Address of the Register Save Area

Model: pointer=GTREGS (0)

If you are writing a FORTRAN subroutine and need to know where

4-22

the registers (1 through 15) from the calling routine were saved,
use GTREGS. GTREGS works only when called by a standard FORTRAN

routine and should be called immediately upon entry.

4.5.29 GTNAMS: Retrieving Directory and File from a Character

String
Model: CALL GTNAMS (array,m,n,directory,password, file,
flag,altret)
Example: CALL GTNAMS (LINE,1,40,UFD,PSW,FNM,FOUND,NONAME)

GTNAMS searches the character string in array starting at
character position m and continuing through n. If the form (namel)
is encountered first, the two-word array directory is set to name 1.
If the form (namel namel) is encountered, both directory and pass-
word are filled in. The search continues until the form name3 is

encountered or until the nt

h position is reached. If found, name3
is assigned to file, and the logical variable flag is set to .TRUE.
Otherwise, flag is set to .FALSE. and arguments corresponding to
missing fields are set to blanks. The exit altret is taken if

invalid characters are found.

4.5.30 LOC: Retrieving the Address of a Variable

Model: pointer = LOC (word)
Example: IVAL = LOC (VARX)

LOC returns the machine address of word «.

4.5.31 LIST: Referring an Absolute Core Address

Model: word = LIST (pointer)

Example: IVAL

LIST (VARX)

4-23

LIST is an array defined to start at absolute location 1. To use

LIST, the user must have in his program the statement
COMMON /LIST/LIST(2)

as the loader has built into it the definition of the LIST COMMON
area to start at location 1. The statement I = LIST (100) puts
the contents of location 100 into variable I. The statement LIST
(200) = I puts the contents of variable I into location 200. LIST
and LOC may be used as basic building blocks for creating, mani-

pulating, and referring list structures.

4.5.32 SRHC: Storing Number in Right-Half of Word, Indirect

Model: CALL SRHC (pointer, int)
Example: CALL SRHC (N, SUM)
SRHC stores the number in integer position of word <nt in the

right-half of the word whose address is in pointer.

4.,5.33 SLHC: Storing Number in Left-Half of Word, Indirect

Model: CALL SLHC (pointer, int)
Example: CALL SRHC (N, SUM)
SLHC stores the number in integer position of word » in the

right-half of the word whose address is in pointer.

4.6 PERIPHERAL DEVICE ROUTINES

DOS provides the user with several routines which are used in
handling the system's various peripheral devices. Those routines
currently implemented allow cards to be read (4.6.1 DOCARD), lines
to be printed (4.6.2 DOPRIN), magnetic tape to be used (4.6.3

MT7I0C). The user may communicate to the line printer and card

4-24

reader from FORTRAN through unit 101.

4.6.1 DOCARD: Reading a Card

Model: CALL DOCARD (array)
Example: CALL DOCARD (CDBFT)

DOCARD reads a card. If a bad status condition is discovered,
the program issues an appropriate diagnostic. If the operation
corrects the condition and types a carriage return, DOCARD will

try again. Array must be 20 words long.

4.6.2 DOPRIN: Printing a Line

Model: CALL DOPRIN (array)
Example: CALL DOPRIN (PRBF)

DOPRIN prints one line. If a bad status condition is dis-
covered, the program types status in uninterpreted form and prints
the line again. Array must be 31 words long. The first word of
array is used for carriage control and is not printed. Character

1 of the control word is interpreted as follows:

Character Effect
1 Skip to top of page
+ Suppress spacing
0 Double-space
Other Single-space

4.6.3 MT7I0C: Controlling Magnetic Tape

Model: CALL MT7I0C (key,array,n,length,mode,teu,mtt,
status)
Example: CALL MT7IOC (1, IRAY, 200, 20, 2, 1, 0, ISTAT)

MT7I0C provides synchronous input, output, and control of

4-25

seven-track magnetic tapes. According to specified arguments, this
module builds an appropriate channel program and waits for comple-
tion. It provides user-access to all seven-track magnetic-tape
operations and modes. Upon completion, a status indication is

returned. Control is then returned to the caller.

Arguments are interpreted as follows:
key Specifies operation:

1. Read a full record and set length to the number
of words read. If agrray is too short, extra
bytes are ignored. If end-of-file is encounter-
ed, no data are transmitted (length=0); if end-
of-tape is encountered, the record is transmit-
ted (length=0). In case of error, nine addi-
tional reads are attempted; if still in error,
the data are passed as read and the tape is
repositioned at the next record.

2. Write a record of n words. In case of error,
up to nine backspace-erase-write sequences are
attempted; if still -in error, a backspace com-
mand and an erase command are issued (preparing
the tape for another record). If end-of-tape
is encountered, the record is written.

3. Write tape mark.

4. Rewind (no-op if at beginning of tape.)

5. Rewind and unload (no-op if at beginning of

tape).

4-26

key

buffer

length

mode

teu

mtt

status

6. Backspace record.

7. Skip record.

8. Backspace to start of file.

9. Skip to end of file.

An array.

Integer 1-4096 specifying length of array in words,
Length of record in words for read operation (set
by MT710C).

