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PREFACE

Research into the possibility of using aerodynamic lift for application
to ground transportation vehicles has been carried out at a very low level !
for approximately 12 years. This has been limited to simple analytical
investigations and small-scale experiments. During this time, the concept
has gone through considerable evolution beginning with a simple body
designed to travel through a tube and reaching the stage of a vehicle
traveling in an open guideway with flexibly mounted winglets.

In 1973, a system definition study was completed which described the
characteristics of a full-scale system., The so-called Tracked Ram Air
Cushion Vehicle (TRACV) requires relatively little energy for suspension
and has a potential for low guideway cost due to the large average air
gap.

This report is the third in a series describing research conducted at
Princeton University on the TRACV. The first report focused on establishing
the variation of 1ift and pitching moment with vehicle height. A later
report contains an analysis of vehicles motions over a guideway with random
irregularities. The present report focuses on lift and pitching moment
variations with pitch attitude.

Funding for this research was provided through the Tramsportation
Advanced Research Program (TARP), This program was originally a part of
the Office of the Secretary (OST) but has been transferred to the newly
formed Research and Special Programs Administration (RSPA). Technical
direction for the effort was provided by the Advanced Systems Office of

the Transportation Systems Center,
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1. INTRODUCTION

This report is concerned with further studies of the aerodynamic
characteristics of tracked ram air cushion vehicles (TRACV). Reference 1
presents the results of experimental and theoretical studies of the aero-
dynamic characteristics of TRACV, concentrating on the influence of vehicle
height and winglet gap with respect to the guideway on the lift, drag and
pitching moment characteristics. Experimental studies were conducted both
in a wind tunnel and with models moving along a guideway using a unique
facility at Princeton University. Very good agreement between the aero-
dynamic forces and moments measured by these two techniques was obtained.

In addition, a theory was developed which agreed well with the experimental
results especially with respect to the prediction of the stabilty derivatives,
that is, the variations in forces and moments about a trim or equilibrium °
condition.

The aerodynamic measurements indicate that this type of vehicle can
achieve quite favorable lift/drag ratios and thus, is attractive as a high
speed ground transportation vehicle. In order to fully evaluate the
potential of this concept, it is important to be able to quantify its
dynamic stability and ride quality. The aerodynamic studies reported here
and in Reference 1 are directed towards developing experimentally verified
theoretical models for the stability derivatives, such that the dynamic
stability and ride qualities of possible full-scale configurations can be
estimated in the design stage and such items as the specifications on guide-
way roughness and possible control systems required in the vehicle to produce

good ride qualities can be determined.



2. EXPERIMENTAL PROGRAM
2.1 EXPERIMENTAL APPARATUS AND MODEL

Three distinct sets of experiments were conducted to measure the
effect of vehicle pitch attitude on lift, drag and pitching moment. One
set was conducted in a wind tunnel. A section of guideway and model were
mounted in a wind tunnel and the model 1lift, drag and pitching moment were
measured as a function of vehicle parameters with emphasis on the influence
of pitch attitude. The model configuration and dimensions are shown in
Figure 1, and Figure 2 shows the model installed in the wind tunnel.

The other two sets of experiments involved the use of an identical
model, moved along a 300-foot guideway by a servocontrolled carriage. In
one of these sets, the model was essentially in free flight lifting its
own weight. The equilibriumposition of the model with respect to the
guideway was measured as a function of model weight and center-of-gravity
position from these equilibrium flight data. For this set of experiments,
the model is referred to as the towed-model. The test configuration is
shown in Figure 3, and Figure 4 shows the model installed in the test
facility, the Princeton Dynamic Model Track. Figure 5 shows the dis-
placement measuring system used to measure the side gap at each of the
four corners of the model. The height and attitude of the model can be
calculated from these four measurements.

The second set in this series involved the use of the same model.
However, the model was mounted on a strain gage balance on a specially

designed idler carriage as shown in Figures 6 and 7. For this test
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series, the model is referred to as the moving-model. The idler carriage
rides on the guideway on large diameter wheels which can be seen in Figure
7. The large amount of structure above the model was required by the
design requirement to provide the rigidity necessary to maintain close
tolerances between the model and the guideway.

Each testing technique has its advantages and disadvantages. The
wind tunnel tests suffer from the disadvantage that there is a boundary
layer present on the guideway which does not exist in the flight of the
vehicle. However, Reference 1 shows good agreement between experimental
results obtained from these two techniques, indicating that the presence
of the boundary layer does not have an important influence on the lift
and pitching moment. Wind tunnel experiments tend to be more convenient
with regard to studying large numbers of model parameter variations.
Experience with wind tunnel testing showed this to be somewhat less true
than was originally expected owing to the necessity of careful setting,
adjusting and monitoring of the small clearances of the model with
respect to the guideway. Higher Reynolds numbers can also be achieved in
the wind tunnel.

One advantage of the moving model test in the steady-state case
is the elimination of the boundary layer on the guideway. However,
as noted above, experimental results presented in Reference 1 indicate
that this does not appear to be significant for TRACV. Difficulties
were also experienced in the moving-model tests with model guideway

contact. This was a result of the fact that to reduce the cost of
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test conditions and, in general, all three dimensionless variables change
when the attitude of the model is changed. All wind tunnel data are pre-
sented at a dynamic pressure of 10.4 psf.

