REPORT NO. DOT-TSC-0ST-72- 14

DISK OPERATING SYSTEM USER’S
GUIDE

JAN P. CARLSON

TRANSPORTATION SYSTEMS CENTER
95 BROADWAY

CAMBRIDGE, MA. 02142

MAY 1972
USERS” MANUAL

Approved for TSC only. Transmittal of this
document outside f TSC musf have pnor
approval f the Data Ser s Division of
TSC

Prepared for:
DEPARTMENT OF TRANSPORTATION

J{smu%%f% A TRAIATHI A Spsas eentep)

C/v’/V’W*’tG*C/ MM 0215 ;
|

The contents of this report reflect the views
of the Transportation Systems Center which 1is
responsible for the facts and the accuracy

of the data presented herein. The contents
do not necessarily reflect the official views
or policy of the Department of Transportation.
This report does not constitute a standard,
specification or regulation.

ACKNOWLEDGEMENTS

I would like to express appreciation to Mr. R. Hinckley
for his assistance and motivation in preparing this document
as part of the overall documentation for the DDP-516 Graphics
System.

I would also like to express appreciation to the following
people for their overall contributions to this document:

Mr. M. Form
Miss R. Fuller
Mrs. J. Gertler

Mr. R. Hinkley
Mr. C. Kalinowski
Mr. D. Kipping
Mr. L. Liebson
Dr. J. Poduska
Mr. S. Rotman

Mr. M. Scott

Mr. J. Steinberg
Mr. D. Udin

Mr. A. Zellweger

iii

II.

I1I.

Iv.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT S . e oo veeveescocsscosssccasssesansass 1ii
INTRODUCTION . c o ecoceeascssascssonssosccsscscsscsascsossssses 1-1
SYSTEM CAPABILITIES..ccceoesoacssscsacssssscse ceseeses 2-1
HARDWARE DESCRIPTION .. esssccssscossosacsos s e ccsesnen e 3-1

A. Listof Equipment..lII....I....l....l...l...... 3-1

1. The COMPULEr...ectertocsesssssssscsassoassass 3-1
2. Peripheral Hardwar€....cecososeeececsosesscasces 3-2
3. Non-Honeywell PeripheralS....ecoeeesceceesess 3-2

B. HOWtOU.SeEqu.‘i.pment..........-.-..-........... 3_3

1. High Speed Arithmetic Unit...ceeeesveccesss 3-3
2, Real Time CloCK..:.eeeeeeescessncecasssasssss 3=3
3. Restricted Mode Option....ececeveececeseeas. 3=3
4. Extended Addressing Control for 32K
MEMOYi€S.ceesaececsecoscsoscosssconancnes oo 3-3
5. 16 Channel Priority Interrupt System....... 3-3
6. 16 Channel Data Multiplexed Control...... .. 3-4
7. Paging Hardware.....coeeeecocsccsccoscseases 3-4
8. Bit Banger Multiplex and Clock.....s000000.. 3=5
9. ASR Console Teletypeiceeeceersecsncesoocess 3-5
10. Moving Head Disk File..vieeseseesnccacns ee. 3=5
11. High Speed Paper Tape Reader........cceee.. 3-5
12. High Speed Paper Tape Punch.......... S
13. Single Line Controller...c.ccceeseesecesssss 3—6
14, Low Capacity Multiline Controller...... eess 3-6
15. Magnetic Tape Controller......ccceeeee.e ces 3-6
16. Direct Coupled SySteM..cceeceescssasoncososs 3-7
17." High Level Analog Input System........ce... 3-7
18, DisplayS:.sseceseccecssacsescsscsscnsscssscenss 3—7
19. ARDS Storage Display..ccceesccesacsscccseces 37
20, DYUM...ccsosceoesccescssccossosossscsssoccnnssssas 3-7
21. Sylvania Data Tablet......cccceeeeeecencee. 3-8
TYPICAL CONSOLE SESSION WITH DOS..ccecescscssccnsse . 4-1

A, IntroductiON.ccececececseacsnccasosecnscsnnssess 4-1
B- Brief VieWOf DOS-oo'-o-..oa-o.--u-ac.ooo-....o 4—1
C. A Console Session with DOS...evecsosccsccccsaes 4-1

VI.
VI.

VII.

VIII.

TABLE OF CONTENTS (CONTINUED)

DOS SYSTEM-....-n-a-'nc.o...o.o..-c'.o.-.-.o.o-..oo 5-1
A. DOS File System.......--..-..--.-..........--.. 5-

l. File OrganizatioN.....eccecescsscccceascasss D5
2. Structure and Allocation of Disk Records... 5
3. Internal File Structur€......eceeesesescess 5—
4. Multiple Disk OrganizatioOn.....eeeseeseeses 5
5. File System I/O.ccccecccccsssscsssscsssaceas DO

DOS Core USa@gE.cesccsescscscoscasssssccsssscssanss 5=5
DOS Command StrucCtUr€.cccseccescscscssscscssssases D=6
Internal CommandS..c.ccceeeecccsscccssssscescsssces D=7
External CommandS...cccosocceocscsosssssoncssesss D=1

HOOW

1. General CommandS...cccosececccsscsnscsnsseases 5H=12
2. Utility CommandS....cccececeeccccccsssseses 5-14
3. I/0 ComMAnNdS.ceceesescosccacssssscssssassssss D—16
TSDOS
TSDOS SYSTEM. . ccececeocoecossoncsossesncsosssnossacssassccscscs 6-

1
A. IntrOduction....-...----.......-.....-...-..... 6—1
B. User Operation Under TSDOS....ccceceveeacccencss 60-1

DDP516-H632 COUPLERI..o.o...o.......-0....--0..-... 7-1

A, IntroductioOn.....cceceoeccescosccnsssasssnnanaes /-1
B. Functional Descriptiono ® 5060 0000000000000 008 0080 7-1
C- 516_832 Coupler PaCkage.... e e e 00000 00000000000 7 2

l. File Transmission ProgramS..cccccccceccssss 7
2. Data Transmission Subroutines..........c... 7-
3. Operator Instructions for 516-832

Coupler USerS..c.csccescoscesccacoscscsccsccse 1
4. Binary File Conversion ProgramS......c.secee. 7-
5. MeSSaAgeS..cceececcsscscscsascncsccccnssscses 1

GRAPHICAL CAPABILITIES..-..-ono-oo.ucoooc.o--o-aolo 8_
A. Refreshing Displays With Light Pen............. 8-1
B. Tablet.-.-............-...........--.-.-. 8_1

8-2

C. Calcomp Plotter.....ccceeccosnccssccsscscncsncss

1. Hardware Description....cccecscecccesccsoassss 8
2. Software Description....s.ecceecececscecceces 8-

vi

IX.

X.

D.
E.

TABLE OF CONTENTS (CONTINUED)

FACTOR (FACT) . ceeocsaceseacssssnososnsss
WHERE (X, Y, FACT) tveveosenccescnscncns
OFFSET (XMIN, XFAC, YMIN, YFAC)..ceess
NEWPEN (N).veeeoeoeaeoaooonossnannssns oo
SYMBOL (X, ¥, HGHT, IBCD, THTA, NS)....
NUMBER (X, Y, HGHT, FPN, THTA, NDEC....
SCALE (X, S, Ny K)cieeeonoosooonnsanns

OO~V W

ARDS Storage Display.cecceceessosscccacssscs
Real Time CloCK..eceeeecessccscsscssascsnscs

FORTRAN..I.'.....O-...l...'lll.....Il.ll.......

Al
BI

D.

FORTRAN LIBRARY.....-...I'I..I..II....I.I...I...

A'

INtrodUCtiON .. ceceesoscecsocscssosscacssenss

10. LINE (X, Y, N, K, T, L) eeeeseeenoonesesns
11. AXIS (X, Y, IBCD, N, SIZE, THTA, XMIN, DX)
12. PCIRCL (X, ¥, R)eeeeececsoocoananonnnses
13, PBRIT (I).cecoeecccooonaccnsonsonnnen .
14, PSTRCT (I)eeecececcceccsosnenononncncsss
15. PCGLOB (A, B, C)eceeceonccsesoncncen .
16. ESYMB (X, Y, HGHT, IBCD, THETA, NS).veee...

How to Compile a Program...csscececeocesssssccsss

1. Normal CompilatiON...ceocesesosesscccssoss

2. Options......--.....-......-...-.-.....

New FeatUreS.eceeececescsesosscssosssscssnnsosonacsse

Improved FORTRAN Input-Output..........
FORTRAN Input-Output to Disk..:.seesesss
FORTRAN Output to the Display.....ec...
INSERT Statement....ccocececceccocesccocs .

Global Variable Mod€...vceeeoecccesones
Octal ConstantsS..ceaceeecceencccsanesccs
Intrinsic FunctionsS...eeeeceoesoeaccace
TRACE Debug FeatuUre...cccecceececesccccas

Voo U W
L] L]

FORTRAN Bugs..-......-.....................

Assigned GO to Statement.....ceecesoscss

IntrOduction.o...-............................

vii

el
1))
o

00 00 0o 0O 0O 0O O O 00 ™
L1
HWOWO W E B B W

8-10

O WWWWWLWOLWW
|
W OO~~ITOAO & WK

O
i
\O

10-1

10-1

TABLE OF CONTENTS (CONTINUED)

B. FORTRAN Library ExtensionN...ccceeceececcccesess 10-1

l. List PrOCESSing....-...--..--.............. lo—l

2. Bit Manipu:l.ation--..-o.....-............... 10_2

3. DOS Interface RoutineS...c.c.ccceecesesocssss 10-3

4. Alternate Teletype Input-Output............ 10-6

5- Miscellaneouso...........-................. 10_9

C. List of FORTRAN Library Routines........e.e.... 10-10

XI. BASIC'.II.I....'.IO.....I..‘..ll..'.....'.........' ll_l
XII- GASP SIMULATION SYSTEM......o..-onn.-oo.oo.-oooon.o 12_1

GASP Library.............---.-...--............ 12-1

A,

B. Input FOrmat....cceeesecesccssnccsossssssssssans 12=3
C. Error COAES....ceceeescscsccsessascssssanssassssss 12-6
D. Distribution FunctionS...eccceccccsosscesccsas eee 12=7
E. GASP FileS.:.:.cccecceossnssssssssscsssssscssassssss 12=7
F. GASP LOAALiNg.ccceoecascosssssasesscssnsssscsnsns L2=7
G. Debugging AidS..eecesececccccscccsscssacasssses 12=9
H. Additional Information...ccceceeeececccoscssasss 12=9

ADDENDIX D. SUBPROGRAMS USED BY GASP II SUBPROGRAMS....... 12-10
XIII. DAP

A, Introduction....ceeeeeccesssscsssscsscssesssses 13-1
B. Normal AsSembly..cccesecesccscsscccsccscssasasas 13-l
C. OptiOnS...ececesecsececscsosssncssscossscasssssans 13=2
D. Calling FORTRAN Programs from DAP Programs..... 13-2
E. XREF ..eeteooocsonsssssononsssnssscsnssssnsssnnese 13-3

XIV. LOADER-...;...............l....ll..l..l...-........ 14—1
A. IntrOduction..................-...-............ 14_1
B. Simple Load ProceduUre....eeeeececeescasscacocsss L4-1

C. How to Find Program Errors by Examining the
LoadMap-........l..'I.l......l...'..O......... 14_4

1. Failure to get a "load complete" Message... 14-4
2. Library Routine Examination................ 14-4

D. Loading Two or More FileS....eeeeeececscsoseeas 144

viii

XVIT.

XVIIT.

TABLE OF CONTENTS (CONTINUED)

. Loading the FORTRAN Library..ceeeeeeececeennses
F. Loading Large ProOgramS...c.ceeseecececcsessnseaes

1. Problem.....ciieeeeecsonssencneeennnnasnnnss
2. Alternate Loading Procedure.......oeeeeee..
3. How to Minimize LinkS....eeeeeeceonsnonenan

EDITOR.....-.IC.l.l..........-.-......lloooiiocl.oo

Introduction. . ceretereeeeneenoncneoncenoonsenss
Error Restart.i.eieeceeeeeesseocscosseacnsonecenes
File Size ResStriction....iveeeeseeeeseeeenensn.
High-Speed Input MOAE€..::.eeeveeenesecennnnen. .
Edit MOAE e sttt eeveenesoenenosonensasnseesesenes
Display FeatUre. it eiesoeeeeenesenesoeonasnnnnes
TabUlatioN.eeeeeeeeecoeeeeeeonosocasocsoncesesss
Erase and Kill CharacterS...cceeeeesseseeeeeesas
Special CharactersS....eeiererseeeeeneeeeaansnnes
EQit REQUES TS .ttt teeeecencsonosssocsssnsnsenes.
String BufferS...ceeeeecseeeneecnecesencosnenness

RUOUHITDQOHEEOQWWw

BINARY EDITOR.........-..‘.......l....l..l...l..l..

e INtrodUCEIiON. . eeeeeeeeeseesncesscoosenensssenes
T A b s o =
Initialization ProCedUreS...eeeeeeeeeeeeeeeness
User CoOmMMANAS . .o eeesoecsooceecosaacesssssssses.s
EXaMPleS . et eeeieeecesessenonsonocsoeneonsoesnnss

HOOQw

l. To delete routines from a library..........

2. To put subfiles of one library into
separate f£fileS....iiereerecrcenoccnesnnnans

3. To combine files under one Name............

INTERACTIVE DEBUGGING AIDS.cceseseceoaceenasosnnnns
A. Debug'.O...I...l.I...'.'.'........I..l.'..'....

B. HAMBUG...-o.--o.nooooo-..o-n.-...o-n--oaou-.--.

C- Trace-.-..-...-..-.--.......--...-...-...-.....

OVERLAYS...-..-....-.-o.--...........--............

A. IntroductionN...cceseesesessesoccesenscnnsecnees
B. Simple Example Of OVerlay.:eeeeeeeenccosocenses

ix

XIX.

XX.

XXI.

XX1II.

TABLE OF CONTENTS (CONTINUED)

C. Overlay with Control Returning to Main

PYOQLaAM. s e eoceveacsssssosssasscssonsosocssasansss
D. Description of Subroutines OVERLA and

RETURN. . ccooooosossnsscsscasssesossosssssossssosaes
E. Several Overlay Segments, Each Returning to

Main Program....ccccesececsscsscssscoscsscosscons
F. Nested Overlay SegmentS..ccccecscccsccscececccnns
G. Problems in Using OverlaySecccesesccscccsscccccns

MOVING LARGE PROGRAMS AND DATA IN AND OUT OF
THE DDP—516.........."..'...I......I....'.....l...

A. Input from Cards....cccesceesvsccccccsccccnccse
B. Large ListingsS....ccecececscenccscscccsncsccccs
C. Input from Paper TapE€..scecececesescccscscsancsns
D. Output to Paper Tap€..cesccccscccccoscscccsccscs
E.

PAL-AP.o.-p...-a.uo.o.oo.‘.u.o---t-.o...-.ooo-.

DOS SYSTEM MAINTENANCE..:ccccococosssccescscsssccos
A. IntroductioON...cecessecescsessssccscssenccscssns
B. Review of File SysteM..ccceceecsecscccssscccncns
C. Operation of FIXRAT....eeseeeccccccsonccnsscans
D. Operator Instructions for FIXRAT......ccceceeee
QUICK REFERENCE GUIDE.:c:cccscccceocccesonscsccscncccs
A. Connect with SysteM..cccececcsessccccccsceccasce

ERROR MESSAGES-....o-cncoo-o.--.nn..o-o'o..o.oo..-a

A. Disk Operating System.....ccisecececscsccsocccns
B. FORTRAN...l............‘...........'.'.....l...

REFERENCES-..o.u-o-u-..o.-..o.o.o.-co.oo.o-.oo-.-oo

18-2
18-4

18-4
18-6
18-7

19-1

19-1
19-2
19-2
19-3
19-4

20-1
20-2
20-2
20-4
20-6

21-1

I. INTRODUCTION

This document serves the purpose of bringing together in
one place most of the information a user needs to use the
DDP-516 Disk Operating System, (DOS). DOS is a core resident,
one user, console-oriented operating system which allows the
user to completely control the computer and execute programs
with little use of paper tape. DOS consists of:

1. an interactive command language, which controls
execution of file system commands, utility functions,
system programs, I/O routines, and user programs ;

2. a file system and disk management system which
simplifies the creation, deletion, and updating of
source, object, and data files;

3. a collection of system programs including a FORTRAN
compiler, a DAP assembler, loaders, source editors,
on-line debug packages, and a binary editor, which
are fully integrated with the file system and
command language;

4. a comprehensive graphics library to fully interact
with displays and light pens.