Format and parity;

1. Word format, odd parity/

2. Character format, even parity (BCD).

3. Character format, odd parity (binary).
Controller address:

1. Controller 1,

2. Controller 2.

3. Controller 3.

4. Controller 4.

(Currently only one controller, controller 1, is
available.) ‘

Transport number (indicated by dial on tape drive):
0. Drive 0.

1. Drive 1.

2. Drive 2.

3. Drive 3.

8-bit status set by controller and stored in
integer position.

Values are interpreted as follows:

4-27

Bit Pair Value Meaning

0,1 00 Controller malfunction.
01 Drive not ready or more than
one readied drive set to
same transport number.

10 Drive is write-protected,
rewinding, or unload.
11 Drive is write-permitted.
2,3 00 Reel not available because

rewinding, unload, not
readied, or run off physical
end of tape.

01 End-of-tape detected.
10 Reel position at beginning.
11 Reel ready for read or write

operation (not at beginning
or end of tape).

4,5 00 Parity error.

01 Tape mark read, written, or
sensed (e.g., as in skip-
file operation).

10 Record length exceeded length
or an all-zero frame was
converted when writing even
parity (mode=2).

11 Data are normal.
6,7 00 One byte of last word trans-

mitted.

01 Two bytes of last word
transmitted.

10 Three bytes of last word
transmitted.

11 Last word transmitted in full.

4,6.4 P1IN: Reading a Character from Paper Tape

Model: CALL P1IN (Znt)
Example: CALL P1IN (X)

P1IN reads a single character (int) from the paper-tape reader.
When control is returned, the reader has been stopped. P1lIN reads
in coded mode--it skips null and delete characters and zeroes the
high-order bit (unless the parity of all 8 bits is odd, in which

case it makes the high-order bit a 1). PIlIN returns a line feed

4-28

($0A) for a carriage return ($0D).

4.6.5 PlOU: Punching a Character

Model: CALL P10OU (Znt)
Example: CALL P10OU (A)

P10U punches a single character ({nt) on the high-speed punch.
When control is returned, the punch has been stopped. P10U punches
in coded mode--the seven low-order bits are punched as they are and

the high-order bit is punched to make it an even-parity character.

4.6.6 PNOU: Punching a Character String

Model: CALL PNOU (array, =)
Example: CALL PNOU (ERMS, 28)

PNOU punches »n characters from an array which is in packed
format. Any unused bytes in the last word are ignored. When
control is returned, the punch has been stopped. PNOU punches in
coded mode, which uses the high-order bit to make the character

even parity.

4.6.7 PlINB: Reading a Binary Character from Paper Tape

Model: CALL P1INB (int)
Example: CALL P1INB (X)
P1INB reads in one character (int) in binary mode from the

paper-tape reader. When control is returned, the reader has been

stopped.

4.6.8 P10OUB: Punching a Binary Character

Model: CALL P10OUB (Znt)
Example: CALL P1OUB (A)

4-29

P10UB punches one character (Znt) in binary mode on the high-
speed punch. When control is returned, the punch has been

stopped.

4.6.9 PNOUB: Punching a Binary String

Model: CALL PNOUB (array, n)
Example: CALL PNOUB (ERMS, 28)

PNOUB punches n characters in binary mode from an array which
is in packed format. When control is returned, the punch has been

stopped.

4,7 USING FORTRAN INPUT-OUTPUT STATEMENTS UNDER DOS

Device numbers 1-7 refer to DOS units 1-7, and allow users to
read or write DOS files. Users must either use I/0O control commands
or subroutine OPEN to connect files to units before attempting to
issue READ or WRITE statements for units 1-7. After the files are
read or written, they must be closed through use of subroutine
CLOSE or the CLOSE command.

Device 100 issues READ and WRITE statements to the teletype.
Device 101 in a READ statement will read cards from the card reader
and in a WRITE statement will print lines on the line printer. The
ERR and END features of the READ statement have not been implemented
for the card reader. Any error will cause a message to be typed,

a wait to occur for the user to prepare the card reader to reread
his card, and the program to continue when a carriage return is
typed. If the card reader runs out of cards, a message is typed,
the reader waits for the user to add more cards, and execution is

continued when carriage return is typed. The $EOF card has no

4-30

special meaning and is read as any other card.

For disk I/0, FORTRAN programs can read and write two classes
of records, binary and BCD. Binary records are read and written
with unformatted READ and WRITE statements. FORTRAN I/0 routines
expect files to consist of records of one class only. The class
of a particular file is established by the first READ or WRITE
instruction addressed to it within a particular program. If a
later attempt is made within a program to access that file with
an instruction of a different class, FORTRAN error 39 will be
generated.

Each BCD record is in line mode and cannot exceed 30 words.
If the data list and format statements of a WRITE instruction
generate more than 30 words, the data beyond the 30-word limit are
lost. Binary records exist on external media as a series of 124
words, written in word mode. DOS retains the concept of a physi-
cal record. Under DOS, data in a file are maintained as a con-
tinuous series of words; but the I/0 routines, when dealing with
a binary file, consider each 124 words to be a physical record.