The towed model and moving model tests were conducted in the
Princeton Dynamic Model Track with model and guideway geometry identical
to the wind tunnel tests. The tests were conducted at a nominal model
velocity of 34 fps. For the towed-model experiments, weights were added
to the model to vary its gross weight and center-of-gravity position and
the variations in the equilibrium condition of the model with respect to
the guideway were measured. From these measurements the stability deriv-
atives of the vehicle can be determined as described in Appendix C, taken
from Reference 1. The moving model test involved adjusting the pitch
attitude and height of the model for each run. All six forces and moments
were measured during the course of a run. Continuous time histories of
the forces and moments were recorded and about 10 seconds of data at a
steady-state condition were available for analysis. The noise levels
in the force and moment data, which arise due to small acceleration inputs
from small irregularities in the guideway were maintained at a very low
level by employing a light-weight model, such that, the aerodynamic 1ifting

force was comparable to the weight of the model. A typical time history

obtained for one run is shown in Figure 10. Only the 1lift, drag and pitching

moment are shown.
For further details of the wind tunnel and towed model tests the

reader is referred to Reference 1.
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2.2 WIND TUNNEL DATA

2.2.1 Force and Moment Data

The 1ift coefficient, drag coefficient, and pitching moment coefficient

were measured as a function of the dimensionless parameters Tys Tp» and a.

The term T, is a dimensionless measure of the winglet gap; ry is a dimension-
less measure of the vehicle attitude or gap variation along the length of
the model and & is a dimensionless measure of the height of the trailing

edge of the vehicle above the guideway. The primary interest in these

experiments was the determination of the influence of . However,
recalling the definitions of the three parameters, for io = 0.5
. S * Srp
o Wa
r = Z(GTB B ‘SLE) (2-1)
1 Wa
a - We a
AE .

Since the geometry of the model is fixed, these parameters are inter-

related and cannot be set independently. The attitude of the model and the
trailing edge height are adjusted at the model support point. The gap at the
reference point is adjusted by rotating the winglets about their longitudinal
axis shown in Figure 1. The following relationships exist between the

adjustable quantities, 9, hTE’ and 60 and the dimensionless quantities

appearing above.

19



comparison between theory and experiment is reasonably good over the
forward forty percent of the body. The theory overestimates the
pressure on the after end of the body and the experimental data show

a small suction at the trailing edge. It is possible that cor-
relation between theory and experiment could be improved by modifying
the boundary condition at the trailing edge. The differences

between theory and experiment are similar to those found in Reference 1.
2.3 TOWED-MODEL DATA

The results of the towed model experiments are shown in Figure 11

in terms of the slopes of the 1ift coefficient and pitching moment coefficient|
with pitch attitude as a function of the dimensionless equilibrium flight
gap and the nominal value &N' The value of o corresponding to &N is |
given by the relationship
i - N (2-3)
LI N W
2 cos ¢G c

N W

1 (r, - 0.428)

Appendix C, from Reference 1, describes how these stability derivatives were
determined from the experimental measurements. The experimental data from
which these results were calculated is presented in Reference 1.

The attitude derivatives, that is, the variation of 1ift coefficient
and pitching moment with pitch attitude, with height constant, about an
equilibrium or trim condition, are found from measurements of the model
displacement with respect to the guideway as a function of model loading
condition.

The experimental results shown in Figure 14 indicate that the vari-

ation of 1ift coefficient with attitude increases as the dimensionless

21
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3. UPPER SURFACE THEORY

In Reference 1, rough approximations were used to estimate the
contribution of the upper surface of the TRACV. This section presents
a more refined analysis of these contributions.

The central idea behind the analysis of a wing-in-ground effect is
that the flow can be separated into a channel flow under the wing and a
flow over the top of the wing referred to as the outer flow. The channel
flow is considered in Appendix A. The outer flow for the case of a two-
dimensional flat plate has been analyzed by Barrows, Widnall, and
Richardsonz, who showed how the channel flow and the outer flow could
be matched using asymptotic expansions. In this section the effect of a
thickness distribution on the outer flow is analyzed. It is maintained
that this problem can also be analyzed using superposition, that is, the
outer flow pressure distribution is the sum of effects due to angle of
attack and those due to thickness. The resultant lift must be added
to the channel flow effect in order to obtain the total 1lift. All of
the effect of the vertical gap appears in the channel flow, and the
outer flow may be analyzed as if this gap were nonexistent. Thus, by
using the method of images, the two-dimensional thickness problem re-
duces to the flow past a symmetrical airfoil, which has been analyzed
extensively in the literature. The model shape used in the present
experiments is one half of an NACA 0021 airfoil, for which a pressure
distribution, calculated using Theodorsen's methods, is given by Abott
and von Doenhoffs. Lee4 has used this distribution to calculate the
outer flow 1ift and pitching moment for the experimental model. Even
though this is a worthwhile and logical calculation, there remain two

major deficiencies with this approach:
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C,=2Tua (3-1)

L
r = I‘C + I‘LE + I‘TE + I‘o (3-2)
where

a = angle of attack

FC = channel flow circulation

I‘LE = leading edge circulation

PTE = trailing edge circulation

Po = outer flow circulation.

The most important term, Fc, may be calculated using one-dimensional
channel flow which may easily be extended to include the effect of leakage
at the side edges using the method of Barrows5 or Curtiss and Putman.1 The
trailing edge contribution is mainly due to the fact that the pressure at
the trailing edge is somewhat higher than ambient pressure, rather than
equal to ambient as is assumed during the calculation of Fc. For purely
two-dimensional flow this elevated pressure is felt under the entire under
surface of the wing. However, with leakage at the side edges this elevated
pressure becomes a local phenomena with very little effect on the total
1ift. Wind tunnel data1 show that the channel flow pressures are reasonably
close to theoretical predictions which ignore FTE’ except for points located
near the trailing edge. For this reason FTE is henceforth neglected.