One of the more salient features of DOS is its file
system. The file system gives the user the ability to organize
collections of data, source, and object files under user-
specified names. He has the ability to save and delete files
by merely supplying the correct command and a name. All files
are stored in a user file directory (UFD) which is made available
to the user when he attaches to that directory. Each user has
his own directory and all he has to do is insert and delete his
files. All other data management and clerical functions are
provided for the user by DOS.

The user interacts with DOS by typing commands at the KSR-35
console. When the command is received, the supervisor either
performs the desired action immediately or initiates the ap-
propriate system program. When the action has been performed
or if an error is detected, the user is notified and the super-
visor waits for a new command. Typical commands (with simplified
parameter list) are:

ATTACH ufd
gains access to another UFD
DELETE name
deletes file name from current UFD

1-1

SAVE name sa ea pcC
save core memory from sa (starting address) thru
ea (ending address) and the pc (program counter)
as a file named name
RESUME name
loads and executes the program SAVEd as file name
FIN name
compile the FORTRAN source file name

The Time Shared Disk Operating System is a time-shared
seven user system which is compatible with DOS and uses the
same disk. Under TSDOS the user sees a system nearly identical
to DOS. All commands: have the same name and format; the file
structure is identical and the user invokes the same subroutines
to communicate with the teletype, the disk, the display and
light pen. Other I-O devices are not available to the user
under TSDOS, but he may prepare a program which uses these de-
vices, save it on the disk, then later run the program under
DOS. The user actually has more memory available for pro-
gramming under TSDOS because the user sees an empty 32K of
memory whereas under DOS, he must share this memory with the
operating system.

The Honeywell DDP-516 is an integrated circuit 16 bit word
two's complement machine. It has 32,768 words of memory with a
memory access time of 1 microsecond. Both indexing and in-
direct addressing are provided. Options this machine has in-
clude a high speed arithmetic unit, a real time clock, a 16
channel priority interrupt system and a direct multiplexed
control channel allowing I/O without CPU intervention at a
four memory cycle per word transfer rate.

Peripheral equipment includes refreshing monochrome and
color displays with light pens, a Sylvania data tablet, a
Calcomp plotter, six teletypes, a high speed paper tape
reader and punch, a magnetic tape unit and three moving head
disk files.

Chapter II gives an overview of the capabilities of the
system. Chapter III lists all the hardware and peripheral
equipment attached to the 516. Chapter IV runs through DOS
from a béginners point of view. Chapter V gives a more de-
tailed description of the system and explains all the commands
and subsystems (computers, assemblers,etc.) available to the
user. The next three chapters explain the Time Shared Disk
Operating System, the H632-DDP516 Coupler, and the graphical
features of the DDP-516. Chapters IX through XVII explain
how to use each of the more complex subsystems such as the
FORTRAN compiler Chapter XVIII describes the overlay feature.
The next section explains how to read cards in, get listings
out, and use paper tape. Chapter XX explains setup, shutdown

and backup procedures to be repeated daily. Due to these actions,
users cannot lose more than one day of work from a hardware or
software crash. Chapter XXI is a memory refresher section on

how to do all the activities described in Chapters V and IX
through XVII having to do with editing, compiling, loading and
running programs. Chapter XXII gives a list of error messages

a user can get with the DOS system, the compiler, assembler

and loader.

The following special symbols are used in the text:

bae indicates a space

.NL. : new line character

.CR. carriage return character

.LF. line return character

(Control X-off) result of hitting control key and S

key simultaneously. Under TSDOS, this
character will cause the supervisor to
take you into command wait status.

II. SYSTEM CAPABILITIES

(To be supplied at a later date)

III. HARDWARE DESCRIPTION

A. List of Equipment

1. The Computer

The CPU is a Honeywell DDP-516, an integrated circuit
l6-bit word machine. It has 32K of core memory with a memory
access time of 0.96 microseconds. Paging modifications have
increased the basic memory access time to 1.080 microseconds.
The machine organization is parallel and the arithmetic unit
is two's complement. Both indexing and multilevel indirect
addressing are provided. The instruction set includes 72 in-
structions and a single instruction may directly address any
one of 1024 words. If intelligent programming is done however,
a single instruction will usually only address a maximum of
512 words directly.

The following standard Honeywell options are available on
our machine.

e High Speed Arithmetic Unit allowing:
5.28 microsecond maximum multiply
10.56 microsecond maximum divide

e Real Time Clock

® Restricted Mode Option

Extended Addressing Control for 32K memories

16 Channel Priority Interrupt System

® 16 Channel Rate Multiplexed Control (DMC)
allowing I/O without CPU intervention
at a four memory cycle per word transfer
rate.

For a complete description of the central processor and its

options see DDP-516 Programmers Reference Manual.

The following options built in-house are available for use.

Paging Hardware

In addition to the above option, CPU modifications
and special logic circuits are used to allow paging.
This system includes a four member associative store and

a base relocation register. The Paging mechanisms can be
bypassed if so desired.

Bit Banger Multiplexer and Clock
A simple teletype multiplexer and a 330 cps clock

used for time sharing.
3-1

2. Peripheral Hardware

The following standard peripherals are available.

e ASR Console Teletype
10 characters per second

® Moving Head Disk File
3 - controlled 3.6 million word moving head disks.
Access time is between 20 and 160 milliseconds
with a word transfer rate of about 12 microseconds
per word.

e High Speed Paper Tape Reader
300 characters per second

e High Speed Paper Tape Punch
110 characters per second

e Single-Line Controller
This device is used to send and receive data
over a 2400 bps dataphone.

e Low Capacity Multiline Controller Special Option
Allows up to 32 teletype communication lines to
be serviced by the 516 as a single device.

® Magnetic Tape Controller
Controls one 36 inches-per-second 7 channel tape
drive. Maximum transfer rate is 9,600 words per
second.

® 516-832 Direct Coupled System
Allows high speed interchange of information
between the two computers (DMC speed). 150,000
words/second.

e High-Level Analog Input Subsystem
Scans, multiplexes and encodes high voltage
level inputs. Was to be used for. speech input.

3. Non-Honeywell Peripherals

e Displays
1-Information Displays, Inc. display generator.
3-IDI high resolution, monochromatic equipped
with light pen displays.
1-International Telephone and Telegraph three
color, lower resolution display.
® ARDS storage tube display with mouse.
e Drum
Vermont Research Corp. magnetic drum memory with
about 2 million word capacity with maximum access
time of 17 milliseconds and transfer rate of
1 word every 12 microseconds.
® Sylvania Data Tablet
allows high resolution (1024 x 1024) data input at
a maximum rate of 1 point every 5 milliseconds.

® Calcomp Plotter
Hard copy graphic output.

How to use Equipment

1. High Speed Arithmetic Unit

a. Assembly Language Instructions
see Programmers Reference Manual
b. Program packages
used autamatically by FORTRAN library.

2. Real Time Clock

a. Assembly Language Instructions
see Programmers Reference Manual. This option is
wired to priority interrupt 11 (Memory location
76g) .

b. Program packages
see Section VIII.E. of this manual

3. Restricted Mode Option

a. Assembly Language Instructions
See Programmers Reference Manual. This option is
wired to priority interrupt 12 (Memory location
77q) .

b. Prggram Packages
This option is only used for time sharing. See III.
2.1 page 4 of TSDOS Reference Manual.

4. 'Extended Addressing Control for 32K Memories

a. Assembly Language Instructions
See Programmers Reference Manual.
A modification has been implemented in the Extended
mode option. When in the extended mode, indexing
will occur before indirecting if the effective
address of an instruction is in sector zero and is
less than 32. This modification allows such in-

structions as LDA* 0,1 to work the same way whether
in the extended mode or not.

b. Programming Packages
none

5. 16 Channel Priority Interrupt System

a. Assembly Language Instructions
See Programmers Reference Manual. The interrupt
structure has been altered to allow better protection

3-3

of certain instructions. The JST instruction pro-
tects itself and the following instruction from
interrupt. Thus, a re-entrant subroutine may be
constructed with an initial instruction of INH or
ILDX (if the DAC is never re-used). The ENB in-
struction protects the following instructions from
interrupt even when already enabled. There is a
problem in that the sequence

ENB
NOP
INH

will not allow a standard interrupt to occur. This
sequence appears in the 46Tl disk diagnostic and
consequently the standard 46Tl will not run pro-
perly. An additional peculiar feature of the SI
interrupt is that an interrupt may occur immediately
after an INH if the INH is not otherwise protected
by a JST or ENB instruction.

Program Package

none

Channel Data Multiplexed Control

Assembly Language Instruction
See Programmer Reference Guide.
Program Packages

none

Paging Hardware

a.

Assembly Language Instructions.

Bit 10 of the operation register indicates that
the machine is in the paged mode. The paged mode
is enabled by an SMK '1320. Before executing the
SMK instruction, the A-register must be set up for
loading the Page Map Register (PMAR), according
to the following scheme:

(FOR 256 WORD PAGES)

BITS

314|516 |7]81]9 10|11 |12 |13 | 14| 15 | 16

9

PMAR PAGE NUMBER
10 11 12 13 14 15 16

Corresponding bits of A-Register
transferred to PMAR on an SMK '1320

E.G., To start the Page Map at 10000§ (Bit 4), the A-Register

should contain 40g (Bit 11 set

3-4

10.

11.

After the execution of the SMK '1320, paging will be
enabled with the PMAR set. However, mapping will not
occur until after the excution of the first JMP in-
struction. This permits paging to be enabled and fol-
lowed by a non-paged jump to a location where page
mapping will begin. Master clear disables paging and
clears the PMAR and the associative store.

The paging hardware is used only by the time sharing

The bit banger multiplexor is used only with time shar-

b. Program Packages

system.

See section V. of TSDOS Reference Manual.
Bit Banger Multiplex and Clock
a. Assembly Language Instructions

See VI. 2.2 of TSDOS Reference Manual.
b. Program Packages

ing.

See VI. 2.3 of TSDOS Reference Manual.
ASR Console Teletype
a. Assembly Language Instruction

See Programmers Reference Manual.
b. Program Packages

Normal FORTRAN drivers and alternate teletype I.O.
See X.B

Moving Head Disk File

a.

b.

Assembly Language Instruction
See Programmer Reference Manual.

Program Packages

The DOS system user routine described in IV. 2 of
TSDOS Reference Manual. The user will not use these
routines but will read and write information on the
disk through calls to subroutines in the FORTRAN 1li-
brary. See section X. B of this manual. Furthermore
the disk is available as a FORTRAN I.O device.

High Speed Paper Tape Reader

a.

Assembly Language Instructions
See Programmers Reference Manual.

12.

l3‘

14.

15.

A simple change has been made to the paper tape read-
er to cause it to work in a 'single-character' rath-
er than 'continuous mode'. When the paper tape read-
er reads a character, its motor will be turned off
until the computer reads in the character. Normally,
the INA for reading occur within microseconds of the
read and the motor never slows. However, if there
should be a delay in reading, the pappr tape reader
will no longer run away.

This modification is especially useful for interrupt
driven I/0 or time-shared operation of the reader.

Program Packages

Users are discouraged to use the paper tape reader.
Encouraged is getting paper tapes onto the disk then
having program read the disk.

See section XIX of this manual for this procedure.

High Speed Paper Tape Punch

a.

b.

Assembly Language Instructions
See Programmers Reference Manual

Program Package

Users are discouraged to use the punch. Disk files
may be punched onto paper tape by a procedure ex-
plained in Chapter XIX.

Single Line Controller

See Low Capacity Multiline Controller Option Manual.

a. Assembly Language Instructions
See Single Line Controller Option Manual.
b. Program Packages
See System Specifications for DDP-516- Universal
1004.
Communications Link.
Low Capacity Multiline Controller
a. Assembly Language Instructions
b. Program Package

The multiline controller is used with TSDOS.
See VI. 6 of TSDOS Reference Manual.

Magnetic Tape Controller

a.

Assembly Language Instructions

16.

17.

18.

19.

20.

See Programmer Reference Manual.

b. Program Packages
Magnetic tape is available as a standard FORTRAN I/O
device.
See Chapter XIX to read magnetic tape into a disk
file or write from a disk file to magnetic tape.

Direct Coupled System

a. Assembly Language Instructions
See System 32/16 Coupler Option manual.

b. Program Packages
See section VII of this manual

High Level Analog Input System

a. Assembly Language Instructions.
See High Level Analog Input Subsystems Special Options

Manual.

b. Program Packages
none

DisElaXs

a. Assembly Language Instructions
See VI 2.7 of TSDOS Reference Manual.

b. Program Packages
See Graphic Reference Manual and section IV. C. 3 of
this manual. The display 1s available as a FORTRAN
I/0 device.

ARDS Storage Display

a. Assembly Language Instructions
See ADRS Manual.

b. Program Packages
See Chapter VIII. B of this Manual

Drum

a. Assembly Language Instructions

b.

21. Sylvania Data Tablet

OoCP
SKS
SKS
SKS
SKS
INA
INA
OTA
OTA

Program Packages

none

10042
'0242
'0342
‘0442
'0542
'0142
'0342
'0242
'0342

a.

Reset Drum Controller

Skip if ready for command transfer
Skip if ready for data transfer
Skip if no data transmission error
Skip if no reading error

Input status word

Input data word

Output command

Output data

Assembly Language Instructions

INA
INA
format

Program Packages
See section VIII.

1240
'140

bit 1
bits 2-4

bits 5-14

read y and z and reject information
read x and z and reject information
if on point is reject

height info 000 on surface

001 near
011 up
111 way up

x or y. information 0, 0 is at lower
left

B of this Manual

IV. TYPICAL CONSOLE SESSION WITH DOS

A, Introduction

The reader is assumed to know nothing about the DOS
system although he is expected to know FORTRAN and the funda-
mentals of computer programming. The reader will be led
through the process of which a FORTRAN program is inputed,
compiled, loaded, and executed under the DOS system. No
attempt will be made to explain in detail the external commands
used, but references to other chapters will be used. The
chapter assumes only one disk drive is being used.

B. Brief View of DOS

The Disk Operating System (DOS) for the DDP-516 is a
core resident, one user, console-oriented operating system
which allows the user to completely control the computer and
exXecute programs with little use of paper tape. All files
for source binary and core images are known by name to the
user, and DOS handles all problems of allocating the resources
of the disk.

C. A Console Session with DOS

Let us start from the point a user enters the computer
room with the computer shut down. First turn on the machine,
load the DOS master disk pack on disk drive zero and turn on
the disk drive. Users should not do the above unless they
have authorization.

Load a ten foot paper tape labeled DOS BOOTLOADER in
the paper tape reader. Turning to the console, master clear
the computer, check that all sense switches are in the reset |
position and start the computer with the program counter set
to 1. The BOOTLOADER will read into the machine and begin
execution. This program reads DOS from the disk into core
then jumps to DOS. DOS responds on the console teletype
"OK,". From this point on, all user action is initiated from
the console teletype.

user: ATTACH TSDOSA
response: OK;

Before we can begin work, we must "attach" to one of 60
possible user file directories (ufd). Each ufd contains access
to up to 62 files on the disk. These files may contain FORTRAN
source programs, binary data, core images or other data.

User file directories are themselves files of the master-file
directory (MFD). The MFD is also stored as a file on the
disk.