Each binary logical record (i.e., the data read or written
by one binary READ or WRITE statement) consists of an integral
number of 124-word physical records. The first word of each of
these physical records is a control word. The first half of this
control word is a count of the number of physical records within
the logical record; the count of the last (or only) physical record
of the current logical record is maintained in negative form. The
second half of the control word is a count (<123) of the number
of data words in that physical record. If this count is less than

123, the remainder of that series of 124 words is garbage.

4-31

I/0 control statements other than READ and WRITE may be used
with DOS files. The REWIND statement may be used in place of the
REWIND subroutine (4.3.5) to reposition a unit to the beginning of
a file. The BACKSPACE statement may only be used with binary re-
cords as it has not been implemented for BCD records. The ENDFILE
statement is not necessary as DOS needs no actual mark to indicate
end of file. If a user is overwriting an existing file and wants
to indicate an end-of-file condition at the current position of the

file, he should call subroutine BRWFIL (4.3.3) with a truncate key.

4.8 OVERLAY-MANAGEMENT ROUTINES

DOS allows you to access routines which aid in overlay

management.

4.8.1 RESTOR: Bringing a Load Module into Core

Model: CALL RESTOR (file,array,0,altrtn)
Example: CALL RESTOR (FILEX,USRVEC,0,ALT2)

RESTOR restores a saved file by placing the saved program
status words and registers in array and the saved core image of
file in core position sa (starting address) through ea (ending ad-
dress), sa and ea are two special words of the saved file. If the
file is not found (i.e., has not been saved), control returns to
altrtn. The format of array is PSW1, PSW2, followed by registers
RO to R1S.

4.8.2 SAVE: Storing a Load Module on the Disk

Model: CALL SAVE (file,array,sa,ea)
Example: CALL SAVE (FILE,USRVEC,SA,EA)

4-32

SAVE saves sa (starting address), ea (ending address) and
array, an array consisting of PSW1, PSW2, and registers RO to R15;
followed by the core image which begins at sa and extends through

ea. The information is placed on file.

4-33

APPENDIX A
GLOSSARY FOR D0S-32

command what you type at the console; con-
sists of a key word, a string of
arguments, and a terminator.

file a named collection of data; in
DOS-32 there are many types of
files, including data files,
source-program files, object-pro-
gram files, load-module files, and
directories.

the system DOS-32 itself; consists of many
core-resident system routines, are
called in FORTRAN CALL statements
or as functions in FORTRAN ex-
pressions, according to specified
calling sequences, which consist
of a subroutine name followed by
a parenthesized string of argu-
ments, separated by commas.

system programs the FORTRAN compiler, the MAC
assembler, the loader, the editor,
etc.; each system program is a

single file.

user programs

directory

MFD

UFD

command directory

FORTRAN object-time routines

programs written by the user; each
user program is a single disk-re-
sident file which is similar to

the system programs but is loaded
with a different command.

a file which consists of a list of
other files, their addresses, and
other information about them; access
to any file is through the directory
in which it is 1listed.

master file directory in which are
listed the MFD itself, each UFD,
and various system files and system
file directories.

directory in which all programs of
a single user are listed; each user
has his own UFD.

a special-purpose system file
directory (named COMDIR) in which
all system programs are listed.
subroutines which are required to
perform certain standard FORTRAN
services, such as I/0; calls to
these subroutines are generated
during compilation of a FORTRAN
program; all FORTRAN object-time

routines are stored in a library.

library

file systenm

unit

device

new-1line character

a single disk-resident file con-
sisting of many routines, such as
the FORTRAN object-time routines,
math package, graphic routines,
etc.; all libraries are listed in
LIBDIR, a special-purpose system
file directory.

a collection of system routines and
system tables which create and main-
tain files; all directories and
files are part of the file system.
a port to the I/0 system; programs
refer to units which have been as-
sociated with files, rather than

to files themselves; a fixed number
of these ports is available to each
user, who may associate any file

to which he has access with any
available port.

physical storage medium and trans-
porter of data.

the ASCII character which indicates
an end-of-line condition; corresponds
to the linefeed key on a teletype
and implies the dual linefeed/
carriage-return function; unless
preceded by the continuation char-
acter(;), also indicates the end

of a command.

A-3

APPENDIX B
SUMMARY OF USER COMMANDS

Internal Commands

Model:
Abbreviation:

Function:

Model:
Abbreviation:

Function:

Model:

Abbreviation:

Function:

Model:

Abbreviation:

Function:

Model:
Abbreviation:

Function:

ATTACH directory password [drive]
A

Gives the user access to files in the specified

directory on the specified drive

BINARY [(directory password)] file
B

Opens unit 3 to write an object file

CLOSE file
unit ...
ALL

C

Closes all specified names and/or units

COMIPUT file
TTY
CONTINUE
COMI
Allows the user to switch control from the
to a stored set of commands in a file
COMOUTPUT file
CoOMO
Allows the user to switch system responses

mands to some file

B-1

console

to com-

Model: DELETE file...