For a flat plate Po turns out to be 1/m. The angle of attack a is
necessarily quite small for a ram wing; specifically, it is 0.038 radians
for the wind tunnel model, giving a contribution to the lift of CL = 0.0242.

o
(The actual contribution is smaller due to the three-dimensional effects.)
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Reference 2 gives the following for the leading edge contribution
for the flat plate:

1 m
PTE = E-ln = (3-3)
where € is the leading edge clearance normalized by the chord. With

the trailing edge touching, o = €, which may be inserted into equation (3-1)
to obtain

(3-4)

Turning now to the wedge, when we magnify the x coordinate we obtain
the flow past a step, Figure 19, which can be analyzed using a Schwarz-
Christoffel transformation as shown by Milne-Thompson.

The solution for
the surface speed q appears in terms of a parameter f as follows:

T +
a= W (3-5)
where
x =&l - 1 - cosh™l 2. (3-6)
and the coordinate system is located such that the step occurs at x = 0.
The 1ift coefficient is computed as follows:
1 g% -
CL = fo [v2 - 1] dx (3-7)
! [E_i_l._ 1] dx dc (3-8)
Sy 51 dz

where Cl is the value of [ corresponding to x

= 1.

Differentiating (3-6),
we obtain

ily
1l

E Nyl

Y Y
'

et}
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CLLE -2 c (3-11)
where

e =h/c (3-12)

a = (hLE - hTE)/c (3-13)

hLE = Leading edge height

hTE = Trailing edge height ,

Since the leading edge is not generally sharp, some judgement may be
required as to the best value of hLE' Whatever value is selected must
be consistent with the definition of the thickness distribution of the
airfoil, which is discussed in the next section.
3.2 LIFT DUE TO A TWO-DIMENSIONAL THICKNESS DISTRIBUTION

As mentioned above, this type of problem can and has been solved
using Theodorsen's method to calculate the surface pressures on the
upper half of the NACA 0021 airfoil used in the experiments. The purpose
of this section is to point out that much simpler methods exist for
predicting the 1ift and moment, methods which are more readily extended to
three dimensions.

Thin wing theory7 gives the following for the velocity potential on

a symmetrical thickness distribution (as shown in Figure 20):

_—lll_ T - %) dx -
d(x) = = {) £ (xl) in (x - xl) dxl (3-14)
where
f = thickness distribution function
and
fr = df/dx .
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The 1ift coefficient due to thickness CL may be found from
t

(@]
n
-
o
(@]
(a9
»i
n

]
N
&.
O =
oo
><I|-9-

dx = 2¢ (0) - 2¢ (1). (3-15)

Thus

(@]
[}

12r_fc1> £ (%) (In %, - In (- )] d%

This may be integrated by parts:

c. _2 - - - =yq1 .2 1 £(x) dx
L, =7 [£(x) In (x) - £ (x) In (1 - x)]o - fo = A E3)
The first term above disappears since £(0) = f(1) = 0.
Thus,
_2 f(x) dx _
CLt_'nfo X - . (3-16)
The NACA 00XX series airfoils are given as follows:
_t -1/2 - -2 =2 -4 )
f= -2—-(Ao X + Alx ta, X +apXx +ax ) (3-17)
where
A =+ 2,969
o
A1 = - 1,260
a, = - 3.516
a; =+ 2.843
a, = - 1.015
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This value is somewhat higher than the value of 0.32 which was obtained
by Lee.4 The reason for this is that thin wing theory is dependent on the
assumption that the velocity perturbations are everywhere small compared with
the freestream velocity. This is valid everywhere except near a stagnation
point. Van Dyke8 has given an explanation of how to correct thin wing theory
for such nonuniformities in the solution, using matched asymptotic expansions.
The stagnation point at a sharp trailing edge gives rise to a very weak
singularity which may safely be ignored. However, a round leading edge
has a larger stagnation region which gives rise to a significant change in
the 1ift. The method of solution is to take a magnified view of the leading

edge, which has a parabolic shape. Let us define the new small parameter

€ =\/2 T (3-24)

€

where
r = leading edge radius

Then the airfoil coordinate near the leading edge may be described by the

£ = E\/;' ) (3-25)

Comparison with equation (3-17) shows that

parabola

At
e, (3-26)

that is, € is proportional to the thickness ratio, which is the basic

small parameter in thin wing theory. Magnified inner variables are
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where C;o is the outer limit of the inner solution. The basic idea is
to add the two solutions together and subtract the common part. In
our present case we only need to match to within 0(1), for which we
obtain

cC~=0. (3-31)
A '"nose correction' ACL to the 1ift coefficient may be computed as

follows:

ACL

1. .
-t -t ax . (3-32)
[o] p P

This is to be added to the outer flow lift as given by equation (3-22).
Notice that the integration is taken over the entire surface of the wing,
although examination reveals that the major contribution comes from a

narrow region near the nose. We obtain, using equation (3-27),

=T
AC 5 In

L (3-33)

LN

For the NACA 0021, r = 0.0485 chords, which gives

ACL = - 0.09 .