"ATTACH" is one of many internal commands of DOS.
nTSDOSA" is the name of one of the user file directories of
DOS. The command line "ATTACH TSDOSA" causes us to have ac-
cess to any file whose names are in the TSDOSA user file di-
rectory. :

user: AAA?EDXX
response: EDXX NOT FOUND

The "?" character kills all input on the line up to the
won WwEDXX" is a word not recognized by DOS as a legitimate
command. The response is a DOS error message.

user: ED
response: GO
INPUT

ED is the name of an external command. When a user types
a command to DOS, DOS looks the word up in a list of internal
command words. If the name is not in the list, DOS looks

the name up in a special external command directory CMDHCO.
If the name is found, DOS reads in a core image file and
starts executing the program with initial program counter, A
register, B register, index register and keys as specified in
a special part of the file. An external command, in other
words, is a command which causes a core image file to be

read into core and begin execution. When execution is ready
to begin, DOS types "GO" and transfers control to the newly
loaded program. After this point, the teletype as well as
other devices are controlled by the new program and not by
DOS. The program types "INPUT" and is now waiting for tele-
type input. '

ED is a text editor. This program allows one to input
a FORTRAN source program as well as any other text through
the teletype. We may then edit the text by a series of
commands to ED. Other ED commands cause ED to read and write
files of text on the disk. ED does this indirectly by call-
ing on special DOS subroutines to do the actual reading and
writing. ED commands should not be confused with DOS commands.

At this point in time, ED has just typed INPUT informing

us that we are in high speed input mode. 1In this mode, typed
lines are entered directly into ED's text buffer

user: C/IDIOT FORTRN"AN PROGRAM
response: none

The first line is a FORTRAN comment. The backslash
character "\" is the logical tab convention for ED. The
logical tabs may be reset by the editor command TABSET.
Initial tabs are set at columns 6, 12, and 20. Spaces are
entered in the text buffer to the next tab position. No
Spaces are typed in response to the input.

The character " is the erase character. Typing this
character will cause the preceding letter to be deleted from
the line. Successive use of the character will cause successive
preceding characters to be removed. As in DOS, a "?" will
"kill" the entire input line up to the "?". The erase and
kill characters are effective whether in the INPUT or EDIT
mode. The editor makes no responses so long as in INPUT mode.

user: \LJINTEGER JIT
user: —JIT=1

user: \e—WRIT(1,10)JIT
user: 10\FORMT C5X%,15)
user: _CALL EXIT
user: - END

user: $0

user:

response: EDIT

Two carriage returns in succession cause the editor to
switch modes. Since we were in INPUT mode, we have switched
to EDIT mode. While in EDIT mode, typed lines are interpreted
as commands to the editor.

EXIT is a special subroutine, which when called, returns
program control to DOS which types "OK".

user: TOP
response: none

TOP is a command to the editor which moves a pointer
which points to lines of text in the text buffer. This
pointer is moved to point to a "null" line at the beginning
of the text buffer.

user: FIND 11
response: BOTTOM

The FIND command moves the pointer forward from the
1ine following the current line to the first line beginning
with the string "11". The pointer now points to a "null"
line after the last line of text in the buffer. What I meant
to do was type FIND 10, but mistyped it.

user: TOP
response: none

user: FIND 10, PRINT
response: 10 FORMT (5X,15)

The sequence of commands above means go back to the
top of the buffer, look for a line beginning with "10", then
print that line. The second user input shows stacking of
commands. Two commands have been typed on the same line
separated by a comma. The commands are not executed until
the entire line has been typed. The commands are then
executed left to right

user: RETYPE 10 FORMAT (5X,15)
response: none
user: PRINT

response: 10 FORMAT (5X,15)

RETYPE replaces the current line by the string that is
. the argument of the retype command .

user: FILE IDIOT
response: OK;

FILE is a command to write a file which contains the
text buffer of the editor as data. IDIOT is an alphanumeric
name chosen by the programmer. The file name must start
with a letter and may be 1-6 characters in length. The FILE
command returns control to DOS at its completion. "OK" is
then typed by DOS.

Chapter XV describes in detail all the commands of the
editor. This chapter should be used along with this one in

case the user wishes to manipulate the text buffer in a way
not described here.

user: FTN IDIOT
response: GO
WRIT(1,10)JIT
*%xk*x*xCH
CC, OK;

FTN is an external DOS command. The FTN core image file

of the directory CMDHCO is read into core and execution
begun. FTN compiles the source file IDIOT. FTN generates a
name which it uses for writing binary data by concatenating
"B+" onto the beginning of the filename and truncating the
resulting name to six characters. 1In this case, binary data
is written on file B+«IDIO.

When compilation errors are detected, the line causing
the error is typed followed by the error type. When FTN
reads the $0 line of the file IDIOT, FTN types "CC," for
compilation complete than returns control to DOS. DOS types
IIOK" .

Our FORTRAN program contains one error. By examining
the erroneous lines we see that WRITE was misspelled. We
must correct the source file and recompile it. See chapter IX
for a complete description of how to use FTN.

user: DELETE B<«IDIOT
response: OK;

One should always "erase" the old copy of the binary
file generated by a bad compilation before recompiling. This
is done with the DOS internal command DELETE. DELETE returns
the disk storage used by the files whose name is the argument
of DELETE. The filename is also removed from the file
directory.

user: ED IDIOT
response: GO
EDIT

We are preparing the file IDIOT to be modified.

user: LOCATE WRIT, PRINT
response: WRIT(1,10)JIT

LOCATE repositions the current line pointer to the next
line in the text buffer containing an occurrence of the
string that is its argument.

user: CHANGE /WRIT/WRITE/, PRINT
response: WRITE(1,10)JIT

The change command is used to replace one string of
characters in the current line by another. "/" is used in l
this case as the delimiter of the strings, but almost any
character will do.

user: FILE
response: OK;

The FILE command with no argument will write the text
out on the same filename as the text was read in on. FILE
returns us to DOS command level.

user: FTN IDIOT
response: GO
cc, OK;

Recompile IDIOT with binary output B«IDIO. This time
there are no errors.

user: CLRCOR
response: GO
OK;

CRLCOR is an external DOS command that puts zero in
jocations 20-64777 octal. This is the area of core in which
programs are normally loaded. This step should always be
done before loading

user: ILDR B<«IDIOT
GO
MR, OK;

LDR is another DOS external command. LDR is a program
that loads binary files into core. LDR loads the file B<«IDIO
 from the user's file directory. DOS automatically truncates
the name to six letters. When the loader detects a piece of
binary data equivalent to the $0 line of the FORTRAN source
program, the LDR types MR, meaning "more" or LC meaning
"]oading complete", then returns to command level DOS. The
loader automatically loads programs beginning at location
1000 octal with "links" beginning at 100 octal. Programs
are loaded in the extended addressing mode. See Chapter XIV
for a complete description of how to use the loader

user: ATTACH U
response: OK;

We must load a binary data file FTNLIB to complete our
joad. Since this file is used by all users, it is accessed
through the U directory, a directory which is used by all
users and belongs to no one user. We have "attached" to the
U directory in preparation for loading this file.

user: START FTNLIB
response: GO
LC, OK;

The DOS internal command START transfers control to the

location given as its first numerical argument. If no numeri-
cal argument is given, control is transferred to the location
Plus one of the places from which DOS was last entered. The
location in this particular case, is the place in the loader
to continue a normal load. The loader starts reading the
FTNLIB file but only loads those routines necessary. "LC" in-
dicates we now have a complete load.

user: CLOSE ALL
response: OK;

The loader leaves the file it has just read from in an
active state. CLOSE ALL closes out the file.

user: ATTACH TSDOSA
response: OK;

Return to our own directory.

user: START 63002
response: complete load map is typed.

Location 63002 octal is the place to begin execution of
the loader to generate a load map. The loader returns to
DOS command level when done.

user: SAVE *IDIOT 100 5000 1000
response: OK;

Generate a core image file named *IDIOT containing lo-
cations 100 to 5000 as data. Also save a vector of machine
initial conditions for restoration when the file is resumed.
The machine conditions are given beginning as the fourth
parameter of the SAVE Command. These are in order program
counter, A-register, B-register, index register, and keys.
In this particular case, the program counter initial condition
is set to 1000 octal; all other machine registers are left
to the value they were the last time control was returned to
DOS. 1In particular, the keys are set to indicate extended
mode, as the loader runs in extended mode and was the last
program to return to DOS. 1In this way, *IDIOT is saved to
run in the extended addressing mode, the mode it was loaded
in. The user may specify all machine registers explicitly
if he wishes.

The lower limit for the SAVE is always 100. The upper
limit is derived by looking at the number associated with
the word HIGH on the load map. This number is the highest
location in octal used by the programs that have been loaded.
fhe initial program counter is 1000 octal because the main

4-7

e

program was loaded beginning at location 1000.

user: RESUME *IDIOT
response: GO
10K;

RESUME is a DOS internal command that reads a core image
file into core, sets the machine registers from a part of the
file and begins execution.

The FORTRAN program now executes. It types out spaces
followed by a "1" then returns to DOS command level. DOS
types "OK". ‘

user: LISTF
response: UFD=TSDOSA
IDIOT
B-IDIO
*IDIOT
OK;

LISTF is an internal DOS command which lists the contents
of the file directory one is currently attached to.

user: CLOSE ALL

. response: OKj;
user: ATTACH
response: NOT FOUND

The above two commands are given before a user leaves
the console when his time is up. CLOSE ALL insures all
files are closed and ATTACH njeattaches" from your directory
leaving you attached to no directory. This prevents the
next user from accidently using your directory.

V. DOS SYSTEM

A. DOS File System

1. File Organization

The file system provides a mechanism whereby the user
may store all the information required before, during and
after operation with the system. The information required
is maintained at the user's fingertips, and protected from
interference whether intentional or otherwise.

Information on each disk is recorded in files, and these
files are composed of fixed length records which are recorded
chained together by pointers on the disk.

A file is simply an ordered linear array of words known
by a name. A file is given a name, say "alpha,; and one can
usefully speak of the ith word of alpha as "alph(i)." The
name is from 1 to 6 alphanumeric characters. The file system
has no notion of the contents of the file: It matters not
whether the file "alpha" contains symbolic, binary, or pro-
cedural information. In this sense, the file system is a
purely external file system.

The collection of files belonging to a user is organized
into a User-File-Directory (UFD). Each UFD is a file and
contains a four-word entry per user file (presently 62 files
max.), 3 words for name (6 characters), and 1 word for the
starting record address.

5

The collection of all UFD's on one disk is organized
into a file directory called the Master-File-Directory (MFD).
The MFD is structured in precisely the same way as is the
UFD. The MFD's are the only files known absolutely to the

system; all other files are known relatively by pointers
through file directories.

The files on a disk are recorded as chained strings of
fixed length records as shown schematically in Figure III.1.
Each record of the file has three words at the beginning which
function as follows: word one points to the successor record
(zero, if none), word two points to the predecessor record
(zero, if none), and word three is the count of the data
words contained in this record. The forward and backward

pointers are especially important because they allow easy
traversal of the file forward and backward while at the
same time providing a large measure of protection against
snow-balling disk errors.

N WORDS

N WORDS

P WORDS;

Figure III.1l

2. Structure and Allocation of Disk Records

Information on the disk is recorded in 432 word records.
Each disk pack (IBM-1316) has 203 cylinders of 10 tracks each,
and 4 records of 432 words are formatted per track. (Actually,
435 words could have been recorded with a gap of 363 bits; but
with 432 words, the intersector gap can be 460 bits allowing
for more software setup time.) The record address recoxrded

with each record is an encoding of sector, head, and cylinder
as follows:

RECADR = SECTOR + 4* (HEAD+10*CYL).

Since files are composed of chained records, the selection
of records can be left entirely to the file system. The

file system must select free records when a file is to be
written or extended, and the free records of a deleted file
must be returned for later re-use. For this purpose a Disk-
Record-Availability-Table (DSKRAT) is maintained with one
bit for each record on a disk; a "1" means the record is
available and a "0" means the record is in use. Since there
are 203*10%4=8120 records per disk, 8120/16=507.5 words are
required for the DSKRAT. The DSKRAT is recorded as a file
on the disk of length 512 words and its first record is on
cylinder zero, track zero, sector zero. All user file di-
rectories are allocated between records 0 and 117 octal.
Records 120 to 1177 octal are reserved for TSDOS core memory
storage. Records 1200 and up are allocated to regular DOS
files.

3. Internal File Structure

An ordinary file is a linear array of words whose con-
tent is independent of the file system. However, the rest
of DOS and the user may imply a certain format for a par-
ticular type of file. There are in fact four types of files
in wide usage on DOS as follows:

. card image

card image compressed
. relocatable binary

. saved memory image

= W

The Line Image is an array of 60 word blocks containing
119 ASCII characters representing a line. The Line Image com-
pressed file is similar except that blanks are compressed by the
relative-horizontal-tab (221) convention, and lines are terminated
by a new-line character (212). The relative-horizontal-tab con-
vention replaces consecutive blanks with a half-word "221" and
a half-word binary counter of the total number of blanks. The
Relocatable Binary file consists of blocks of object code pre-
ceded by a block word count (a count of zero serves as an end-of
-file mark). The Saved-Memory-Image format consists of a nine-
word header block followed by a direct transcription of a memory
image. The header block contains starting address (SA), ending
address (EA), program counter (PC), A-registers (AR), B-register
(BR), index-register (XR), status key word (KEYS), checksum of
file (CKSUM), and a spare word.

4. Multiple Disk Organization

DOS can handle up to four disk drives. Each disk pack
contains its own Master-File-Directory and DSKRAT. All
files in a user file directory reside on that disk and all

user files directories in the MFD reside on that disk.

After loading disk packs on the drives, the user should
have the paper tape DOS BOOTLOADER boot the operating system
from the master disk pack. The operating system is restored
from physical drives 0-3 depending on sense switches one and
two as follows

sense switch 1 sense switch 2 disk
down down 0
up down 1
down - up 2
up up 3

After boot loading the system, a user tells the system
how many disk drives are in use and specifies a logical-to-
physical ordering by means of the STARTUP command. Thus the
command

STARTUP 2 0 1

associates physical drive 2 with logical 0 (master), drive 0
with logical 1 (first alternative) and drive 1 with logical 2
(second alternative). This association determines the order
DOS searches MFD's in attempting to ATTACH to a directory
(e.g. ATTACH UTIL will attach to UTIL on logical device 0,
here physical 2. If there were no UTIL on that disk,

it would look to drive 0, then drive 1l). To override the
search order in the STARTUP command, supply the logical

drive desired as a numerical argument. Thus

ATTACH UTIL 2

will attach to UTIL on physical drive 1 in the above cir-
cumstances. If UTIL is not on that drive, no other drives
are searched and an error message is given.

External commands such as ED, LDR, and FTN which are
core image files, are resumed from the CMDHCO file directory
of logical drive 0. Thus only one copy of the system commands
must be stored on the set of disk packs, on the master pack.

If only the master disk pack is in use on physical
drive 0, the appropriate startup command (STARTUP 0) need
not be given when the user boot loads the system.

A user may have more packs than drives, in which case
he may wish to unmount one or more packs and mount others.
All packs may be unmounted. The sequences of commands is

CLOSE ALL
followed by the appropriate STARTUP command for the new con-
figuration of packs given before the disk pack or packs are
unmounted.

5. File System I/O

Although the file system can contain an indefinite
number of files, only eight may be active at any one time.
A file becomes active when you connect it to a UNIT represented
by the integers 1-8 which functions as a port to the system.
One file at a time can be assigned to each unit. At the same
time, the mode for processing the file is specified (read,
write, read and write). Files may be active on several
disks at once. The transfer of data to and from the file
through a unit is accomplished by READ and WRITE routines.
An existing file may be selectively overwritten or extended
but cannot be shortened except to delete the file from a ufd.

Many DOS commands refer implicitly to specific units,
e.g., in DAP assembly the command "INPUT" opens unit 1 for
the input file, "BINARY" opens unit 3 for the output of the
compiler (i.e., the object file), and if "LISTING" is re-
quested the listing file uses unit 2. Other commands, notably
"OPEN", allow the user to assign a file to the unit of his
choice. A user should not use unit 8, which is used exten-
sively by DOS for reading and writing of system files such
as DSKRAT or user file directories.