Function: Removes entries for the files from the current
directory

Model: INPUT [(directory password)] file

Abbreviation: I

Function: Connects file to unit 1

Model: LISTFILE

Abbreviation: LISTF
Function: Types out the names of all files entered in the

current directory

Model: LISTING [(directory password)] file
Abbreviation: L

Function: Opens unit 2 to write a source listing
Model: LOGIN directory password

Abbreviation: LO
Function: Attaches the user to the specified directory if the

password matches

Model: LOGOUT
Abbreviation: LOGO
Function: Closes any open files, units, and devices and

detaches the user from the current directory

Model: OPEN [(directory password)] file unit key
Abbreviation: 0
Function: Opens the specified unit for a particular activity

(identified by key) and associates with it a speci-

fied file.
B-2

Model:

Abbreviation:

Function:

Model:

Abbreviation:

Function:

Model:

Abbreviation:

Example:

Function:

Model:

Abbreviation:

Function:

Model:

Abbreviation:

Function:

Model:

Abbreviation:

Function:

PM
P
Types out the contents of the program status words

and registers

RESTORE [(directory password)] file
REST

Reads the file into core storage

RESUME [(directory password)] file [pswl]

R

RESUME (TSTONE) FORTEST 300

Reads file into core and initiates execution at

the saved entry point or psu;

SAVE file starting-address ending-address [entry-
point]

SA

Creates a file called file from the contents of a

defined portion of core

START [pswl] [pswz] [rn].
S

Initiates execution of the program in core

STARTUP drivel drivez
STARTU
Establishes a sequence of logical drives in which

the system will search in ATTACHing a directory.

External Commands

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

BEDIT
Invokes the binary edit program which allows in-

spection and manipulation of object-program files

BUGGY

Invokes the online debug package which allows users
to examine the contents of any address, change
those contents, perform address computation, and

insert and remove break points

CARDFS

Creates a file from a card deck

CNAME [(directory password)] fiZel fiZeZ

Changes the name of a file in a specified directory

CONCAT
Copies a set of named files into a single output

file for use by the loader

COPYFS directory, [drive] directory, [NUM]
Copy one or more files from directoryl on specified
disk drive to directoryz on drive 0. Adds se-

quence numbers to file if NUM is present.

CPRSAV

Compares two save files in dump format

DMPSAV

Lists a save file in dump format

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

Model:

Function:

EDIT [file]
Invokes the interactive text editor which allows
users to create, edit, and store new files and to

edit current files according to context

FTN [option]...
Invokes the FORTRAN compiler to compile a FORTRAN

source program

LDR
Invokes the loader to load a file containing one

or more object programs

LISTU [(directory password)] [prefiz]
Creates two listing files in the specified

directory

MAC [option]...
Invokes the MACRO assembler to assemble a MAC

source program

MEDIA
Copies files of data from one storage medium to

another

MOVEF file directoryl directory2

Inserts an entry for file in directoryz and deletes

its entry in directoryl

Model: MOVEFS directoryl directory,
Function: Moves several files from one ufd to another. See

Section 3.6.4 for directions for use

Model: PRINTFS

Function: Lists source files in the line printer

Model: SUPDATE

Function: Invokes a noninteractive version of the text editor

APPENDIX C
COMMAND-NAME ABBREVIATIONS

DOS scans command-names as entered at the console and searches
its internal list of commands for the first match. Each command can
be abbreviated by truncating characters from the right, in such a
way that the abbreviation is unique. Thus, BINARY can be abbreviated
as B because no other command begins with the letter B. But when
more than one command begins with the same letter, the abbreviations
are less obvious. 1In these cases, the abbreviation must include
enough characters to eliminate alternative interpretations of
higher precedence, i.e., command-names which share the same letters
and appear closer to the beginning of the command-name list (which
is not arranged in alphabetical order).

Following is a list of D0S-32 user command-names and their

minimum valid abbreviations.

Command Abbreviation
ATTACH A

ASSIGN AS

BINARY B

CLOSE C

COMINPUT COMI
COMOUTPUT CcoMo

DELETE DELETE
LISTING L

LISTFILE LISTF

Command
LOGIN
LOGOUT
OPEN

PM
RESUME
RESTORE
START
SAVE
STARTUP

Abbreviation
LO
LOGO

REST
S
SA

STARTU

APPENDIX D
PROGRAMMING HINTS AND WARNINGS

Miscellaneous Programming Information

1)

2)

3)

4)

5)

6)

7)

The following codes are used by FORTRAN in the storage assign-

ment table:

= TML$ - dimension, data
% = Proc
@ = TEM$ - other

*

common
Check external list for names which shouldn't be there:
misspellings or arrays not in dimension statement.

Check ALIST for names which shouldn't be there, especially @
variables: misspellings, failure to type, failure to initialize.
External names of the form X$§nn (X = A,B,C,D; nn = 10,20,30,40;
etc.) are type-conversion routines. Their appearance in the
external list may indicate failure to type a variable or function
properly.

Arguments to a subprogram are not affected by the IMPLICIT
statement.