This may be added to equation (3-23) to obtain

C, =0.26.
Lt

Now we have a value which is lower than the 0.32 computed by Lee.
We could, if desired, improve the accuracy of this result still further
by including all of the terms of order €2 (which is to say all terms of
order t2) that were thrown out in the first order solution. This
exercise would be somewhat involved in comparison to the very simple
formulae given here, being borderline between a long hand calculation

and a simple computer program. In our present situation, this effort is
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given by

f(x) =t (1-% Q+%) (3-34)
where t is the thickness ratio. The coordinate system is fixed to the
center of this airfoil, with the leading and trailing edges at x=11.

In this coordinate system, equation (3-16) becomes

+1
2 £(x) dx
C = — f (3‘35)
L,y ™ 3 a-va+9%
where the subscript 2D is interpreted as "two-dimensional''. Performing
the indicated integration, we have
_ 4t
CL =7 (3-36)

For the axisymmetric body we must specify an area distribution
function S(ﬁ) in place of the thickness function £f(R). Imagine now
taking a certain width W of the two-dimensional airfoil. In order for

both bodies to have the same area distribution, we must have

S(x) = 2WE(X), (3-37)
where

sx) = mr,
and

r(x) = the radius of the body.

The logical small parameter, €, for this problem is the maximum radius of

the body. Thus,

r=c (1 - XH/? (3-38)
where
e = (Fhe/mi/?, (3-39)
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K=A/& (In % -3+ 4 RO - (3-46)

For the wind tunnel model we have t = 0.21 and R= 1/6. Using these
values we obtain
K =0.32, (3-47)

that is, a biconvex airfoil of the same thickness ratio as the wind tunnel
model would havethree times the 1ift coefficient of the corresponding
ellipsoid.

The pressure distributions corresponding to these two bodies are
shown in Figure 23. As can be seen, there is some difference in the
shape of these distributions, and a considerable difference in the
magnitude of the pressure at the center, where the pressure on the
airfoil is almost five times that on the ellipsoid.

It seems reasonably safe to assume that the lift on the three-
dimensional body defined by taking a certain width W of an airfoil
will lie between the limits of two-dimensional flow and axisymmetric flow
defined above. As a simple first approach, one might expect the lift to
be some kind of average of these two limits. In the lack of any additional
information, the geometric mean is as logical as any other average we

might define. That is, we hypothesize that

o =\/;cL . (3-48)

3D 2D
For our present parameters, this makes the 1ift due to thickness equal
to 0.57 times the two-dimensional value. This hypothesis is admittedly
crude, but it does give a simple working relationship for the outer flow.

One might be tempted to compute a more refined value for K based on the
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actual area distribution of the body, but this cannot be done within the
confines of slender body theory if the airfoil from which the body is
derived has a round leading edge. As mentioned previously, this would
result in the equivalent axisymmetric body being too blunt to be repre-
sented by a lineal distribution of sources and sinks.

There are some restrictions. This method of approximation is only
valid if the thickness ratio and the aspect ratio are comparable and
both are << 1. As a matter of coincidence, for the wind tunnel model
t turns out to be almost exactly equal to €, so the equivalent axi-
symmetric body would have the same maximum thickness, making the method
particularly appropriate for this case.

3.4 SUMMARY

In order to calculate the lift on the upper surface, the two-dimen-

sional 1ift due to thickness is reduced as indicated by equation (3-48)

and the 1ift from the leading edge eigensolution (3-11) is then added:

C, =C +C (3-49)

A two-dimensional value for the lift coefficient may be readily
calculated for thin airfoils using a perturbation expansion. In our
present case we may use the value of 0.32 computed by Lee4, which gives

CL = 0.18 + 0.10 = 0.28.
u

This value lies below the value determined from the wind tunnel

tests (0.30) and that determined from the towed-model tests (0.32)

indicated in Reference 1. Comparison with the experimental results of

Section 2 is discussed in Section 4. As noted in Section 4, the moving model
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Using equation (3-12) for the definition of the leading edge clearance
ratio £, we have

ASE

€= ( We

+0) .

Q1R

Applying equation (3-49) to equation (3-11), and using the nominal
value of the leading edge height (4.25 in.) we obtain

(CL&) = 1r2—€ (g)2 ¥ 0.012.

LE

This is approximately 10 percent of the theoretical contribution from the
channel flow. The wind tunnel results of Reference 1 indicate a value of
CL— which is twice as great as the theoretical prediction from the
cthnel flow alone, although there is some scatter in the data. Adding
the above contribution gives a slight improvement to the agreement
between theory and experiment, but not enough to obtain good agreement.

The resulting comparison may be termed poor but adequate, since the

major contribution to the height stability comes from CL .
T

3.5 EXTENSION OF OUTER FLOW THEORY

If it becomes important to obtain a more accurate model of the
outer flow, the approach which is suggested is to represent the body
with sources and sinks distributed over the planform of the vehicle as
illustrated in Figure 24. A considerable simplification is obtained
if the source distribution function f' is constant with y and all the
sources are located in the plane z = 0. Normalizing all lengths by
the semispan of the body, we obtain a formula analogous to equation
(3-14):
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¢ +1 fr(x,) dy, dR
V&9 =50 ST — (3-51)
° T yr-gpte @ -9p°

where il, ?1 specifies the location of the source f'. The integration
with respect to ?1 can be carried out directly, and the result is

obtained in the form

Cc
VR = 3 L KRR £1(R) A} (3-52)

where

Ve -0+ -n+a-9
k = In

(3-53)

Vg -2p% ¢+ 0% - a+9

In general, this integral is too complicated to evaluate analytically.
However, with due attention to singularities, it can be evaluated

numerically. The singularity may be reduced by integrating by parts:

(o
1 noodk
=5 L ER) . R, (3-54)
%

If this approach is taken, it becomes necessary to correct for
the stagnation region at the nose, as illustrated previously.