User programs may call on the file system to manipulate
files. These routines are described in detail under section
X.B.3 on DOS Interface Routines of Fortran Library Extensions.

B. DOS Core Usage

DOS is a core resident operating system. The DOS
BOOTLOADER paper tape restores the core image file *HDOS
from the DOS1l6 file directory into locations 67000 to 77776
octal. Locations 60200 to 66777 are used for eight DOS
buffers, allocated downward from 67777. One buffer is allo-
cated for each active unit. Normally, only one or two
buffers are used.

When a user is loading programs, the loader must be
resident. The loader occupies locations 57000 to 63777
during this time, leaving locations 1000 to 57000 for user
programs and common. If room is short, a special loader
HLDR will allow common to overlay the loader.

The machine language debuggers TRACE and DEBUG occupy
6400-64777 when they are invoked. If many files are open,
these programs may be wiped out by DOS buffers.

Nearly all other external commands use core starting at
location 100.

C. DOS Command Structure

There are two levels of communications between a console
user and DOS. The user can either communicate with the DOS
supervisor or with a program currently being run. In the
supervisor mode, all teletype input is interpreted as super-
visor commands. In the latter case, the teletype input is
read as data by the program and can be interpreted by the
program as desired. Under TSDOS, the one exception to this
is the CONTROL S or X - OFF character which is always inter-
preted by the supervisor as a QUIT character. This character
will immediately terminate the processing of any user program,
type QUIT on the user console, and place the user back into
supervisor mode. Under DOS if a user program gets in an in-
finite loop or halts the machine, the user may restart DOS
by starting execution from the push-button console at location
70,000 octal (See DDP 516 Users Guide for details on how to
operate the console). Upon completion of a user program or
an external command (e.g., FTN, ED, etc. which invokes a
- stored system program) the user is always returned to super-
visor. At this level the user communicates directly with DOS.

The DOS command language is simple in format. The user
types the command and any arguments on a single line. The
command and each argument is separated by at least one space,
and the final character for the command line is the carriage
return. When a user hits the carriage return, DOS analyzes
and executes the command. If there are any errors, DOS will
return an error message indicating the problem. Before hitting
the carriage return, the user can delete an entire line by
typing a question mark ("?"). The syntax for a DOS command
is:

command-name (name - 1) (name - 2) (par - 1) ... (par - 9)

The names are alpha-numeric strings beginning alpha but only
the first six characters are used. The command name is re-
quired but the other two names may be absent, in which case
they are taken to be six spaces. The parameters are octal
and if absent are taken as zero. The last six digits are
used for each parameter. Blank lines are ignored.

Following are the DOS commands. Elements in CAPITAL

LETTERS are command names. Elements in lower case immediately
following are arguments. Elements in square brackets|[] are
optional; elements within braces are alternatives of which
one must be chosen; and an elipsis ("...") indicates that

the preceding element may be repeated. In addition, the
letters which compose the abbreviation for each command are
underlined. A* indicates this is a TSDOS command only.

D. Internal Commands

ATTACH ufd password disk

ATTACH attaches the specified ufd if the passwords
match; ufd is the name of the user file directory. 1If
disk is blank, ufd is searched in order on logical drive
0, then 1, 2, and 3 depending on the number of drives
assigned by the STARTUP command. If disk is a number
0-3, the search order is overridden and only logical
disk disk is searched for ufd. When a user is not
attached to a directory, the user cannot use the file
system. For system user use, the universal password

may be used.

LISTF

LISTF types out the names of all the files which are
listed in the current directory, i.e., the user file
directory to which the user is currently attached.

OPEN name unit status

OPEN opens the specified unit (integer 1-8) and associates
it with the specified file name. It also sets the status
of the unit to indicate reading (status of 1), writing
(status of 2), or both (status of 3).)

CLOSE ... [name] [unitl] [unitz] .o [unitg]

CLOSE closes the named files and specified units. CLOSE
ALL closes all files and units.

ENPUT name

INPUT opens unit 1 to read a source program from the
file name. Is same as OPEN name 1 1.

LISTING name

LISTING opens unit 2 to write a listing file named name.
This file is entered in the current ufd as a file named

5-7

name. Is same as OPEN name 2 2. This command is used
to receive a listing file from DAP assemblies.

BINARY name

SAVE

BINARY opens unit 3 to write an object file named
name. This file is written in the current ufd. Is
same as OPEN name 3 2. Command is used for DAP assem-
blies.

name sa ea [pc] [a] [b] [x] [keys]

SAVE save core memory from sa (starting address) through
ea (ending address) as a file named name in the current
directory. Also saved with the same file are if speci-
fied pc (program counter), a (A-register), b (B-register),
X (X-register), and the keys. These values are used to
initialize the register settings when this file is
RESTORE'd or RESUME'd. If any of the optional parameters
are not specified, the register values saved are those
previously set in the DOS vector RVEC. RVEC is set

by the commands SAVE, RESTOR, RESUME, START and when
programs exit to DOS. RVEC can be examined by the PM
command .

RESTORE name

RESTORE restores a disk-resident file named name by
reading it into primary storage of the users segment
from sa to ea values saved with the file. It also
stores the saved values of the registers into the DOS
vector RVEC to be ready for a START command.

START [pc] [a] [b] [x] [keys]

START loads the specified register values from the
command line if specified or from the DOS vector RVEC
and starts execution at the current location of the pc
(program counter).

RESUME name [pc] [a] [d] [x] [keys]

RESUME is the equivalent of a RESTORE name and START.

The file name is read into the user segment of primary
storage and the registers are reset to the saved register
values or to the parameter values if typed.

DELETE name

DELETE frees the disk storage space used by the file

name and removes the specified name from the current
directory.

PM types out the contents of the DOS RVEC vector,
namely the starting address, ending address program
counter, A-reqg., B-reg., X-reg., and KEYS on the user
console. PM is a way to find the save parameters of
a file just restored.

*ASSIGN device console
ASSIGN assigns a device (i.e., DISPLAY, only device at

present time available for assignment) to a user console
if the device is currently unassigned (e.g., not being

used by another user). The console parameter need be
specified only if the command is given by the supervisor
console.

*SWITCH device

SWITCH logically sets program variables necessary to
turn ON or OFF a physical device (i.e., display).

COMINPUT {filename} {TTY} {CONTINUE}

COMINPUT allows users to prepare a list of commands with
the Editor, file it on the disk, and have DOS read
commands from this file rather than from the teletype.
The command COMINPUT "filename" causes DOS to take sub-
sequent commands from "filename." The last command in
file "filename" should be COMINPUT TTY, which tells

DOS to take subsequent commands from the teletype.
Example: using the Editor, a user creates a file PMLIST
which consists of the lines

PM

LISTF

COMINPUT TTY

When the user types
COMINP PMLIST

DOS types back

OK:; PM
P=num A=num B=num X=num K=num
OK; LISTF

list of user files typed out
OK; COMINP TTY
OK;

To have DOS type the results of the commands PM and
LISTF, the user can type one command to DOS instead of
two.

DOS reads commands from "filename" by opening unit six,
reading then executing one line at a time. When the
command COMINP TTY is encountered, DOS closes unit
six and takes subsequent commands from the teletype.

Several other actions besides COMINPUT TTY can cause
command input to be switched to the teletype. Any

DOS error message will cause this as well as CNTRL X-OFF,
the TSDOS "quit" character. In these two cases however,
the command input file is left open. A user may retype
the command that caused the error message then continue
reading from the command input file by typing

COMINPUT CONTINUE

Do not use the command CLOSE ALL in a command input
file. This will close the command input unit and cause
the message "file not open for reading."

COMINPUT affects only commands to DOS, not all teletype
input. Teletype input to subsystems such as the Editor
or the Binary Editor is not affected.

This command is useful for updating large programs which
consist of many files, use several library files or
require special loading procedures. For example,

suppose a user has a program consisting of three FORTRAN
source files MAIN, SUBl, and SUB2. This program requires
two libraries, GRALIB and FTNLIB. A user makes up the
following command input file DPROG

FTN MAIN
FTN SUB1
FTN SUB2
CLRCOR

LDR B+MAIN
START B+SUB1
START B+«+SUB2
ATTACH U
START GRALIB
START FTNLIB
ATTACH ufd

START 63002
CLOSE 1
COMINPUT TTY

A user may then make editing changes to his programs,
then COMINPUT DPROG causes his programs to be compiled,
loaded and load map to be printed out. The user can
now SAVE his program. The file DROG serves as documen-
tation of the source files that make up the program and
loading procedure for the program.

UPDATE

UPDATE writes onto the disk the current directory and
the physical device record availability table (RAT) if
there have been any changes to the files. It is not
necessary under ordinary circumstances to use this
command as DOS automatically does this when the direc-
tory or RAT is changed.

STARTUP diska [diskb] [diskc] [diskd]

The STARTUP command has been discussed in detail under
section A4 of the chapter, Multiple Disk Organization.
STARTUP initializes the configuration of disk drives
DOS sees. STARTUP should be used sparingly, only when
loading the DOS system at the beginning of the day or
when changing disk packs.

The parameters must be integers 0-3. STARTUP connects
physical disk diska as logical disk 0, physical disk
diskb as logical 1, physical disk dlSkC as logical 2
and physical disk dlskd as logical 3. The number of
parameters given indicate to DOS the number of logical
drives assigned to the system.

The STARTUP command need not be given if the user is
only using one disk on physical drive 0.

If DOS has been used after initial loading, the STARTUP
command must be preceeded by CLOSE ALL.

E. External Commands

External commands are actually system programs. When a
user types an external command the program by that name is
resumed from the CMDHCO file directory. External commands
have been grouped into General, Utility and I/0 commands.

1. General Commands

BASIC

BASIC invokes the Honeywell BASIC interpreter. See
the Honeywell BASIC manual for details.

CRIBBAGE
CRIBBAGE is a program that plays Cribbage with the user.
DAP [paraml] [param2]

DAP invokes the DAP assembler to assemble a source
program. DAP expects that input and output files have
already been opened with INPUT and BINARY commands,
respectively. DAP also leaves these files open when it
returns to DOS. For more details, see Chapter XIII.

DEBUG

DEBUG invokes the interactive debug package. DEBUG

is useful as a program debugging aid. DEBUG lets the
user dump core, make on-line in core modifications,
take break points, and utilize other debugging features.
For a detailed description of DEBUG see Chapter XVII,
Section A.

ED [name]

EDIT involves the interactive text editor. For a
description of editor commands and use of the editor,
see Chapter XV.

EDB[namel] [name2]
EDB invokes the interactive binary editor. EDB works
with input file namel and optional output file name2.
For a description of EDB see Chapter XVI.

FILED [name]

FILED invokes the interactive file-to-file text editor.
See Chapter XV for a description.

FTN name [paraml] [param2]
FTN invokes the FORTRAN compiler to compile a source

program. FTN compiles name with binary output files
B<name (truncated to six letters) and types lines with

errors along with error messages on the teletype.
Files are automatically opened and closed. For more
detail including options see Chapter IX.

HAMBUG

HAMBUG invokes an interactive debug package. HAMBUG
enables the user to utilize debugging features similar
to debug. For a detailed description of HAMBUG see
Chapter XVII, Section B.

HLDR

HLDR invokes a version of interactive loader to load
one or more object files. This loader loads COMMON
higher in memory than the normal interactive loader LDR
and must be used with caution. For a description of
the loader, see chapter XIV.

LDR name

LDR invokes the interactive loader to load one or more
object programs. For a description of the loader see
Chapter XIV.

TRACE

TRACE invokes an interactive debug package. Like
DEBUG and HAMBUG, TRACE enables the user to utilize a
powerful set of debugging features. For a detailed
description of TRACE see Chapter XVII, Section C.

XREF
XREF generates a cross reference index to symbols in

a DAP source file. This index is useful as an addendum
to DAP listing files. To use, type

user: INPUT "DAP source file"
response: OK,
user: LISTING name
response: OK
user: XREF
response: GO
OK,
user: CLOSE ALL

response: OK

2. Utility Commands

ALOOK name

BOOT

ALOOK displays source file name on the ARDS storage
display. Hitting any character on the ARDS keyboard
except Q will display the next page of text. When the
last page has been displayed, two characters will close
the file and return control to DOS. The character Q
will cause this action at the end of any page.

This command will load a new, initialized copy of the
DOS system. This command should be typed only after
the CLOSE ALL command has been typed. This command is
equivalent to loading the BOOTLOADER paper tape in the
reader and starting at location 1. Sense switches 1
and 2 control which disk DOS is loaded from as follows

sense switch 1 sense switch 2 disk

down down
up down
down up

up up

wNHO

CLRCOR

COoPY

CLRCOR zeros locations 20 to 64777 octal. CLRCOR takes
up locations 65000-65400 octal CLRCOR is used to zero
core memory before loading.

afile bfile
The command
COPY afile bfile

copies afile ‘to bfile. bfile does not have to exist
at the time of the copy; a new file will be generated
if necessary. To copy a file from one directory to
another, use the following procedure

user: COPY afile bfile 1000
response: GO

OK
user: ATTACH ufd password
response: OK
user: START

response: OK

This command is quite useful in moving files from one
disk to another, as the directories may be on different
disks.

CREATE ufd disk

This command adds user file directory ufd to the Master
File Directory on logical drive 0-3 if disk is blank,
ONE, TWO, or THREE respectively. The new ufd contains
no files and a blank password.

DLISTF

This command will display your file directory in alpha-

betical order on the IDI display. Files may be deleted

by pointing the light pen at the names of the files.

The names are removed from the main list and put in

the files-to-be-deleted list. Typing YES on the console
will delete those files in that list. To return to

DOS, toggle sense switch 1.

LOOK name [csize]

LOOK invokes a program that will display the source

file name on the display. If csize is omitted the file
will be displayed using medium size characters, optionally,
S, L, and X use small, large, and X-large characters,
respectfully. Hitting any character except Q will dis-
play the next display page full of text until the entire
file has been displayed. Two additional characters will
close the file and return the user to the supervisor

level. Q will close the file and return control to DOS.

PAUSE

PAUSE is a command useful for giving directions to users
from within a command input file. PAUSE simply waits
until a character is typed on the teletype, then returns
to DOS. Example:

Command input file contains
PAUSE RUN/LEADER/ON/PUNCH
PALAP 0 100 2000
COMINP TTY

PASSWORD [name]

PASSWORD changes the password of the current user file
directory to name. PASSWORD with no argument will change

the password to blank.

RENAME afile bfile

RENAME will change the name of afile to name bfile.

3. I/0 Commands

CARDIN name

DUPE

Cards may be read into the DDP-516 by means of the H632
card reader. A user should be familiar with the H632.
Place the cards in the card reader and ready it. Using
the DOS32 operating system on the H632, type the command
CARDIN. On the DDP516, type CARDIN name. Cards should
be read into file name on the 516. When done, the 516
must be restarted at 70000 octal and the CLOSE ALL
command given.

DUPE will duplicate a paper tape. To use:
1. Put the paper tape in the reader

2. "DUPE" Response- GO
LC (if loading
is complete)

3. Place the tape in the reader again, put sense switch
one up and push the start button. The response is
VC if verify is complete. If the response is not
VC, redo this step or go back to DOS and start
from the beginning with step 2.

4, Put sense switch one down and push start to punch
a tape.

Response- PC
5. Put the new tape in reader, put sense switch one up,
and push the start button to verify the new tape.

The response is VC if the verify is complete.

6. To punch another tape, put sense switch one down and
push the start button. The response should be PC.

LPOUT name

Listings may be generated on the H632 computer line
printer. A user first types the command LPOUT to the

DOS32 operating system of the H632. Then he types
LPOUT name on the 516. File name is sent to the line
printer. At the end, EOF READING message is given and
file unit 1 is left open.

PALAP 24000 sa ea [pc]| [ounit] [bootstrap]

PALAP provides a user with the ability to punch in
invisible format, self-loading paper tapes of a segment
of memory sa through ea,. For details see Chapter XIX,
Section E.