The shift operators (e.g., .LS.) have lower precedence than
arithmetic operators, e.g., A+ B .LS. 1 is interpreted as

(A+B) .LS.1

The FORTRAN compiler causes all integers to be stored in what

is called integer position. Integer position is one bit to the
left of normal position. Hence the integer 3 would be stored

as $00000006, while the integer -1 would be stored as $FFFFFFFE,

D-1

Efforts to frustrate FORTRAN in this regard may be sucessfully
resisted by the compiler. In general, DOS has acquiesced in this
matter. Therefore, in calling DOS routines,you should always
expect to pass and receive any integers or single characters in
integer position. Character strings with length greater than one
are not put in integer position by either FORTRAN or DOS. Un-
fortunately, there is currently some confusion with regard to
hexadecimal values, which are sometimes shifted to normal position
by DOS before typing and sometimes not.
8) Note that certain function names will default to incorrect data
types if you use them and fail to declare them in INTEGER or

LOGICAL, while AND, OR, XOR, COMPL, and many others are INTEGER.

Temporary Discrepancies in the Manual and Known Bugs

1) Editor Problems

a) If either a NEXT or a PRINT command has a negative argu-
ment which moves the pointer beyond the top of the file
(TOP is typed out), the in-core buffer is lost. To
continue you must QUIT and start over. Your file is not
damaged.
2) TFORTRAN Problems

a) FTN occasionally stops in middle of a deck (DOS or 0S-1).
This is repeatable if tried immediately and usually goes
away with time. It may be due to an uninitialized storage
location in the dynamic area.

b) Occasionally, a .NOT. in a logical expression is ignored.

The problem goes away if the jdentical deck is recompiled.

D-2

d)

The problem has been shown to depend upon the prior
contents of the compiler work space.

An implied DO in a DATA statement may cause a storage
variable to be improperly assigned to the TEM$ area with an
offset appropriate for TM§.

The optimizer improperly assumes that arguments to a

function cannot be changed by the function.

APPENDIX E
INITIALIZATION INSTRUCTIONS

The following instructions will enable you to start DOS-32,
after which you will be able to use any of the commands presented

in Chapter 3.

Readying the CPU: Various switches require special settings.

The remainder should be placed in a neutral position (for those
with three positions, the center position is neutral; otherwise,
up is neutral).

ON-OFF key: turn to ON, then to UNLOCK.

0-F/ABS switeh: set to ABS.

IOP SELECT switeh: set IOP 1 down

DEVICE SELECT switch: set to 1011 (1 is down).

ACCESS/RUN/STEP switch: set to RUN

SENSE switches: all up.

Readying the disk: Mount the DOS-32 system pack on drive 0

(turn clockwise to mount, counter-clockwise to dismount). Depress
the START/READY and PERMIT/PROTECT buttons and wait until START,

READY and PERMIT are all 1lit.
Loading the system: Press SYSTEM, then press START. The fol-

lowing dialogue will result (user entries are in italics):

DOS-32 REV G
DATE=date
TIME=time

OK,LOGIN directory
0K,

...proceed with session...

0K, LOGOUT

0K
where date is an 8-character date, time is an 8-character time,
and directory is the name of your UFD. If two drives are being

used, the STARTUP 0 1 command should precede the LOGIN command.

APPENDIX F

DOS SYSTEM ROUTINES

The following system routines are available to the user.
The user should be careful not to use the name of one of these
routines for a user subroutine, or problems may occur.

LIST T1IN

EXIT T10U

PRTERR TNOU

GETERR TNOUA

ERRRTN TOHEX

ERRSET

OPEN

CLOSE

BRWFLL

REWIND

DELETE

ATTACH

COMANL

SAVE

RESTOR

RDASR

WRASR

CDRD

PRINT

APPENDIX G
OVERLAY STRUCTURES

A save file created by the loader (LDR) consists of a main
program, all of the subroutines referenced by it, all of the defined
common areas and local storage areas required, and copies of all
library routines needed to resolve external references. The length
of the save file is, therefore, the sum of the lengths of all of its
component parts. When main storage is not at a premium, this is the
most efficient form for program execution. However, if the size of
a save file approaches the limits of the main storage available, the
programmer should consider using an overlay structure.

The designh of an overlay structure depends on the relationships
among the subroutines and common areas within the program. Two
subroutines that do not have to be in storage at the same time may
overlay each other. Such subroutines are independent - that is, they
do not reference each other either directly or indirectly. Sub-
routines are dependent if proper execution of one subroutine re-
quires the presence of another (e.g., the routine which issued a
call and to which control will be returned).

To design an overlay structure, the main program which receives
control at the beginning of execution and all common areas which
preserve data throughout execution are grouped together to form the
root segment. The rest of the structure is developed by determining
the dependencies among the remaining subroutines and common areas
and then grouping them to form independent segments which can occupy
overlapping areas of core at different stages during program execution.

The procedure can best be illustrated by an example.

G-1

Assume that the purpose of the program is to perform a simulation.
Program flow begins with the execution of subroutine INIT which reads
parametric data describing the particular case to be simulated. The
data are interpreted and converted to useful form and stored in two
common areas, COMA and COMB. Then control is passed to subroutine
SIM which conducts simulation beginning with an initial state de-
scribed by parameters in COMB. As the simulation proceeds, raw
event data are written to a disk file. Prior to termination, SIM
stores summary data and status information in COMA. The data in COMB
are no longer required. Control now passes to subroutine EDIT which
examines the edit specifications placed in COMA by INIT. EDIT then’
scans the file of raw event data and produces an event summary before
terminating.