The results of the analysis so far give a greater understanding of
the flow pattern but show only small changes in the overall values of
lift and pitching moment. This tends to support the notion that highly
refined calculations of the outer flow are not warranted at the present
stage of development. Techniques are available to do this for three-

dimensional shapes, but a substantial computer programming effort would
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4, COMPARISON OF THEORY AND EXPERIMENT

The primary emphasis in the comparison of theory and experiment is aimed
towards the evaluation of the simplified theory presented in calculating the
stability derivatives of the vehicle. Therefore, only the 1ift and pitching
moment derivatives are discussed since these are largely responsible for the
important dynamics associated with the heave motion. It has been shown in
Reference 1 that this theory, which is presented in Appendix A, predicts the
variation of 1ift and pitching moment coefficient with height very well,
certainly with very satisfactory accuracy for a dynamics and ride quality
investigation. Here the interest is centered about the pitch attitude effects,
and the adequacy of the extended theory in predicting these effects. Con-
sequently, the wind tunnel data are first corrected to account for variations
in the average gap 60, so that the prediction of the attitude effect can be
isolated. The dependence of both the pitching moment coefficient and the
1ift coefficient with 60, or ro at constant attitude is shown to be linear
and insensitive to o in Reference 1; and therefore, the correction to the
experimental data is made in the following fashion.

Consider the 1ift coefficient (the same analysis applies to the pitching

moment coefficient) which is a function of three dimensionless parametefé

CL = CL (o, ro, rl)
where
26

r =2

o Woao

1 Wa

- Wco
a =

7
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The variation, 6ro, with attitude involves a term due to the change
in gap and one due to the change in pitch attitude, and the correction is
applied to remove the effect of gap change so that

or

(o]
Aro + BT AB i

6r
o

where

Ar =1* -1
0 o o

The value of the attitude at a particular test condition is Gt and rg is

defined as

o (6 =0)

o (0 et)

; T, (6 =0)

T

that is, r; is the value of T, which would be present if the winglet gap
at the reference point, at the attitude et, were identical to the gap at
0 = 0.

Thus the 1ift coefficient variation is expressed as

aC 5C
C, =C + L | PP
L Lo 38 ¢ =% * 57 (rg = To) -

The last term in this expression represents the term which was calculated
in order to determine the correction to be applied to the data to remove
the effect of average gap variation. A similar formulation applies to
the pitching moment coefficient.
4.1 WIND TUNNEL DATA

As described above, the wind tunmnel data are first corrected for gap
variation. The experimental values of the variation of pitching moment

coefficient and lift coefficient with gap, T, from Reference 1 are
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FIGURE 25. COMPARISON OF THEORY AND EXPERIMENT, WIND TUNNEL TEST
(@ = 1.36, r = 0.54 at ® = 0) (CONTINUED)
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The theory is shown with a constant increment added to match at zero attitude
and essentially indicates near zero slope and does not account for the small
nonlinearity shown by the experimental data. It would be expected that this
non-linear behavior would not be particularly important in a dynamics analysis
unless the center of gravity were located at the 50 percent chord point.
Appendix D discusses the equations of motion and the influence of center of
gravity position on stability. Recall that the pitch/heave dynamics are
coupled and the static stability cannot be judged from the pitching moment
variation with attitude alone as shown in Appendix D. Note that location of the
center of gravity at 50 percent chord may not result in a trimmed vehicle since
center of pressure is located near the 40 percent chord point as shown in
Section 2. The contribution of the 1ift variation with attitude would thus tend to
linearize the pitching moment variation with attitude if the center of gravity
is located at the 40 percent chord point and consequently the agreement between
theory and experiment for the pitching moment coefficient is considered quite
satisfactory. The thecory indicates, as in the case of the 1ift coefficient,
that the effect of o is significant; and, in fact, each term in the pitching
moment expression (equation (A-23)) contributes to the variation, so that
it is difficult to say how well each of the individual effects is predicted.

A further comparison of theory and experiment is shown in Figure 26
where the lower surface contribution to 1ift and pitching moment coefficient,
as predicted by the theory of Appendix A, is compared with the integration
of the pressure coefficient measurement along the guideway:. The discrepancy

in magnitude in each case is similar to that found in Refercnce 1. The slope
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the nonlinearity present. The wind tunnel experiments appear to indi-
cate somewhat lower slopes than the towed-model data. This difference
is no doubt in part due to the fact that the towed-model data are
effectively linearized by the method used to analyze the data, which
also would account for some of the apparent scatter in the towed-model
test results. In particular, the nonlinearities in the pitching
moment coefficient data shown in the wind tunnel may add to the diffi-
culty of determining effective linear derivatives. Also, the process
of determining the towed model attitude derivatives depends upon
evaluation of the height derivatives, i.e., the method of calculating
the attitude derivatives is somewhat indirect.
4.3 MOVING MODEL DATA

Comparison of the moving-model data with theory is shown in Figure
28. As in the case of the wind tunnel experiments it was not possible
to maintain the average gap constant due to the difficulty in makirg
the small adjustments in model attitude with respect to the guidewuy.
Consequently, in order to compare the effects of pitch attitude obtained
from the experiments with theory the effect of average gap changes was

corrected for using the same parameter variations with average gap as

in the wind tunnel tests. The corrections applied to the data are noted
in Table 4 and each point which has been corrected is denoted by a "c"
on Figure 28,

The lower surface theory of Appendix A gives reasonable agreement
for the variation of 1ift coefficient with pitch attitude. There does
appear to be a non-linearity in lift indicated at the larger nose down
attitudes not predicted by the theory. A similar trend can be noted in

the wind tunnel results.
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The theory for the pitching moment variation agrees especially in
the nose up case. Similar to the lift coefficient there is a discrepancy
in the large nose down condition.