RDIBM

RDIBM reads the next file from magnetic tape unit 0

onto the file open or unit 2 for writing RDIBM asks

the user if he wants to read or ship the next file and
whether or not the user wants to include sequence numbers
in his file.

RDTAP

SKIP

WEOF

RDTAP does the same thing as RDIBM except reads in
Honeywell rather than IBM format for magnetic tapes.

SKIP is a command to skip any number of files forward
or backward on a magnetic tape. This command is used
in conjunction with RDTAP or RDIBM or WRTAP or WRIBM.
Example:

user: SKIP

response: SKIP X FILES

user: 5,

response: tape skips 5 files on the magnetic tape
OK

user: SKIP

response: SKIP X FILES

user: -5,

response: tape backs up five file marks
OK

If you have just read a file you have just read a file
mark. To back up to the beginning of the file you must
skip backwards 2 file marks.

Write one end-of-file mark on unit O.

WRIBM name
File name is opened on unit 1 and written in IBM format on
magnetic tape unit 0. Another file may be written once
WRIBM is in core by typing START filename.

WRTAP name

WRTAP does the same thing as WRIBM except in Honeywell
rather than IBM magnetic tape format.

VI. TSDOS SYSTEM

A. Introduction

The Time Shared Disk Operating System is an operating
system very similar to DOS which allows up to five users to
run simultaneously. TSDOS is run from 2 p.m. to 5 p.m.
daily, if there is demand for it.

Under TSDOS, all commands have the same name and format.
The file structure is identical and the user invokes the
same subroutines to communicate with the teletype, the disk,
the display and light pen. Other I-O devices are not available
to the user under TSDOS, but he may prepare a program which
uses these devices, save it on the disk, then later run the
program under DOS. The user actually has more memory available
for programming under TSDOS because the user sees an empty
32K of memory whereas under DOS, he must share this memory
with the operating system.

For a complete description of TSDOS, see DDP-516 TSDOS
REFERENCE MANUAL by M. Laurence Liebron.

B. User Operation Under TSDOS

To use this system a user signs up as usual on the sign
up sheet. Up to five people are allowed to sign up for the
same block of time. To run under TSDOS, a user goes to the
teletype room, which is the room in back of the air conditioner,
sits in front of one of the five teletypes and follows the
directions taped on the right side of the teletype. These
directions tell the user how to connect the teletype to the
TSDOS system. Do not use the 516 console teletype: it is
not available under TSDOS.

Teletypes under TSDOS operate in the full duplex mode.
That is, every character you type is read then echoed by
TSDOS. If you type a character and get no response, it
means your teletype input buffer is full and TSDOS or your
program is not ready to accept any more data. The character
you typed did not get read by TSDOS. After a while, try
typing the character again. If still no response, it means
your program is in a loop or TSDOS has crashed. To get out
of an infinite program loop type CNTRL X-OFF.

If a user program tries to execute a halt instruction,
TSDOS will return control to the supervisor and the message
"PROGRAM HALT AT LOCATION" will be typed out. If a user
program tries to execute an instruction that does not exist
or an I/0 instruction to a device not implemented under
TSDOS, the message "ILLEGAL INSTRUCTION AT LOCATION" is
typed.

To stop a runaway program or long LISTF, or long load
map type CNTRL X-OFF, that is, push the CNTRL and S key
simultaneously. Response is "QUIT" on teletype. You are
now talking to TSDOS. The command PM (for post mortum)
will type the contents of the program counter, A-reg.,
B-reg., X-reg., and KEYS on the user console. A PM after
CNTRL X-OFF is equivalent to stopping your program by turning
to the control panel and pushing the run switch to SI and
examining the registers.

Two users cannot be attached to the same directory at
once or have the same file open at once. So get in and out
of the U directory as fast as possible. If someone is using
the U directory when you want to use it, you will get "UFD
IN USE: error message. Wait a minute or two and try again.

A LISTF stops other users from running while names
are being typed out, so use LISTF sparingly.

To use the display and light pen under TSDOS, keep in
mind:

A. The display buffer is half the size under TSDOS
as under DOS. Extra information is simply lost and
does not cause DSP ERR 3.

B. Only one TSDOS user may use the display at once.
When done, type the command SWITCH DISPLAY OFF.

C. User may use both IDI displays at once and the
color display under TSDOS.

D. Use TSGLIB, not GRALIB. TSGLIB takes up more
space than GRALIB, so some programs may have diffi-
culty in loading. If you load your program with
TSGLIB, it will run under TSDOS or DOS equally well.

E. Under TSDOS, DSPBUF does not contain the users
display buffer. The buffer is in a special super-
visor area which the user cannot access.

All commands involving the ARDS, paper tape, magnetic
tape or the H632 are not available under TSDOS. 1In addition,
commands CREATE, DLISTF, PASSWORD, RENAME and XREF are not
available. The overlay feature and editor display feature
are not available. It is not possible to generate FTN
listing files under TSDOS.

VII. DDP516-H632 COUPLER

A. Introduction

The COUPLER is a Honeywell option that allows high-
speed transfer of data between the DDP516 memory and the
H632 memory. The H632 is a powerful Honeywell computer
located in the same room as the GOTS DDP516. See Honeywell
reference manuals for programming information and D0OS32
Users Guide for information on how to run programs. The
COUPLER transmits information about 100,000 16 bit words
per second. The COUPLER is used to send or receive information
which must use the H632 line printer or card reader. See
Chapter XIX for a description of how to do this. The
COUPLER is also used to allow two computer programs, one
in each machine, to communicate, and if requested run in
parallel. This procedure allows programs too large or too
slow for one machine to be run using both machines.

B. Functional Description

The COUPLER operates in a half-duplex mode. It is
connected to the DDP516 I/0 Bus or a DMC sub-channel. The
other end is connected to the IOP of the H632.

The COUPLER has a 16-bit data buffer register for storing
a 16 bit data word when data is being interchanged between
the two computers. The data may be packed (or unpacked)
into (from) the H632 memory, either one-half word to a
memory location or two-half words to a memory location.

Either computer can establish a data path and initiate
the transfer of data in either direction. The COUPLER is
a symmetrical device (slave/slave) and it works in a
first-come first-served basis. It can also be operated with
the use of software to work in a master/slave relationship
to their respective computers.

The data transfer is in asynchronous mode, on a request
response basis at a rate determined by the slower data
channel. Data transfers will continue until one of the com-
puters issues a STOP command.

A complete description of instructions for the coupler
can be found in Coupler Option Manual.

C. ©516-832 COUPLER PACKAGE

A number of programs have been developed for transmission
of binary and symbolic filesl over the GOTS-832 and TAG-832
couplers and for conversion of binary files from 516 to 832
format and vice-versa. Symbolic files are automatically con-
verted by the transmission program. (Note: Line lengths for
symbolic files are currently limited to 80 characters.) Sub-
routines for file transmission can be used for communication
between user programs on the 516 and the 832.

1. FILE TRANSMISSION PROGRAMS

a. TAG SYSTEM

516 Program (blnary) - FTRANS
832 Program (load module) - TAGFIL

TAG 516 operation - enter:
EX FTRANS
the program then asks for the following parameters:

e File Type - enter "S" for symbolic file; enter "B"
for binary file.

® Transmission Type - enter "S" to send file to the 832;
enter "R" to receive a file from the 832.

@ File Name - enter the name of the 516 file. (If a
binary file is to be sent to the 832, the first re-
cord address must be entered instead of the file name.

messages: "NORMAL END OF TRANSFER"
"LLINE OVER 80 CHARACTERS"

@ If a line in a symbolic file exceeds 80 characters,
the program is aborted.

1All files in the 516 and 832 are "binary files". "Symbolic

files" are a special subclass of files made up of lines of
characters. Typically, symbolic files are used by the editors
and are given as input to the compilers and assemblers. On
the H-832 and the GOTS 516 symbolic files are read and written
in "line mode" (see DOS manuals).

2In directory 1224.

3This program resides in COMDIR.

7-2

H-832 operation =~ enter:

TAGFIL

The program asks for the following parameters:

1. File Type - enter "S" or "B".

2, File Name

3. Transmission Type - enter "S" or "R".

Note: If "R" is specified and a file by the given name
already exists, the user is given the option of
terminating the program.

messages: "NORMAL END OF TRANSMISSION"

Note: A file was transmitted successfully only if both
computers indicate normal end of transmission.

GOTS SYSTEM

516 Programs4 - FSEND (516 to 832 transmission)
FRECV (832 to 516 transmission)
832 Program - GOTSFIL

516 operation -~ enter:
FSEND file name
or
FRECV file name

The programs will ask for the file type, that is "S" for

symbolic file and "B" for binary file. Be sure to follow this
parameter with a carriage return.

messages: "NORMAL END OF TRANSFER"
832 operation - for both sending and receiving, enter:

GOTSFIL

4 These load modules reside in the command directory.

5

This load module resides in COMDIR.

The program asks for the following parameters:
1. File Type - enter "S" or "B"
2. File Name

3. Transmission Type - enter "S" to send a:file to the
516; enter "R" to receive a file from the 516. If
"R" ig specified and a file by the given name already
exists, the user is given the option of terminating

the program.
messages: "NORMAL END OF TRANSMISSION"

Note: A file was transmitted successfully only if both
computers indicate normal end of transmission.

2. DATA TRANSMISSION SUBROUTINES

Subroutines can be called by 516 and by 832 programs to
transmit data over the coupler. The calls must be coordinated
so that when one computer sends data the other will receive
data. A program that calls a coupler routine on one computer
will wait until the program on the other computer calls a cou-
pler subroutine. After a successful transmission, both sub-
routines will return to their calling program. Note that if
the H-832 sends n 32-bit words, the 516 will receive 2n 16-bit
words. Similarly if n 16-bit words are sent from the 516 the
832 will receive n/2 32-bit words.

The user is responsible for any formating of words needed
by either machine. See section D for a discussion of data con-
version.

a. 832 SUBROUTINES - The FORTRAN library contains the cou-
pler subroutines CPXSN1 and CPXRC1l (for TAG 516) and
CPXSN2 and CPXRC2 (for GOTS 516).

® Sending to the 516
CALL CPXSN1(N,ARRAY, IRET)

N - data length (number of 32 bit words)
ARRAY - data
IRET - return code (see section E for a discus-

sion of codes).

Note: Use "CPXSN2" for GOTS 516.

® Receiving from the 832
CALL CPXRC1 (N,ARRAY,LIM,IRET)

N - on return N is the data length in 32 bit
words.

ARRAY - array that will contain the transmitted
data.

LIM - maximum number of words to be transmitted.

Transmission will be stopped after LIM
words are received.
IRET - see above.

Note: Use "CPXRC2" for GOTS 516.

b, TAG 516 SUBROUTINES - The file "S:CPLR" in directory
1224 contains the symbolic code for transmission.
The assembled version requires 176 (OCTAL) locations.

® To send data to 832 -
Entry Point - "CPSX"
A register - address of a message
B register - number of 16 bit words in the
message (must be even).

® To receive data from the 832

Entry Point - "CPRX"
A register (on entry) -~ buffer address
(on return) - message length (i.e.

number 16 bit words).
Note: No limit is set on the message length.

NOTE: If SSl is on, transmission will be via the I/O
Bus rather than the DMC.

C. GOTS 516 SUBROUTINES - The 'COULIB' in the U directory
contains the coupler subroutines "CPRCV" and "CPSEND".

CALL CPSEND(ARRAY,N)
ARRAY - an array containing the N words to be trans-
mitted.
N - number of 16-bit words to be transmitted (N
must be even).
CALL CPRCV (ARRAY,N)

ARRAY - On return, this contains the data transmitted.

N - On return, this contains a count of the
number of 16-bit words that were transmitted.

Note: If SS2 is on, transmission will be via the
1/0 Bus rather than the DMC.

DATA CONVERSION - FORTRAN integers on the H-832 end
on bit 30, while 516 integers end on bit 15. Thus
a user must shift the 516 integers 1 bit left before
use on the 832 and he must shift the 832 integer 1
bit right before use on the 516. Furthermore, an
integer on the 832 takes up 32 bits while it only
takes up 16 bits on the 516. If the 516 word is
negative, it must be preceded by a word of all 1's
to make an 832 word; if the 516 word is positive it
must be preceded by a word of all O0's to make an
832 word.

Characters in the DDP-516 have bit 0 of each char-
acter on whereas in the H-832 the bit is off.

Floating point number take up 32 bits in both ma-
chines, but their representations are quite different.
Two H-832 subroutines "FCONV" and "FCONX" will con-
vert from 516 to 832 representation and from 832 to
516 representation respectively. These subroutines
are in the FORTRAN library on the H-832. They are
used as follows:

e CALL FCONV (A,B)
A - DDP-516 flt. pt. number
B - On return, the number converted to H-832
representation.

e CALL FCONX (A,B,IRET)
A - H-832 flt. pt. number
B - On return the number converted to DDP-516
representation.

IRET = 0 normal conversion = 1 H-832 number
was too large
If the H-832 number is too small, a
value of zero is returned in B.

NOTE: Some accuracy is lost in this conversion
process.

COUPLER SUBROUTINE RETURN CODES

On every call, the coupler transmits two messages

7-6

(M1 and M2). Ml is 32 bits long and contains the

length of the data message M2. One 32 bit status

word is constructed from the status of the two

transmissions.

- Bits 0-7 status of M2 transmission

- Bits 16-23 status of Ml transmission

- Bits 8-11 and 24-27 contain a code that indicates
in what portion of the channel program an error
was detected.

Codes: 0 - normal termination of chan-
nel program.

1l - incorrect initialization in-
terrupt from 516 (16 sending).
2 - incorrect signal for termina-

tion of transmission from
516. (16 sending).

3 - same as 1 (32 sending).

4 - same as 2 (32 sending).

- All other bits are zero.

Refer to the attached excerpt from the coupler manual
to interpert bits 0-7 and 16-23 of the status word.

Series 32 Status Bits

Status Bits

No Power on 16 CPU

Normal (Output Mode)
Normal (Input Mode)

16 Requesting Service

16 Acknowledge 32 Request

= oo
H XX X Xw

Error
16 Ended XFER (OCP Disable)
Normal XFER END (IOT Stop)

Last Word (I/0) (Bits 0-15)
Last Word (I/0) (Bits 16-31)

H<4O\HP4C4Q><N}HCDxl~
haHquao<4u1xr4><>:xlv

Examples: (The following are 32 bit hex codes that were
actually generated by the coupler).

€F00CF00 - normal termination of 32 to 16
transmission
8F008F00 - normal termination of 16 to 32

transmission.

8E008F00 - 832 terminated transmission (from
516) because range specified in call
to coupler subroutine was exceeded.
All data was transmitted correctly.
(Note: this bit pattern is not
"legal" according to coupler manual).

C940CF00 - 516 terminated transmission from
832 because range specified in call
to 516 coupler subroutine was ex-
ceeded. All data was transmitted
correctly. Although this indicates
that lost word sent was bits 0-15
of an 832 word, last bits received
by 516 were 16-31 of an 832 word.

8B208F00 - transmission from 516 to 832 was
probably normal. This status means
that the signal generated by the
516 upon completion of transmission
(oCcP DISABLE) reached the 832 be-
fore the 832 issued an IOT STOP.

3. OPERATOR INSTRUCTIONS FOR 516-832 COUPLER USERS

a'

bo

Before using the coupler programs, make sure that both
computers are powered-up.

It does not matter which computer begins execution of
the coupler routing first.

If a coupler program does not terminate normally, you
must push 'SYSTEM', 'CP', 'START' (in that order) on
the H-832 and 'MASTER CLEAR' the DDP-516. It does not
matter in what order these two corrective operations
are performed.

If the coupler does not seem to work properly, try the
corrective procedure outlined in 3. above and restart
the coupler programs.

NOTE: Both DDP-516 couplers use channel 6 of IOP 1.

4.