INIT, SIM and EDIT are independent subroutines, but COMA and
COMB must be shared. Assume further that subroutine RNDM is called
by both INIT and SIM. An overlay structure which observes the
relationships among all these modules can be represented as a tree

as in Figure G.1.

ROOT
COMA
RNDM total
storage
COMB EDIT requirement
INIT SIM

Figure G.1 Overlay Tree Structure

G-2

In the figure, the vertical dimensions of the rectangular areas are
intended to represent, graphically, the storage requirements of the
named modules. The total storage requirement is considerably less
than would be required by a simple linear structure.

Using the facilities of the loader and the RESTOR subroutine,
a group of save files can be created which will carry out the exe-
cution of the simulation. The following steps are required:

1) Compile a main program (ROOT) which includes a definition
of COMA, and then a series of calls to pass control to INIT, SIM
and EDIT as follows:

SUBROUTINE ROOT

COMMON/COMA/ . ..

DIMENSION VEC (18)

CALL RESTOR ('INIT ',VEC,0,0)

CALL INIT

CALL RESTOR ('SIM ',VEC,0,0)

CALL SIM

CALL RESTOR ('EDIT ',VEC,0,0

CALL EDIT

END

2) Include definitions of COMA in INIT, SIM and EDIT and of
COMB in INIT and SIM.

3) After compiling all subroutines, invoke the loader as
follows:

0K, LDR

> *,PRI,B:ROT,REF

> *,PRI,B:RNDM

> * PRI,B:SIM,LIB,MAP

G-3

DEF 00006400 COMA
DEF 00006500 TML$
DEF 00006600 ROOT
DEF 00006800 TEM$
DEF 00006900 TML$
DEF 00006A00 RNDM
DEF 00006B00 TEM$
DEF 00006C00 COMB
DEF 00006E00 TMLS$
DEF 00007000 SIM

DEF 00009000 TEMS$

DEF 00009 00 X
DEF 00009300 Y

DEF 00009500 Z

REF 00000000 INIT 000066A0

REF 00000000 EDIT 00006740

FUL=00009600

> SAVE,INIT,6900,9600,0200
> $6900,PRI,B:EDIT

DEF 00006900 TML$

DEF 00006B00 EDIT

DEF 00008000 TEM$

DEF 00008100 U

FUL=00008200

|v

SAVE,EDIT,6900,9500,0200

| v

SAVE.ROOT,6400,6900,6600

[v

0K,

G-4

Four separate save files have now been created. When the
module ROTT is executed, it will restore and call, in sequence,
the modules INIT, SIM and EDIT.

The example presented above was selected because it is of
sufficient complexity to reveal a number of complications. First,
the longest branch of the tree was loaded first and the LIB option
was deferred until the third load line. This was done to force
the loading of library routine Y at a high address since it is
called by both SIM and INIT.

Next, the SAVE command which creates the file SIM does not
include COMB. At execution, INIT places data into COMB. If the
SIM save file were to overlay COMB as well as INIT, the data would be
lost. Note that although two REFs appear, neither is within the
area SAVEd.

The next load line specifies an explicit load address for
B:INIT, causing SIM to be overlaid. (SIM must be saved first.)
Since the new FUL is below the Y entry point, the call to Y from
INIT is correctly resolved.

The SAVE command to create the INIT module must include the
RNDM subroutine since it will be overlaid by EDIT. It must
also include the Y library module which is still intact. When
SIM overlays INIT, RNDM will still be available. RNDM appears
above INIT and SIM in the tree structure but functionally it is
beneath them in the hierarchy of subroutine calls. This type
of structure is frequently useful if two or more independent

routines call a common subroutine.

Upon completion of SIM's execution, RNDM and COMB are no
longer required. EDIT, therefore, may be loaded at a location
immediately following the TEM$ area of ROOT. The loading of EDIT
resolves the last REF - i.e., the call from ROOT to EDIT. Both
EDIT and ROOT may now be saved.

The entry point addresses of the overlay segments should be
specified as 0200 (the EXIT slot in the DOS transfer vector) since
an overlay segment cannot be executed as a main program. If the ROOT
routine contains calls to any of the library routines loaded following
SIM, and if any such calls are executed prior to segment loading, then
the entire area should be included in the SAVE, ROOT control line.

The loading of library routines may cause difficulty on occasion.
Any subroutine which is overlaid during loading is no longer available
for calls. 1Its entry point remains in the loader's symbol table
and is used by the loader to resolve references. No warning is issued.
Such problems can usually be resolved either by changing the order
in which routines are loaded, or by using the force load line to
add the entry name to the loader's symbol table at an earlier

stage of the loading process.