The fact that the slopes are reasonably well predicted tends to
indicate that the differences between the wind tunnel data and the
moving model data are a result of the loss in lift due to thickness
as a result of upper surface separation. The theory indicates that upper
surface 1ift due to thickness does not contribute to force and moment
variations with attitude.

Comparison of the total 1ift coefficient to the prediction based on
the lower surface theory of Appendix A indicates that the upper surface
is producing a 1ift coefficient of about 0.1. This contribution agrees
with the leading edge effect predicted in Section 3 supporting the notion
that separation has occurred and no lift due to thickness is developed.

Further investigation of the aerodynamic effects of the idler carriage
and support on the upper surface 1ift appears highly desirable. It is
difficult to design an idler carriage providing the necessary rigidity
for the moving model tests without some structure close to the model.

Indications from the comparison of theory and experiment discussed
above are that the lower surface pressure distribution is unaffected
by the idler carriage.

The overall results of this study and those of Reference 1 indicate
that the theory presented in Appendix A is quite satisfactory for predicting

the static stability derivatives of a tracked ram air cushion vehicle.



the data are presented referenced to the 50 percent chord of the vehicle
where the linear slope is near zero. For a reasonable center-of-gravity
location on the vehicle, the 1lift variation with attitude would tend

to linearize this variation.

The steady-state theory indicates that for the center-of-gravity
locations in the vicinity of the center of pressure (40 percent chord),
the configuration studied will be statically stable in attitude.

Comparison of the upper and lower surface theories indicate that
the primary contributions to the vehicle stability derivatives arise
from the lower surface contributions. Comparisons of lower surface
theory with pressure distributions indicate similar results to those
of Reference 1. The lower surface theory indicates a somewhat larger
1ift contribution than is indicated by the pressure distribution and
a center of pressure that is further aft than the pressure distributions
indicate. However, the discrepancy in the location of the center of pressure
is less than two percent chord.

A theory is presented for the rate dependent effects which
jndicates that the vehicle aerodynamics give rise to pitch and heave

damping.
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APPENDIX A

THEORY FOR PITCH ATTITUDE AERODYNAMICS

In Reference 1 a theory is presented for the prediction of the lift,
drag and pitching moment of a tracked ram air cushion vehicle. The theory
is a simplified version of a theory developed by Boccadorolowhich involves
a one-dimensional approximation of the flow field under the vehicle. This
theory was developed for the case in which the side gap is constant along
the length of the vehicle and thus considers only the effect of the height
of the vehicle above the guideway. Reference 1 shows that this theory
agrees well with experimental data, especially with respect to predicting
the stability derivatives of the vehicle.

In order to develop a complete description of the aerodynamics of the
tracked ram air cushion vehicle the theory must be extended to include the
influence of pitch attitude, which will result in a side gap that varies
linearly along the length of the vehicle.

Figure A-1 shows the nomenclature for the theory. The continuity
equation written for the control volume shown in the figure can be

expressed as follows,

C
pAU=pAU+2pfx6wdF, (A-1)

L E 'E

It has been assumed that the velocities U and UE are uniform across their
respective areas. The velocity at the gap, w, is assumed to be only a function
of distance along the body, x, and uniform across the width of the gap.
Assuming that the flow is incompressible, the density cancels out of

equation (A-1).
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The area variation along the body is still taken to have a linear variation
with distance along the body as is characteristic of the model used in the
experiments. The side gap is also considered to have a linear variation
along the length of the body. The area and the gap are given as functions

of x as

>
n

L= Ap +Wea(l - %:—) (A-6)

x
= X__o -
§ = 60 + 61 ( c < ) (A-7)
as shown in Figure A-2. In terms of the gap at the leading and trailing

edge of the vehicle

o

S = O1g X * S (1 - X))

(A-8)

) =S - Sk

The pitch attitude of the vehicle is defined with respect to the vehicle
trim condition in which the winglets are parallel to the guideway. In
this condition, the slope of the lower surface of the vehicle is ao, so
that the dependence of the flow under the vehicle on pitch attitude is

found from the relationships

o =a_+806
O
§,. -6 6

o -LE_TE _ 1 (A-9)
C cos ¢G' ¢ cos ¢G

Relationship (A-7) is substituted into the differential equation and the
various equations are nondimensionalized using the exit area, AE’ free

stream velocity, U, and vehicle length, c:

d(A) _ _ 4 xovr G-z 1-0° . (A-10)
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The solution for small r is obtained therefore, by neglecting f on the
right hand side of equation (A-12). The equation can be readily integrated

to give

! - - -1
f = {ro +—=(1+a (- xo)) (A - tan "))
a

(A-13)

2
{ A_A__I_l - l-ln O + AZ +1).