BINARY FILE CONVERSION PROGRAMS

"CNV32" and "CNV16" are two H-832 Programs which convert
a binary file from 832 to 516 format and from 516 to 832 format
respectively. These programs require, as input, two files call-
ed "pattern files". One describes the format of the input data
file and the other describes the format of the output file (i.e.
the file to be created by the program).

Thus, "ICF" and "ICSF" are equivalent. Simi-

larly "ISF" and "IWF" are equivalent.
Output Codes

- integer

- floating point number

- character

- number (one byte)

insert "fill" character (see note below)
- insert a word of zeros

-.insert a blank (one byte)

- insert a zero (one byte)

- end of pattern (mandatory)

HNDsEunZ0HdH
1

Note: The "fill" character is a blank if the last
byte-command was "C" or "B" and a zero if
it was "N" or "Z". 1Initially, the "fill"

character is a blank.
Writing Patterns

Integers and parentheses may be used to specify

repetition of single letter codes or sub-patterns.
For example: "13FB2(N2(XI))T" and "IFFFBNZIZINZIZIT"

are equivalent.
Rules

Patterns must end with a "T".

Pattern files must have eight characters (count-

ing digits and parentheses) per line. The
last line may have fewer than eight.

Input and output codes (other than skip char-

acters and fill characters - S,W,B,Z) must

match. The includes terminal characters "T".

Examples:

input pattern output pattern legal?

IFCBNT WZIBFCNWT Yes
INFBT IZFBT no

The patterns may be considered to define a

block. An input file may consist of many such
blocks, but no partial blocks at the end of a

file are permitted.

7-9

|
|'
|

PROGRAM OPERATION
To start the file conversion program, type:

CNV16

or CNV32

at the command level under DOS-32.
The Program will ask the following parameters:

e INPUT PATTERN FILE NAME
e OUTPUT PATTERN FILE NAME
® INPUT FILE NAME

e OUTPUT FILE NAME

PATTERN SPECIFICATION

l.

Terminology

® Data files are made up of words. An 832 data

file has 32-bit words, a 516 data file has 16-bit
words. Both, of course, are stored on the 832
disk, with two 516 words to one 32-bit word on the
disk.

Words contain four bytes (832) or two bytes (516)

There are four data types: characters, one-byte
numbers, integers, and floating point numbers.

characters and one byte numbers take up one byte
in a file.

integers take up one word in a file (i.e. 16 bits
in a 516 file and 32 bits in an 832 file).

floating point numbers take up one word in an 832
file and two words in a 516 file. (Note that a
516 file could contain 2 characters, a floating
pt. number and an integer - in that order. This
would be stored as two 32-bit words on the disk).

Input Codes

- integer

- floating point number

- character

number (one byte)

- skip next byte

- skip next word

- end of pattern (mandatory)

HsEnhz0O9"dH
I

Note: When I, F or W are specified, the next full
word will be picked up.

7-10

e. An expanded pattern (i.e. after removal of in-
tegers and parentheses) may not exceed 2000
characters.

5. MESSAGES

Self-explanatory messages are generated if any of
the rules (section IV B.5) are violated. If a rule
is violated, the program will be aborted. The
message "NORMAL TERMINATION" is printed on the
teletype after a successful run.

USE OF TAG 516-H832 COUPLER AND THE VECTOR GENERAL DISPLAYS

Due to certain hardware problems, the 516-832 coupler sub-
routines 'CPSX' and 'CPRX' will not work correctly while the
VECTOR GENERAL displays are running. This memo describes the
program modifications required to the DDP-516 coupler sub-
routines so they can be used in conjunction with the graphics
language AGL. Basically, the coupler subroutines must ensure
the following order of events:

1. Call to coupler subroutine on 516.
2. Request 832 service, receive 832 enable.

3. Scopes start, run through entire display file and then
stop.

4, Disable Vector General interrupts.
5. Start coupler and run to completion.
6. Disable coupler.

7. Enable Vector General interrupts and start scopes up
again.

PROGRAM MODIFICATION

The subroutines 'VGWT' and 'VGl' must be added. Certain
constants like 'DRUN' in sector 20 refer to the program AGL.

SUBROUTINE 'VGWT'

DRUN EQU 120777

DDD DAC DRUN 1 TIF RUN
* %

*%
**WAIT FOR SCOPE TO START AND STOP

7-11

*k
VGWT DAC *x

INA '1451

JMP *-1

ALR 3 GET BIT 4 IN SIGN POSITION
SPL

JMP VGW2 JUMP OUT IF BIT IS SET
LDA* pDD

SNZ 1 IF RUNNING

JMP *-2

LDA* DDD

SZE O WHEN HALTED

JMP *-2

SUBROUTING 'VGWT' (CONTINUED)

JMP* VGWT
** IF SWITCH 4 IS SET THEN START COUPLER WHEN SCOPES START
VGW2 LDA* DDD

SZE I IF RUNNING
JMP *-2

LDA* DDD O IF HALTED
SNZ

JMP *-2

JMP* VGWT

SUBROUTINE VGl

IMSK EQU '20776
MSKE DAC IMSK
MCR EQU '22775
MC DAC MCR MODE CONTROL WORD
OCT 40005 LOAD MODE CONTROL WORD
HLTD OCT 1 MCR ITSELF
OCT 130000 HALT DISPLAY
HLTY DAC HLTD-1

HLT2 DAC HLTD+1
* *

* %

VGl DAC * %
STA HLTD SAVE THE MCR
INA '1451

JMP *-1

ALR 3 GET SWITCH 4

SPL

JMP* VGl IGNORE HALTING PROCEDURE IF COUPLER AND SCOPES
*x START TOGETHER

LDA ='1000 CLEAR AND HALT DISPLAY

OTA '0153

JMP *-1

* %
* %

* %
* %

LDA
STA
LDA
STA
LDA
OTA
JMP
LDX
IRS
JMP
LDA
OTA
JMP
JMP *

HLT1 SET UP DMC

'26

HLT?2

127

='176400 START THE DISPLAY
'0153

*-1

=-10

0

*~]1 WAIT FOR DISPLAY TO FINISH
='1000 VG IS AGAIN TURNED OFF, TO ENSURE
'0153

*-1

VGl RETURN

WE SET THE MCR TO EITHER DISALLOW ALL INTERRUPTS OR ALLOW

THEM

AGAIN AFTER TRANSMISSION

The following changes must be made to the CPSN subroutine:

1. Replace the instruction:

CPS2 OCP 'l1l175 SET COUPLER FOR INPUT TO 32 with:

JsT
LDA
JST
oCP

VGWT WAIT FOR VG TO START AND STOP.
=1

VGL DISABLE VG INTERRUPTS

'1175 SET COUPLER FOR INPUT TO 32

and replace:

cps?

with:

CPS9

ocp 'l1775 DISABLE COUPLER

ocp '1775 DISABLE COUPLER

LDA* MC

JST VGl RESTART SCOPES
LDA* MSKI RESET MASK
SMK '0020

The corresponding changes must be made in the subroutine

'CPRC'

to the instructions labelled 'CPR2' and 'CPR9'.

VIII. GRAPHICAL CAPABILITIES

A. Refreshing Displays With Light Pen

The display hardware consists of a display generator
and four separate display consoles. Three display consoles
(supplied by Information Displays, Inc.) are high resolution
and monochromatic. They are equipped with a light pen, and
can be driven at full speed by the display generator. One
display console (supplied by International Telephone and
Telegraph) is of lower resolution, has three primary colors
(red, green, and blue) but no character capability.

The software to run this equipment is described in detail
in Graphics Reference Manual.

To run graphics programs, load GRALIB (TSGLIB under
TSDOS) before loading FTNLIB.

B. Tablet

A Sylvania Data Tablet is available for graphical input.
The following routines are available for the tablet. They
are part of GRALIB. A tracking cross on any/or all of the
displays which will follow the pen on the data tablet is
displayed by

A, Call TCMODE (Il1, I2, I3)

Where: 1Il1, I2, I3 = 2 will put the cross on
console 1, 2, 3 respectively

Il1, I2, I3 = 1 will remove the cross from console
1, 2, 3 respectively

Il, I2, I3 = 0 will leave the condition on console
1, 2, 3 unchanged

E.G., to put the cross on console 1 & 3 and not on
2 - call TCMODE (2, 1, 2)

To now take it off console 3 and put it on 2 -
call TCMODE (0, 2, 1)

TCMODE will put commands in the display buffer, and

calling CLRBUF will remove the cross. It is
necessary to call TCMODE again after calling CLRBUF
if you want the cross back.

B. Call TCREAD (IX, IY, 132)

Reads the present data tablet pen position and
returns it to the user.

IX, IY will be the X, Y location of the pen on the
tablet (0-1023) IZ will be the height of the pen
above the surface;

on surface point pushed down
just resting on surface
somewhat above surface

way above surface.

B W N

C. Call TABRD (IX, IY, I1Z)

Arguments are the same as for TCREAD. This routine
reads the data tablet pen position on a demand basis.
The values returned will be those of the pen when
called. The values returned from TCREAD come the
last time the system interrogated the tablet, which
occurs at the end of every display buffer refresh
cycle.

C. Calcomp Plotter

1. Hardware Description

The plotter is a 36 1/2 inch drum, incremental calcomp
plotter, model 1136. Three pens are available.

In addition to pen up, pen down; plotting is down
by use of the eight possible incremental vectors
shown below;

} 0.01 inch

The assumed direction are as diagrammed below;

=20

The plotter is assigned device number '047, and
commands are output to it by means of at OTA '047.

Software Description

To run Calcomp programs, load CCPLIB before FTNLIB.
The subroutines available are described below.
1
1. PLTINT (IPEN) IPEN = 2 for pen to start with
3
This routine initializes the plotting system
and establishes the origin at the present pen
position. PLTINT should be called before any
other plotter routines.

2. PLOT (X, Y, *IPEN)

X, Y are the coordinates of the terminal position
to which the pen is moved, in inches from the
current reference point (origin). An origin may
be established anywhere (on or off) the plotting
surface as explained below for negative IPEN
values.

IPEN

2; the pen is down during movement
(visible 1line)
3; the pen is up during movement
-2, -3; a new origin is defined at the
terminal position after the move-
ment is completed as if IPEN were
positive. The logical X, Y co-
ordinates of the new pen position
are set equal to zero, so that
that position is the reference
point for succeeding pen movements.
+12, *13; X and Y are scaled and offset
according to the values set
up in a call to offset (explained
below) by the equations.

IPEN
IPEN

IPEN

Xl
Yl

(X=Xmin) /XFAC
(Y-Ymin) /YFAC

The movement is then made as
if IPEN were +2 or 3.

3. FACTOR (FACT)

The factor subroutine enables the user to enlarge
or reduce the size of the entire plot by changing

the effective number of plotter steps per inch
of page coordinates.

FACT is the ratio of the new plot size to the
normal plot size. For example, if FACT = 2.0,
all pen movements will be twice their normal
size. When fact returns to 1.0 all plotting
returns to normal size.

WHERE (X, Y, FACT)

This subroutine returns the current pen-position
coordinates and the scaling factor.

X, Y are locations that will be filled with the
current pen position coordinates resulting from
the last call to plot (which may have been
called by one of the system routines).

Fact is filled with the current plot scaling
factor (the value supplied by a call to factor,
or a 1.0).

OFFSET (XMIN, XFAC, YMIN, YFAC)

This routine supplies the system with values to
be used with calls to plot where IPEN is 12 or
13 as explained under plot. Essentially, this
performs user defined scaling and translation.

NEWPEN (N)

Cause PEN N (where N = 1 to 3) to become the
current pen.

SYMBOL (X, Y, HGHT, IBCD, THTA, NS)

This subroutine produces plot annotation at any
angle and practically any size. There are two
symbol call formats:

(1) The standard call to draw text;
(2) The special call to draw special centered
(and some not centered) symbols

Refer to Table 1 for legal characters and the
special characters.

TABLE 1

A. LEGAL CHARACTERS & THEIR 8-BIT OCTAL CODE

CHAR. CODE CHAR. CODE
@ 300 SPACE 240
A 301 ! 241
B 302 " 242
C 303 # 243
D 304 $ 244
E 305 % 245
F 306 & 246
G 307 | 247
H 310 (250
I 311) 251
J 312 * 252
K 313 + 253
L 314 , 254
M 315 - 255
N 316 O 256
0 317 / 257
P 320 0 260
Q 321 1 261
R 322 2 262
S 323 3 263
T 324 4 264
U 325 5 265
\% 326 6 266
W 327 7 267
X 330 8 270
Y 331 9 271
z 332 : 272
L 333 ; 273
N\ 334 < 274
] 335 = 275
4 336 > 276
« 337 ? 277

B. SPECIAL SYMBOLS AND THEIR DECIMAL EQUIVALENT

CENTERED

>
NNV WNKFO

NOT CENTERED

16
17
18
19
20
21
22
23
24

IAN+=H== |V ¢ Il ~—

STANDARD CALL - SYMBOL (X, Y, HGHT, IBCD,

THTA, NS)

X, Y coordinates in inches of the lower
left-hand corner (before rotation) of
the first character to be drawn. The
pen is up during movement to this point.
If X and/or Y is zero the last value
calculated will be used. To use an
actual zero for coordinates, use 0.001l.

HGHT is the height in inches of the
characters to be plotted. For best
results it should be a multiple of
0.07, but other values are acceptable.
The width of a character, including
spacing, is normally the same as the
height.

IBCD is the array (or single variable)
containing the characters to be plotted,
two per word, set up in a Hollerith
statement or by A-format. If NS is 1,
the single character must be left jus-
tified. If one character, right justi-
fied, is to be drawn, NS = 0 will do it.

THTA is the angle in degrees, at which
the annotation is to be plotted (0 =
parallel to the X-axis).

NS is the number of characters to be
plotted.

SPECIAL CALL - SYMBOL (X, Y, HGHT, INT,
THTA, NS)

X, Y, HGHT, THTA are the same as in the
standard call. If the symbol is one
that is centered, (INT. LE.15) then

X, Y are the geometric center of the
symbol. INT is the number (0-24) of
the symbol to be plotted (see table).
For INT between 0 and 15 the symbol is
centered.

NS = -1 to have the pen up during move-
ment to X, Y
= -2 to have the pen down during
movement to X, Y

NUMBER (X, Y, HGHT, FPN, THTA, NDEC)

This routine is a pre-processor to the symbol
routine. It converts a real variable to the
appropriate string of characters so that it
may be plotted by symbol in a FORTRAN F-type
format.

X, Y, HGHT, THTA are as explained under the
description of symbol.

FPN is the location of the number to be plotted.
NDEC is the number of decimal digits to be drawn
(maximum of 7). A (-1) value will suppress the

decimal point.

SCALE (X, S, N, K)

This routine examines the data values in an
array to determine a starting value, either
minimum or maximum, and a scaling factor,
positive or negative, such that:

(1) The scale annotation drawn by axis at each
division will properly represent the range
of data values.

(2) The data points when plotted by line will
fit in a given plotting area.

These two values will be stored at the end of
the array.

The scaling factor that is computed represents
the number of data units per inch of axis, but
adjusted so that it is always an interval of

1, 2, 4, 5, or 8 x 10N (where N is an exponent
consistent with the original unadjusted scaling
factor).

The starting value (which will appear as the
first annotation on the axis) is computed as
some multiple of the scaling factor which is
equal to or outside the limits of the data in
the array.

X is the array of the data points
S is the length of the axis to which the data is
to be scaled

10.

11.

N is the number of data points. The array
must be dimensioned at least two greater than
N

K is an integer representing the repeat cycle of
a mixed array (normally 1)

The minimum value and scale factor will be
stored in X(N*K+1l) and X(N*K+K+1l) respectively.

LINE (X, ¥, N, K, J, L)

This routine produces a line plot of the pairs
of data values in the two arrays X, Y. The
data points may be represented by centered
symbols and/or connecting lines between points.