APPENDIX H
FORTRAN ERROR MESSAGES

COMPILATION WARNING ERRORS

Code Description

woo Logical constant spelling or Block Name=Procedure Name

wo1 Il1legal mode mixing in expression

w02 Integer variable required

Wo3 Integer expression required

wo4 DO spelling

W05 Undefined return point

w06 Duplicate statement number

wo7 Illegal common name usage

wo8 Illegal format array in I/0 call

w09 Illegal use of statement number

W10 FORMAT statement number required

Wil Il1legal DO termination

W12 Statement spelling error

W13 I1legal entry name usage

W14 Illegal entry parameter usage

W15 Function requires parameters

Wié6 Dummy appears in namelist

W17 Format statement requires statement number

W18 Format descriptor requires nonzero value

W19 Illegal format scale factor

W20 Format nest too deep

w21 Format descriptor requires value

w22 No path to this statement

w23 Subscript count in EQUIVALENCE incorrect

w24 Multiple equivalenced arrays

w25 Multiple common in an equivalence

W26 Common base lowered by an EQUIVALENCE statement

w27 Executable statements in BLOCK DATA subprogram

w28 Constant too large for field

w29 No RETURN in function or empty line with statement
number

W30 No EOF after END or size statement not allowed

w3l Exponential mode error

w32 Relational IF in logical IF

H-3

COMPILATION TERMINATING ERRORS

Code Description

T0O Illegal use of relational operator in expression

T01 Illegal procedure name

T02 Illegal operator for expression

T03 Improper constant

T04 Parenthesis count incorrect for parameter

T05 Illegal assignment form

T06 Illegal logical usage in expression

TO7 Too many right parentheses

T08 Too many left parentheses

T09 Illegal parameter usage in expression

T10 Improper complex constant

T11 Unterminated relational

T12 Illegal unary operator usage

T13 Improper hexadecimal usage in Hollerith

T14 Illegal subscript syntax

T15 Must be integer variable or constant

T16 Backward DO reference

T17 Return in main program

T18 Nonstandard return in function

T19 Illegal assign syntax

T20 Illegal statement number

T21 Improper multi-character operator

T22 Improper character for syntax

T23 Program too large-exceeds 32,767 words

T24 Temporary storage region (TEM§) too large-exceeds 32,767
words

T25 COMMON block name is procedure name

T26 Name missing

T27 Illegal I/O END-ERR syntax

T28 Illegal I/0 1list name

T29 Improper I/0 DO loop

T30 Illegal statement number syntax

T31 Illegal subscript syntax

Code Description

T32 Must be integer constant
T33 Illegal array name usage
T34 Improper statement termination
T35 Illegal DO ordering
T36 I1legal EXPLICIT mode syntax
T37 Illegal IMPLICIT mode syntax
T38 Illegal statement syntax
T39 I1legal I/0 unit number
T40 Illegal Hollerith constant
T41 Illegal CONNECT syntax
T42 Illegal namelist name
T43 Illegal statement function name
T44 Invalid Hollerith length in FORMAT statement
T45 Too many right parentheses in DATA statement
T46 Data cannot be in COMMON
T47 Illegal DO syntax in DATA statement
T48 Too many left parentheses in DATA statement
T49 Illegal data constant
T50 Insufficient data constants
T51 Too many data constants
T52 Data subscript variable not an implied DO variable
T53 Must be variable
TS4 Illegal statement ordering
T55 Illegal in-line operator
T56 Illegal in-1ine register
T57 Illegal in-line value instruction
T58 Illegal in-line text
T59 Illegal in-line integer range
T60 Data pool overflow for expression
T61l Data pool overflow
T62 Invalid literal
T63 Common name usage
Il1legal subscript range
T64 DO in logical IF
T65 Logical IF in logical IF
T66 END in logical IF

RUN-TIME ERRORS

Code Type of Error Description

01 FORMAT No leading '(' in FORMAT statement

02 FORMAT Too many levels of parenthesis

03 FORMAT Unrecognized separator in FORMAT
statement

04 FORMAT Missing subfield in FORMAT statement

05 FORMAT Illegal parameter in T FORMAT descriptor

06 FORMAT Improper '-' in FORMAT statement

07 FORMAT Zero repeat count

08 FORMAT Unrecognized descriptor in FORMAT
statement

09 FORMAT Field width missing

10 FORMAT Zero field width

11 FORMAT Missing '.' in D, E, F, G FORMAT fields

12 FORMAT Missing field in FORMAT statement

13 FORMAT I output of noninteger

14 FORMAT L I/0 of nonlogical variable

15 FORMAT Unmatched ')

16 FORMAT FORMAT statement contains no argument
fields to match variables in READ/WRITE
statement

17 FORMAT Exponent underflow on input

18 FORMAT Exponent overflow on input

19 FORMAT Exponent underflow on input (Same as 17)

20 FORMAT Exponent overflow on input (Same as 18)

21 FORMAT Illegal character within a field
specified as numeric

22 FORMAT Improper item size

23 FORMAT I/0 buffer exhausted

24 Not Used

25 FORMAT L input with item size not 1 word

26 FORMAT A input with item size not 1 word

27 FORMAT Illegal form for integer input

28 FORMAT Integer overflow

29 FORMAT Illegal hex digit in text output

30 NAMELIST Illegal external name

H-7

Code Type of Error Description

31 NAMELIST External name not in list

32 NAMELIST Illegal terminator

33 NAMELIST Illegal integer: subscript or repeat
count

34 NAMELIST Il1legal dimension

35 NAMELIST Illegal mode

36 NAMELIST Illegal list

37

38 Not Used

39

40 Status Check File status

41 Status Check End-of-File

42 Unformatted I/0 First record read not number 1

43 Unformatted I/0 Record smaller than argument list

44 BACKSPACE Incorrect record control word

45 GO TO GO TO index out of range

46 Device Check Too many file names

47 Device Check File type does not permit request

(such as a READ on a line printer)