2o
- 2 2
o.

With this solution, the pressure coefficient on the lower surface and con-
sequently the 1ift and pitching moment coefficients can be calculated.
The pressure coefficient is given by

v A2 - af

C
P AZ +1 .

(A-14)

Consistant with the approximate solution to the differential equations,

f2 has been neglected. The 1ift and pitching moment coefficients are

given by,
1 -
c. =S C_ dx
L ‘op (A-15)
1 - - -
CM = - fo Cp x - xo) dx

The pitching moment coefficient may also be written as

1
Cy = - fo Cp xdx + Cp X - (A-16)
In terms of the variable A,
o)
¢ =-2hC (A (A-17)
a o 12 + 1
1 0 a+1 VaZe1, ad -
Cy==/ ¢ G—-"——) )+ € X, (A-18)
8 8 2P o o 2
o AT+ 1
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1 1n (Ao + Ai + 1)
F, =X - 2tan A_+ (A-21)
3L 0 0 3
AT+ 1
o
F,, = é-(2 +a) - 1n (1 + @)
IM 2
A -1
-1 o A tan = AdA
F..,=\A_-tan A - —F———
2M o 0 0 AZ +1
AWV + 1 STy o Adn(+YAZ + 1) ax
FSM STz 7 In (Ao * Ao 1) - fo

A%+ 1)

where Ao = [(1 + a)z - 1]1/2

The terms with integral signs cannot be integrated exactly and therefore are

2
calculated on a digital computer. Alternatively, the substitution y = Az +1
reduces these two integrals to tabulated forms, both having series solutions.

A second set of functions related to the F's is defined,

F F
- - 1M
L @ ==t My @) ===
o o
2F - 2F2M
L, @) = -2 M, &) = —= (A-22)
3 &
F, - 2F Fo, - 2F
3 3L 2L -, _ 3M 2M
Ly (@) = ——=— Mg (@) = ——=5—
o o

The resulting equations for the 1lift coefficient and pitching moment
coefficient are

CL = L1 - T, L2 Ty (xo - 1) L2 + T L3

(A-23)
- o+ 1
M= O X - F )+ M)

(@]
n

- T, M2 +* T (xo -1) M2 + T M3
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and these dimensionless quantities are related to the height and attitude

of the vehicle by

o= (ao + 8)
AE = ASE + [h - (6 + ao) (c - xo)] W (A-25)
§, =-c¢ 8 cos o -

ASE is the part of the exit area due to lateral spacing between the body
and the trailing edge.

The variation of CL and CM with h and 8 is to be determined. It
is assumed here that the initial attitude of the vehicle, 6, is zero

and in addition that the winglets are rigidly attached to the vehicle

so that

dé
-2 =
dn = cos o

The height derivatives are,

e AT -~ S A
@i ® a3 an %o dh
(A-26)
Gy Fwas, o
ah 8 2 an °Toan -
dr,
Note that — = 0
dh
dr
o _ 2c¢ _
— = W % %" ma %
d o 0
& _ o2 (A-27)
ah %

99

e



The initial value of r1 is taken to be zero

- = _atl A-23
CM=M1-r°Ma+Ir1[(xo-1)M3 +M3]+CL[XO' z ] ( )
and therefore

ac, M, aM, 3. _ =
M. 2 —+— & ~2tlys Zcp
da o % & o e “o
BCM acL _ G+ 1
B Tl C ey
or or o)

o o @ (A-33)
3C oC -
"M _ oz “Lyz _atl
S-r—l'— (xo - 1) MB + M3+ arl (xo & )

Thus, equations (A-28) and (A-31) give the four static stability de-
rivatives. Given a vehicle trim condition, using equations (A-32) and
(A-33) these four derivatives can be calculated. These results, taken
with those of Appendix B, determine the aerodynamic stability derivatives

required to develop the equations of motion of a TRACV.
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A i HYh . A (x-x) Dy (B-5) |
dA )\2+1 5 o’ o a
A+ 1
where
- = 1 - Va4
x-x)=1+—-x -
(o] & (o]

[oX}

The first group of terms on the right hand side of equation (B-5) represent
the steady flight solution and this part of the equation was solved in
Appendix A. Since this solution involved solving equation (B-5) by neglecting
the terms in f on the right hand side, the influence of the rate terms may

be calculated as an increment to the solution of Appendix A.

Thus, the increment in f due to vertical velocity and angular rate, Af, is

W’ 2
{(1+%__)—(0_)\+1

given by

dAf . 1 A

A o §7—:—I

The boundary condition is £(0) = 0. This equation can be readily integrated

) D8 - Dh } (B-6)

a

e

to give,

2
Af"% (a+l- x,) D8 - D) ( Me1-1) 4 3 A (B-7)
a

oo 2 .
The calculation of the increment in lift and pitching moment coefficient

follow from Appendix A and can be expressed as

ac, = #e o in ——+ 2]k
A, o l1+a 1+a
E
¥ a+lox) an—Ltos 2208 (B-8)
AE& a ° l+a 1+a 1+a
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The latter derivative may also be expressed in terms of winglet rotation
as

dL ot aL

o = e cos ¢G B .