The minimum values and scaling factors must be
supplied in the two arrays as described in scale.

is the array of ordinate values

is the array of abcissa values

is the number of points in the array

is the repeat cycle (normally 1)

is a number giving the following options

ORZ KM
'_l
0

0 line plot

1l line plot with symbol at every point
2 line plot with symbol at every other
point

-1 symbol at every point, no line

-2 symbol at every other point, no line

aq g9

L is the number of the symbol to be used (0-24)
as given under the special characters in
Table 1. '

AXIS (X, ¥, IBCD, N, SIZE, THTA, XMIN, DX)

This routine draws an axis for a graph, with a
variable starting point, labeling either side,
variable size, variable angle of inclination
and variable scaling. When both an X and Y
axis are required, this routine must be called
twice.

X, Y are the coordinates of the starting point
of the axis line. The axis should be at
least one-half inch from any side to allow

12.

13.

14.

15.

space for scale annotation and title.

IBCD is the alpha-numeric title to be put with
axis.

N is the number of characters in the title.
Positive N puts the title on the counter-
clockwise side of the axis. Negative N puts
the title on the clockwise side of the axis.

SIZE is the length of the axis to be drawn. It
should be a multiple of 10.0/DV.

THTA is the angle of the axis measure counter-
clockwise from the axis.

XMIN is the value of the variable at the first
point of the axis (normally defined by scale)

DX is the difference between the second and

first values of the variable along the axis
(normally defined by scale)

PCIRCL (X, ¥, R)

A circle is drawn with radius R and center X, Y.
PBRIT (I)

This subroutine conditions drawing. I = 0 sets
all plotting to invisible. I = 1 sets all
plotting to visible. PLTINT sets plotting to
visible.

PSTRCT (I)

This subroutine conditions drawing of lines.

I = 1 indicates solid; I = 2 indicates dotted;
I = 3 indicates dashed and I = 4 indicates
dash-dot. PLTINT sets drawing to solid.

PCGLOB (A, B, C)

This subroutine specifies letter conditions.

A specifies aspect ratio, B specifies spacing
ratio, and C specifies angle of italilization.
PLTINT sets A, B, and C to 1, 1, and 0 respective-

ly.

8-10

l16. ESYMB (X, Y, HGHT, IBCD, THETA, NS)

Has same action as SYMBOL, described above,
except that character codes are interpreted as
the IDI display character set. See Graphics
Reference Manual for these characters and their
codes.

D. ARDS Storage Display

A Computer Displays Advanced Remote Display Station
model 100A is available for graphical output. This storage
display may write characters at the rate of 100 characters
per second. Lines are drawn in a special graphics mode by
sending groups of characters.

The software to run the ARDS is described in The Basic
Software System for ARDS and The Graph Plotting System for ARDS.

To run ARDS programs, load NARDLIB before FTNLIB.

E. Real Time Clock

CALL SETCLK (TIME)

TIME is a real variable representing the time in hours

to which the user would like to set the clock. Normally,
this would be called with TIME = 0.0 at the point where
the user wants to start keeping time. It should be

called at least once before calling CLOCK, since the clock
routine may have random numbers in it to begin.

CALL CLOCK (TIME)

TIME is a real variable representing the time in hours,
as updated by the real time clock. Again, to insure a
clean reference point, SETCLK(T) should be called at
least once before calling CLOCK. Calling SETCLK
succeeding times will reset the clock to the argument
and thus wipe out the previous reference point.

—_—e

IX, FORTRAN

A. Introduction

A new version of the FORTRAN compiler has been installed
in the DOS system. This memo tells the user how to run the
compiler, what new features have been added, extensions to
the FORTRAN library, and what bugs the compiler still has.

For information on how to use FORTRAN programs see the FORTRAN
manual for DDP computers.

B. How to Compile a Program

l. Normal Compilation

Assume you have a FORTRAN source program on file TEST
in your directory. To compile the program make sure all
units are closed, then type:

user: FPTN TEST
response: GO
CC, OK

FTN will read source statements from file TEST and
write binary object onto file B«TEST. FTN generates the name
it will use for writing binary data by concatenating "B<"
to the beginning of the filename and truncating the resulting
name to six characters. When FTN detects errors, the line
causing the error is typed followed by the error type. When
FTN reads the $0 line of the file TEST, FTN types "CC," for
compilation complete then returns control to DOS. If the
file TEST contains many FORTRAN subroutines, each subroutine
should have a "$1" line after the "END" line with a "$0"
line following the last subroutine. FTN will type "CC",
following the compilation of each subroutine.

2, Options

a. In addition to compiling, generate a listing file
with error messages; no errors on teletype.
This option is useful if a user has a large num-
ber of errors in his program. The user can
quickly scan the listing file on the display
using the LOOK command. FTN will write the
listing file onto a name generated by concatenating
the letters "IL+" onto the beginning of the

filename and truncating the name to six
characters. To invoke this option type:

user: FTN filename 1000 777
response: GO
CC, OK

b. In addition to compiling, generate a listing
file (with errors) which also contains the
symbolic assembly language compilation of each
statement. This option is useful for debugging
programs at the machine language level. To
invoke this option, type:

user: FTN filename 1000 40777
response: GO
CC, OK

C. New Features

1. Improved FORTRAN Input-Output

The following devices are available through FORTRAN
READ and WRITE statements:

device #
typewriter 1
paper tape 2
IDI display 3
disk 31 to 38
magnetic tape 5

Use of paper tape and magnetic tape is strongly discouraged,
as these devices are not available under the time sharing
system.

FORTRAN teletype input has been improved. If a user
makes an error, the input line may be modified by the kill
character "?" or the erase character ". The "?" character
will erase the entire input line up to the "?". Typing the "
character will cause the preceding letter to be deleted from
the line.

Formatted teletype output has been improved. An im-
bedded 1H$ in a format statement will print a $; if 1HS is
at the end of the format statement, it will suppress a new
line before the next write statement. "1H1" at the beginning
of a write statement only prints a 1 in column 1 on the
teletype. Simarilarly for 1H+, 1lH_,,, and 1HO.

Formatted input data from any device may be separated
by a comma, with a comma also following the last item on a
particular line. An input of 0 may be implied by two
successive commas.

Example

READ(1,10)I,J,K,L
10 FORMAT (415)
A teletype line of

1,2,3,,

read by the above read statement will put 1 into I, 2 into J,
3 into K and 0 into L.

2. FORTRAN Input-Output to Disk

A user may prepare a data file to be read by the
FORTRAN READ or WRITE statement. The user can do this by
typing the data in using the editor (see Chapter II for an
example) or by preparing cards or paper tape as a user would
do when preparing a program for the DDP-516.

To read this data with a FORTRAN program, a user must
call subroutine SEARCH to open the file for reading on a unit
of the file system. The user then may read the data with a
formatted READ statement using FORTRAN device numbers 31-38.
When the user is done reading, he should call subroutine
SEARCH to close the unit. Device numbers 31-38 correspond to
units 1-8.

Example

CALL SEARCH(1l,6HTESTFL,1l)
DO 200 I1=1,10
READ(31,10)I,J,K,L
WRITE(1,10)I1,J,K,L

200 CONTINUE
CALL SEARCH(4,0,1)

10 FORMAT (41I5)

This program fragment would read ten lines from file TESTFL
typing each line on the teletype. The file of course, is
expected to contain 10 lines of 4 integers each.

To write data on the disk, the user must call subroutine
SEARCH to open the file for writing on a unit of the file
system. The user may then write data with a formatted WRITE
statement using fortran device number 32. When the user is
done writing, he should call subroutine SEARCH to close the

unit. Example:

CALL SEARCH(2,6HOUTPUT,2)

I=1

J=2

K=3

L=4

WRITE(32,10)1,J,K,L

I=10

J=20

K=30

L=40

WRITE(32,10)I,J,K,L

CALL SEARCH(4,0,2)
10 FORMAT (415)

The above program fragment will write two lines on file OUTPUT.
They will be

1 2 3 4
10 20 30 40

This file may be examined using the editor or examined on the
display using the LOOK command. For more information on sub-
routine SEARCH see X.B.3. Lines in either input or output mode
are a maximum of 119 characters.

The FORTRAN language does not specify what action occurs
if an end-of-file is encountered during reading. If the user
expects to encounter an end-of-file on disk, he should call
either SETEOF (O) or SETEOF(l). CALL SETEOF (0O) sets the pro-
cessing of disk file end-of-file to normal. If end-of-file is
encountered, EOF READING is typed followed by return of control
to DOS. CALL SETEOF (1) sets processing of disk file end-of-file
to ignore mode. In this mode, if end-of-file is encountered,

a blank line is returned as the line read. The user must check
after each READ statement if end-of-file was encountered by
function IEOF. I=IEOF (DEVICE) returns value 1 if DEVICE (range
37-37) has just encountered end-of-file, otherwise IEOF returns
0.

Formatted file output has been improved as for teletype.
An imbedded 1H$ in a format statement will print $; if 1HS is
at the end of the format statement, it will suppress a new line
before the next write statement.

3. FORTRAN Output to the Display

Flexible output to the display is available through for-
matted input-output so that subscripted expressions are
possible. First, directions for normal use will be given.

The user may treat the IDI display as if it were a
teletype, with a few exceptions. The user must first call
subroutine CLRBUF to clear the display. The position of
the first line to be displayed must be set by a call to sub-
routine SETPT. The user may then use WRITE statements for
FORTRAN device 3 and output lines will appear on the display
one under the other. When the display becomes filled up,
say about 50 lines, the user should program a delay so he
can view the output. The user must then clear the display
and position the initial line for the next page. Example:

CALL CLRBUF (1)
CALL SETPT(0,950)
I=1

J=2

DO 10 K=1,50

WRITE(3,20)I,J
10 CONTINUE
20 FORMAT (215)
CALL T1IN (ICHAR)
CALL CLRBUF (1)
CALL SETPT(0,950)
I1=10
J=20
DO 30 K=1,20
WRITE(3,20)I,J
30 CONTINUE
CALL T1IN (CHAR)

The above program puts 50 lines on the display, each line
composed of the integers 1 and 2. The program then calls
subroutine T1IN which waits until a character is typed. The
character is put in ICHAR and twenty lines are displayed,
each line composed of the integers 10 and 20. The program
then waits for another character to be typed.

The following are instructions for specialized output.
The user should follow the instructions given for

normal usage. The user has the option of including special
commands in his format statement.

1) The occurrence of a 1H$ at the end of a format state-
ment will suppress the outputing of a newline.

2) The format buffer is emptied one character at a
time. The presence of the character ! will cause
all the following characters to be interpreted as
control characters for the display, until the
occurrence of the next ! at which point the format
buffer is treated in the normal manner.

3) To put say three control characters in the buffer,
the format statement should look like:

FORMAT (---LIST---,5H!ABC! ,---REST--)

4) The user may set the default character size and
escape character by a

CALL SETOAD (CHARSIZE,ESCAPECHAR),

where if either is a zero the normal default condition
will prevail. These are: character size = 2, es-
cape character = 1.

5) The legal control characters are (illegal are ignored):
A->BACK SPACE IN THIS CHAR. SIZE
B->GIVE A NEWLINE IN THIS CHAR. SIZE
C->CLEAR THE DISPLAY ON PUT BEAM IN UPPER LEFT CORNER
D->GIVE ONLY A CARRIAGE RETURN
E->SET BRIGHTNESS TO HIGHEST (4)
F->SET BRIGHTNESS NORMAL (3)
G~>HALF LINE FORWARD (TOWARD BOTTOM) IN THIS CHAR. SIZE
H->HALF LINE BACKWARD
I->HOR. TAB (5 SPACES TO RIGHT)
J=->VERT. TAB (5 LINES TOWARD BOTTOM)
K->SET CHAR. SIZE TO 1
L->SET CHAR. SIZE TO 2
M->SET CHAR. SIZE TO 3
N->SET CHAR. SIZE TO 4

_ When loading programs which use display output, the
Library GRALIB in the U directory must be loaded before the
FORTRAN library is loaded.

4, INSERT Statement

A new statement has been added to the FORTRAN for the 516.

The statement "INSERT filename" when read by the compiler
during compilation will cause the text of file filename to
be compiled in place of that statement. The INSERT feature
is useful when one has a large number of subroutines each of
which requires an identical common area. Rather than having
the COMMON as part of each subroutine, the statement INSERT
COMMON, for example, is put in the place where common should
go and the file COMMON contains the common statements for
each subroutine. Besides saving space on the disk and making
program listings shorter, this feature allows easy modifica-
tion of common, as it must be modified in only one place.
Insert files may not contain insert statements.

5. Assigned GO to Statement
The syntax of an assigned GO to statement was
GO TO i, (Kj,Ky..K,)

where i is an integer variable reference set by an ASSIGN
statement to one of the K, statement numbers. This list is
now optional and serves no useful purpose, as the compiler
does not check the k, statement numbers. Below is an example
of how the GO to statement may be used to transfer to a
statement in another subroutine.

ASSIGN 100 to I
CALL B(I)

100 CALL EXIT
END

$1

SUBROUTINE B (IX)
I=IX
GO TO I
RETURN
END
$0

EXIT is a §ubroutine.that returns control to DOS. The RETURN
statement in subroutine B is never executed but is necessary
for successful compilation.

6. Global Variable Mode

It is often convenient to extend the Implied Integer
rule of all variables starting with I, J, K, L, M, or N,
are Integer Mode unless specified otherwise' to say 'All
variables are Integer Mode unless otherwise specified. This
can now be done by a Fortran statement INTEGER followed by
no variables. All other modes may be specified as normal
in the same way.

Example 1: All variables except A, B, Cl, C3, and X1
are Integer

INTEGER
REAL A,B,X1
COMPLEX C1,C2

Example 2: All variables are REAL except Il, I2, J,
K, L1, L2

INTEGER I1,I2,J,K
LOGICAL L1,L2
REAL

Example 3: All variables are INTEGER mode
INTEGER

7. Octal constants

Example: I = 2077

will set I to 77 octal or 65 decimal. The 2 specifies the
number of octal digits and the @ (not zero) indicates octal.
Any digit can be used in place of the 2, as the compiler
recognizes a digit followed by @ as the beginning of an octal
constant.

8. Intrinsic Functions

The following functions described in Chapter X B are
compiled into in-line code rather than calls to functions
XOR (A ,B)

AND (A,B)
NOT (I)
IABS(I)

The following functions are compiled into in-line code if
the second argument is a constant or calls to the function
if the second argument is a variable.

RS(I,J)
Ls(I1,J)
RT(I,J)
LT(I,J)

9. TRACE Debug Feature

The FORTRAN TRACE feature has been modified so logical
if statements are processed. Complex and double precision
variables can no longer be processed.

If a user loads a special library, TRCLIB before loading
the FORTRAN library, an expanded TRACE feature rather than
the regular TRACE package is loaded. This feature allows
trace output to the teletype, display, ARDS storage display
or disk. During execution, the trace routine asks the user
which output device to use. Trace output is suspended while
sense switch four is up. If the display is chosen, the
screen will be filled with lines of output, type a "bell",
then wait while the user examines the screen. A newline or
carriage return causes the picture to "move up" one line.

A vertical tab pushes the picture up six lines, whereas any
other character causes the picture to move up 30 lines. 1In
each cause, new output fills the remaining part of the screen.

If the ARDS is chosen, the screen fills up and the

program waits while the user examines the screen. To con-
tinue, type any character on the ARDS keyboard.