APPENDIX 1
SUMMARY OF SYSTEM AND LIBRARY ROUTINES

The following nmenonics are used for variable names:

altritn alternate return address control transfers to in

case of error; set by FORTRAN ASSIGN statement
array normally an array of words
directory eight letter (two word) directory name
file eight letter (two word) filename
int integer position variable
logical variable of FORTRAN type LOGICAL
m integer position counter
n interger position counter

password eight letter (two word) password name

pointer variable contains address of argument
unit integer position DOS unit (range 1-7)
word normal position variable

System and library routines:

AND (worda, wordb)

worde AND (worda,wordb)

CALL ATTACH (directory,drive,password,.TRUE.,aZtrtn

gaining access to a directory

CALL BRWFIL (key,unit,array,n,rel,altrtn) reading,

writing, or manipulating a file

int = CHKSUM(array,n) computing checksum

CALL CLOSE (file-or-unit) closing a file

rtunkey COMANL (key,array) performing logical analysis of

user commands

logieal = COMEQV (arraya,arrayb) compariné command names

wordb = COMPL (worda) forming complement

CALL DCNVRT (int,array,n) converting a number from
decimal to ASCII

CALL DELETE (file,altrtn) deleting a file

CALL DOCARD (array) reading a card

CALL DOPRIN (array) printing a line

CALL EXIT returning to the system

CALL GETERR (array) storing error information

word = GTHEX (array,n,m) search for hexadecimal number
in character string and convert to hexadecimal

CALL GTNAMS (array,m,n,directory,password, file, flag,
altret) retrieving directory and file from a
character string

pointer = GTREGS(0) retrieving the address of the register
save area

CALL HCNVRT (word,array,n) converting a word from
hexadecimal to ASCII

int = LBIT (array,n) retrieving a bit

int = LCHAR (array,n) retrieving a character

I-2

int

int

int

int
word
pointer

word

CALL

logieal

CALL

worde
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL

LH (word) retrieving left-half of word

LHC (pointer) retrieving left-half of word,

indirect

LHEX (array,n) retrieving a hexadecimal digit

LHWRD (array,n) retrieving a half-word

LIST (pointer) referencing an absolute core address
LOC (word) retrieving the address of a variable

MAKWRD (inta,intb) forming a word from two half-

words

MT710C (key,array,n,Zength,mode,tcu,mtt,status)

controlling magnetic tape
NAMEQV (arraya,arrayb) comparing names

OPEN (key,file,unit,aZtrtn,newfiZ,directary,password}

opening a file

OR (worda,wordb) forming logical sum

PNOU (array,») punching a character string

PNOUB (array,n) punching a binary string

PRTERR typing an error message

PUTC (Znt,array) inserting a character in an array
P1IN (int) reading a character from paper tape
PLINB (int) reading a binary character

P10U (Znt) punching a character

P10OUB (Znt) punching a binary character

CALL RDASR (array,n) reading a line from the teletype

CALL RESTOR (file,array,0,altrtn) bringing a load

module into core

CALL REWIND (unit,altrtn) repositioning a unit to the

beginning of a file

int = RH (word) retrieving right-half of word

int = RHC (pointer) retrieving right half of word, indirect

int = RT (n, word) retrieving an integer

CALL SAVE (file,array,sa,ea) storing a load module on
the disk

CALL SBIT (array,n,int) storing a bit

CALL SCHAR (array,n,int) storing a character

CALL SHWRD (array,n,int) storing a half-word

CALL SLH (word,int) storing number in left-half of
word

CALL SLHC (pointer, int) storing number in left-half of

word, indirect
CALL SRH (word,int) storing number in right-half of word

CALL SRHC (pointer,int) storing number in right-half of

word indirect
logical = SSWS (n) testing a sense switch

CALL TNOU (array,n) typing a character string followed

by newline on the teletype

I-4

CALL

CALL

CALL

CALL

CALL

worde

TNOUA (array,n) typing a character string on the

teletype

TOHEX (word) converting a word to hexadecimal and

typing it

T1IN (int) reading a character from the teletype
T10U (Znt) typing a character on the teletype
WRASR (array,n) typing a line on the teletype

= XOR (worda,wordb) forming exclusive OR

—_————e

APPENDIX J
FORTRAN LIBRARY

The FORTRAN Library (LIBRARY in directory LIBRIR) has been
modified from the 0S-1 supplied library. Subroutines modified
are BSAC, DCK, END, PAU, STO, REF, WRF, REU, WRU, and R$EW,
A new routine SETST was written to dummy a status word. Further-
more, all the routines listed in section 4.5 Utility Functions,

and section 4.6 Peripheral Device Routine were added to the library.