w h
h
Similar relationships hold for the pitching moment derivatives.
If the winglet is held fixed with respect to the body, i.e., a rigid

vehicle is considered, then

A =0
W

and the winglet gap perturbation is related to a vehicle height perturbatiol

by the relationship
A = AhTE cos ¢G )

und therefore, the heave derivative for a rigid vehicle is

ay  _ay 4y &,
dh 0 dh 5 as h dh 8
w w
dL dL
==| + cos ¢ ——|
dh 5 G as h

In dimensionless form,

ac -5 dC
dL 2 L o
- =q8{=—cos¢,6 ~-— —:L%
dh 9 Wo dr G co i

w
or as
dc dc

dL gs { L ~a W I?
= = 2= {2 =—=cos ¢, - =—} .
dh ew Wor dr G C aa

This is the combination of dimensionless derivatives determined
from the towed model tests since the winglet was fixed with respect to

the body in these experiments.
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Therefore, along lines of constant center-of-gravity position

SCe oC—
M —M = -.
S5y Ar + 3 a8 o, |
and therefore, i
_ |
éﬂ\ = . .or §
Ar oG ?SE f
30

That is, the variation of attitude with gap 1is a direct measure of -
the ratio of the pitching moment derivatives in equilibrium flight at|
different 1ift coefficients. Thus, the location of the center of gravy

essentially determines the attitude and gap variation which will occu

as speed is changed.
At a different center-of-gravity position

C = C + AX C
Moz  Yeam

L .
In equilibrium flight, CM = 0, and therefore, gt constant lift
CcG2 -
coefficient the change in the pitching moment coefficient about posiﬁ
1 is
oC ac .
oo Ar + Yea A8 = - ax C |
or o0 L ° %

Thus, from the graph of lift coefficient vs. pitching moment coeffic%
|

the total quantity on the left hand side can be determined. Finding%
corresponding points on the equilibrium curve of 6 vs.r at the prOpe£
1ift coefficient determines the change in 6 and r to be inserted in|
above relationship. This result is then employed, along with the rat%

|

the derivatives determined from the slope of the equilibrium curve,t1
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APPENDIX D

EQUATIONS OF MOTION AND STATIC STABILITY

The condition for static stability, i.e., the absence of a real positive

root in the characteristic equation describing pitch/heave motion and its
dependence upon vehicle center-of-gravity location is examined in this
Appendix. The pitch/heave motion is coupled since, in general, both the
1lift and pitching moment depend upon height and attitude. The speed of
the vehicle is assumed to be constant. The equations of motion in a space
fixed axis system are
m ; =L - W',
. (D-1)
16=M,
where h is the vertical displacement of the center of gravity and M is
the pitching moment about the center of gravity. The aerodynamic lift
and pitching moment are expanded in a Taylor series about a trim
condition
oL oL g + oL Boe Ek.é ,

YR IR YL (0-2)

M=¥M oM %%-6 + §¥-ﬂ + 27 )
oh 96

Substituting equations (D-2) into (D-1), the trim or equilibriwr condition

is given by

L
o]

M =0.
(o]

W',
(D-3)

The perturbation equaticns describing the linearized dynamic motions are
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Equation (D-7) is the static stability criterion expressed in terms of
stability derivatives referenced to the center of gravity of the vehicle.
In the experimental and theoretical studies of this report and Reference 1
the reference location for the pitching moment and vertical displacement
is taken to be 50 percent chord. To express the static stability in

terms of quantities referenced to this location the following transfer

relationships (Figure D-1) are required:

M

c
M-L (5" xCG) (D-8)
and

+e(%- Xcg) -

=
]

h (D-9)

0.5¢

Thus, the following relationships exist between the derivatives at the
50 percent chord location and an arbitrary center of gravity location

X

CG’
L, =L
h hO.Sc
C

L| =1L - L & - x..)
6| el h 2~ *ce

h Ry sc 0.5¢
v m .C

= -=(E-x_)L _
Mh Mho.Sc I %2 cg h0.5c (D-10)
i m ,C
Mo|h Melh -1 G " %d) Lo N

0.5¢ 0.5¢
- G - xgg) [ -2 G - %) -
27 %6 |y o, T hy g, 2 CG
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the relationships developed above to express

- . [+
- Mg+ Ly = - My c*(f"‘cc) [Mh

0.5 ‘ %L"'

h ]  (0-13)

0.5¢c 0.5¢

m .C 5'
-Gy >0
0.5c
Thus, it can be seen that the center-of-gravity location does influence the
dynamic stability through the s2 term. The influence of moving the center

of gravity appears to depend primarily on the sign of the quantity (Mh
0.5¢c

+ ¥'L6 ) since the radius of gyration in pitch would be large compared

h0.5c

to the distance between the 50 percentchord point and the center-of-gravity

location for reasonable trim attitudes. The experimental data indicate that

these terms are of opposite signm, i.e., Mh is negative and Le is
0.5¢ h=0.5c
positive, so specific vehicle configurations must be studied to evaluate the

influence of center-of-gravity position on stability.

It is also interesting to note that the results obtained for the
static stability derivatives imply that it is not possible to model the
longitudinal dynamics of the TRACV by a simple spring or equivalent two-
point suspension model. In general, the coupling terms Le and ﬁ£ are of
opposite sign, indicating that there is not a simple equivalent conservative

system or spring model that can be used to represent the longitudinal

dynamics.
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APPENDIX E
REPORT OF NEW TECHNOLOGY
After diligent review of the work performed under this contract,
no innovation, discovery, improvement, oI invention of a patenable
nature was made. The unconventional vehicle configuration which is
described herein originated from previous efforts. The main contri-
bution of the present effort was to supply quantitative test data on

the dynamics of the concept.
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