D. FORTRAN Bugs

a. The compiler does not always print the error message im-
mediately below the line with the error. If the previous
statement does not seem to have errors, look several statements
above.

b. If the user has one compilation error in his program, other
error messages may appear below the initial error that are
spurious error messages. If you can't find the error in the
following lines, remove the first error and recompile.

c. A single common area labeled or not, or a dimensioned
variable cannot be larger than 8192, No error message results
but incorrect code is produced.

d. the program
I=0
GO TO (10, 20)I

When executed will go into an infinite loop. To allow generality
for the GO TO statement, error checking has been removed. The
user must check the range of the index on the computed GO TO
statement.

e. To increase efficiency of integer multiply and divide, no
error checking takes place. A multiply overflow looses the
most significant bit and divide by zero is treated as a no-
operation instruction.

f£. The use of a comma to separate input data items will not
work for either logical or A format. Also, beware of this fea-
ture! If you specify I5 for integer input then type 5 digits
followed by a comma, the comma is seen as specifying a zero in-
put for the following variable, not as a separator between the
current and following variable. To solve this problem, specify
16 in your format statement. This rule follows for other format
types also.

g. The octal and quoted hollerith string features do not work
in all cases.

h. The global variable mode when used in a subroutine or func-
tion does not affect the arguments declared for that subroutine
or function .

i. An expression which contains two function calls to the same
routine may be optimized by the compiler. Example:

I= FUNCT(A) + FUNCT(A)
will be optimized to the machine language equivalent of
I= 2*FUNCT (A)

This optimization will cause a program bug if A is a re-
turn argument which depends on previous calls to FUNCT, as
allowed by ASA FORTRAN.

j. BLOCK DATA subprograms, when loaded cause the error message

MO unless BLOCK DATA is for blank COMMON only. BLOCK DATA
subprograms with named COMMON therefore do not work.

X. FORTRAN LIBRARY

A. Introduction

The FORTRAN library as supplied by Honeywell has been
altered and expanded to implement the new features of
FORTRAN described in the last chapter. Section B of this
chapter describes routines which do list processing, bit
manipulation, and teletype I/O without FORMAT statements.
Routines to interface to the disk operating system are also
described. These subroutines have also been added to the
FORTRAN library. Section C gives an alphabetical list and
description of all subroutines of the FORTRAN library.

B. FORTRAN Library Extension

1. List Processing
The following features provided the basic building

blocks for creating and manipulating and referencing list
structures.

Z=ILOC (X)
Z is filled with the address of variable X.

LIST--The inverse operation of ILOC is performed by defining

an array in block common to start at location 1. The present

commands LDR and HLDR have been modified so that block
common names and subroutine names are equivalent. Further-
more, the block common name LIST has been permanently put in
the initial table of subroutine names with a load address

of 1. A user wishing to use the LIST features must put a
common area LIST in every subroutine using it. For example:

COMMON/LIST/LIST (2)

LIST may be used on the left or the right of an equals sign.
For example:

LIST(29) =1
This will set location 29 to the current value of I.

ZA=Y
ZB=LIST (LOC(Y))

10-1

ZC=LOC (LIST(Y))
In the above, ZA=ZB=ZC.

The user must be careful not to specify the subscript of
LIST as larger than 32,767, nor as negative.

2. Bit Manipulation

The following FORTRAN integer functions allow bit
manipulation of integer variables (one DDP-516 machine word).

Y=RS (X,N)

Y is set equal to X right shifted by N bits. If N is
greater than 16 or less than zero, Y becomes 0. RS is
an integer function and must be declared INTEGER by
the FORTRAN program which uses it.

Y=LS (X ,N)

Y is set equal to X left shifted by N bits. If N is
greater than 16 or less than zero, Y becomes 0.

¥Y=RT (X,N)

Y is cleared and then set equal to the rightmost N bits
of X. If N is greater than 16 or less than zero, Y
equals X unchanged. If N=0, ¥Y=1000000. RT is an integer
function and must be declared INTEGER by the FORTRAN
program which uses it.

Y=LT (X,N)

Y is cleared and set equal to the leftmost N bits of
X. These bits will not be right justified, i.e.,
Y=LT(123456,3) = 120000. If N is greater than 16 or
negative, Y equals X unchanged.

Y=AND (X,Y)

Each bit in X is Boolean ANDed with the corresponding
bit in Y and the result put in Z. This function (AND)
must be declared INTEGER in the FORTRAN program which
uses it. Furthermore, only sixteen (16) bits of X and
sixteen bits of Y are dealt with yielding 16 bits of Z.
Therefore, X,Y, and Z should be declared INTEGER, or
else the user should realize that he is working with
only the first word of a real two word quantity or of
a double precision triple word quantity.

Z=0R(X,Y)

Each bit of X is Boolean ORed with the corresponding

bit in Y and the result placed in Z. This function (OR)
must be declared INTEGER in the FORTRAN program which
uses it. Furthermore, only 16 bits of X and 16 bits

of Y are dealt with yielding 16 bits of Z. Therefore

X, ¥, and Z should be declared INTEGER or else the user
should realize that he is working with only the first
word of a real two word quantity or of a double precision
triple word quantity.

Z=XOR(X,Y)

Each bit of X is Boolean XORed with the corresponding
bit in Y and the result placed in Z. This function
(XOR) must be declared INTEGER in the FORTRAN program
which uses it. Furthermore, only 16 bits of X and 16
bits of Y are dealt with yielding 16 bits of Z. There-
fore, X, Y and Z should be declared INTEGER.

3. DOS Interface Routines

These subroutines allow FORTRAN programs to read and
write files on the disk, pick up the DOS command line for
examination and return control to DOS at the end of a program.

SEARCH

The calling sequence is CALL SEARCH (KEY ,NAME ,UNIT,ALTRIN).
The SEARCH routine is used in conjunction with READ and
WRITE to read and write information on the disk through
program control. These routines work equally well

whether a program is running under the DOS or the TSDOS
operating system. The SEARCH routine coordinates all
activities with file directories. The KEY specifies the
activity and has the following meaning: 1 - open for
reading only, 2 - open for writing only, 3 - open for read-
ing and writing, 4 - close file, 5 - delete file, 7 - re-
wind file. NAME is a 3 word or 6 character array. If the
name is less than 6 characters, the name should be left
justified with trailing blanks. The UNIT is the unit
number associated with the file and must be between 1 and
7. ALTRIN is an alternate return taken in case of uncor-
rectable errors (e.g. attempting to open a file already
open). SEARCH allows a user to do under program control
the operations of commands INPUT, LISTING, BINARY, OPEN,
CLOSE and DELETE.

10-3

READ

The calling sequence is CALL READ (UNIT,ARRAY,NWRDS,
ALTRIN). The READ subroutine reads NWRDS from unit
UNIT into ARRAY. The return is to ALTRIN (1f specified)
if the end-of-file is encountered reading or if

the unit is not open. Note that the accumulator, ob-
tained on End-of-File-Return, contains the number of
words not read in the final call.

GETA

The calling sequence is CALL GETA(A). GETA puts the
accumulator into A. This routine is useful with sub-
routine READ, above.

WRITE

The calling seguence is CALL WRITE (UNIT,ARRAY ,NWRDS,
ALTRIN). The WRITE subroutine writes out NWRDS from
ARRAY to unit UNIT. ALTRIN (if specified) is taken in
case of uncorrectable errors.

SAVE

The calling sequence is CALL SAVE (VECT,NAME) . A user
sets up a nine word vector VECT(9) before calling SAVE.
VECT (1) should be set to an integer which is the 1lst lo-
cation of core to be saved and VECT (2) should be set to
the last location to be saved. The rest of the vector
may be set at the programmer's option. VECT (3) repre-
sents the saved program counter, VECT (4) saved A register,
VECT (5) saved B register, VECT (6) saved X register,
VECT(7) saved keys register. VECT (8) is reserved for

a checksum which is calculated and inserted in this
location by SAVE. VECT(9) is a spare location. VECT(7)
should always be set to 20000 octal to indicate extend
mode. SAVE will write out the nine word vector VECT
followed by the core image starting at VECT(l) and
ending at VECT(2) on file NAME. The SAVE subroutine

has the same effect under program control as the DOS
SAVE command.

RESTOR

The calling sequence is CALL RESTOR (VECT,NAME) . Sub-
routine RESTOR performs the inverse operation. A file
previously written with SAVE is read. The first 9

words of the file are entered into VECT(9). RESTOR then

reads the rest of the file into sequential locations

10-4

starting at VECT(1l) and ending at VECT(2). The user may
examine VECT(3) - VECT(9) which contain saved machine
active registers. RESTOR subroutine has the same effect
under program control as the DOS RESTOR command.

RESUME

The calling sequence is CALL RESUME (NAME). File NAME
is "resumed" as if the user had typed the command
RESUME NAME.

ATTACH

The calling sequence is CALL ATTACH (UFD,DISK,PASSWORD,
TSET,ALTRIN) . ATTACH attaches to UFD (a six character
name) if PASSWORD (another name) matches the stored
password. UFD is searched on logical disk drive DISK
(range 0-3) or all disks assigned to the system in
logical disk order if DISK is 100000 octal. Return is
to ALTRIN (if specified) if UFD is not found. If TSET
is true, HOME-UFD, a DOS vector is set to this new
directory. If false, no action is taken.

HOMUFD
The calling sequence is CALL HOMUFD. CALL HOMUFD will at-

tach to the directory whose name is in HOME-UFD, a DOS
vector. See ATTACH, above.

CMREAD
The calling sequence is CALL CMREAD (ARRAY). CMREAD
reads 18 words which represent the last command line
typed into ARRAY as follows:

ARRAY (1) COMMAND (or spaces)

ARRAY (2)

ARRAY (3)
(4) NAME1 (or spaces)
(5)
(6)
(7) NAME2 (or spaces)
(8)
(9) PAR1 (or zero)
(10) PAR2 (or zero)
(i?) PAR9 (or zero)

10-5

EXIT

O$NU

ISNU

The command line may then be accessed directly.

The calling sequence is CALL EXIT. EXIT returns to

DOS or TSDOS which will type out "OK". A user may open
or close files or switch directories and restart his
program at the next FORTRAN statement by typing START.

The calling sequence is CALL OS$NU (BUF,N,ALTRIN) . OSNU
takes a line of up to 119 characters stored two to a
word in array BUF, and writes it on the disk on unit N
(under DOS or TSDOS) in compressed format. Null charac-
ters and trailing blanks are deleted from the line be-
fore writing. Multiple blanks are replaced by a rela-
tive horizontal tab character (221) followed by a num-
ber indicating the number of blanks. Newline characters
(212) should not be put in the output buffer. OS$NU
writes a newline character on the disk after the last
word in the buffer thus using the character to indicate
the break between lines. If non-zero, ALTRIN is an
address to which control is returned in case of un-
correctable errors. If ALTRIN is 0, control is returned
to the supervisor and an error message 1is typed out. N
must be in the range 1-7 and BUF must be an array of 60
words.

The calling sequence is CALL I$NU (BUF,N,ALTRIN). I$NU .
does the inverse operation of I$NU. OS$SNU reads a line
of characters from the disk on unit 1 (under DOS or
TSDOS) into a 60 word buffer BUF, stored two characters
per word. IS$NU uncompresses the data, and replaces

the end-of-line character newline (212) with a blank
and fills the remainder of the buffer with blanks.
ALTRIN is used as in O$NU. Control will also pass to
ALTRIN if there are no more lines of data in the file.
Compressed format files are also read and written by
the commands ED, FTN, DAP, and LOOK. N must be in the

1 7. To insure ALTRIN is taken, the user should call SETEOF

(0) at the peginning of his program.
4, Alternate Teletype Input-OUTPUT

Some users may wish to resort to using this teletype

package and avoid formatted FORTRAN input-output completely
if they have difficulty fitting their programs in the machine.

This
user

package handles only integers and characters. The normal
can skip this section.

10-6

PUTC

The calling sequence is: CALL PUTC (BUF ,CHAR) . Initially
array BUF(3) should be set to 6 spaces. PUTC when

called successively will insert character CHAR into

array BUF so as to compose a six character name. If

PUTC is called more than six times, no action is taken.

T1IN

The calling sequence is CALL TIIN(CHAR). T1IN reads a
character from the teletype into CHAR, skipping nulls
and echoing carriage returns for linefeeds and vice
versa. (In either case, CHAR, is set to new line).

T10U

The calling sequence is CALL T1O0U(CHAR) . T10U types
out CHAR, inserting a carriage return if CHAR is a
new line.

TNOU

The calling sequence is CALL TNOU (ARRAY,NCHARS). TNOU
types out NCHAR characters from ARRAY and adds a new
line.

TNOUA

The calling sequence is CALL TNOUA (ARRAY ,NCHARS). TNOUA
types out NCHARS characters from ARRAY, but does not
add a new line.

TOOCT

The calling sequence is CALL TOOCT (NUMBER) . TOOCT types
out NUMBER in the ASCII representation of the number
converted to octal.

TONL

The calling sequence is CALL TONL. This types out a
new line and is useful after such routines as TOOCT
and TODEC which do not put out new lines.

TIDEC
The calling sequence is CALL TIDEC(N10). This routine

is called to input an unsigned or a negative decimal
integer on the teletype. If the user makes an error

10-7

—_—

in typing, " is acceptable as an erase character and ?
as a line kill. If an integer larger than 32767 or
less than -32768 is typed, the rightmost digits are
saved, and there is no error indication. If a charac-
ter is not recognized, a " is echoed on the teletype,
and the typed character is not stored and need not be
erased. N.B. A plus (+) is not recognized.

TIOCT

The calling sequence is CALL TIOCT(N8). This routine
is called to input an octal number of the teletype.
If the user makes an error in typing, " is acceptable
as an erase character and ? as a line kill. If a
character is not recognized, a " is echoed on the
teletype and the typed character is not stored and
need not be erased. Among unrecognized characters are
alphabetic characters, special characters and the
digits 8 and 9 (i.e., only digits 0-7, 2, ", and line
feed are legitimate.) The routine accepts 100000 to
077777, i.e., the maximum first digit is 1, and the
maximum 2nd through 6th digit is 7. If a number too
large were typed, only the rightmost bits would be
saved. (i.e. 277777 would be saved as 077777) .

TODEC

The calling sequence is CALL TODEC (N8) . This routine
is used to output a decimal integer on the teletype.
One may convert decimal integers to their octal equi-
valent by coding:

CALL TIOCT (N8)
CALL TODEC (N8)

TODEC does not convert the octal number 100000 correctly.
(It should be -32768, not -0 as the printout gives.)

RDCOM

The calling sequence is CALL RDCOM(BUF) . RDCOM reads

up to 80 characters from the teletype into an 80 word
buffer BUF one character per word. Teletype input is
modified by the kill character (?) and the erase
character ("). A newline character (linefeed) terminates
input and is put in the buffer. The loading of this
subroutine causes a named common area "X" to be put in
the user's load map. RDCOM also causes the only
variable PEDL (integer) in this common area to be set

to 1.

10-8

GETWRD

FSAT

The calling sequence is CALL GETWRD (BUF,NAME). Successive
calls to GETWRD pick up successive "English" words from
array BUF(80) where characters are stored one per word.
GETWRD puts these names in array NAME(3) packed 2 charac-
ters per computer word and left justified with trailing
blanks. If a word in BUF is longer than six characters,
it is truncated to six characters. The "English" words
may contain any character or number except space, new-
line, comma, or semicolon. This subroutine should be
used in tandem with RDCOM. The loading of this sub-
routine causes a named common area "X" to be put in the
user's load map. PEDL(integer), the only variable in

the common area X, is used by GETWRD and reset by RDCOM
to indicate the current character being processed.

5. Miscellaneous

The calling sequence is CALL FS$AT

OoCT N
ARGl DAC *%
ARG2 DAC **

ARGN DAC **

N is the number of arguments to be transferred; ARG1,
ARG2,...,ARGN are the argument names in the subroutine.
FSAT is called whenever a FORTRAN subroutine has calling
arguments to be passed. Calls to F$SAT are not to be
coded by the user in a FORTRAN program, but F$AT is
useful for programming DAP subroutines to be called

by FORTRAN. For example, below is coding to call a

DAP routine ASEMRT and pass the arguments X and Y with
FSAT.

FORTRAN main program
CALL ASEMRT(X,Y)
DAP subroutine

SUBR ASEMRT ,A

A DAC *% entry point
CALL FSAT
ocT 2

X DAC *%

b4 DAC **x

10-9

VALUE=NAMEQV (NAM1 ,NAM2)

VALUE and NAMEQV are logical variables and must be so
declared. VALUE is set to true if arrays NAM1(3) and
NAM2 (3) are equivalent; false otherwise. This function

is useful for comparing 6 character names with each other.

VALUE2=COMEQV (COM1 ,COM2)

VALUE2 and COMEQV are logical variables and must be so
declared. VALUE2 is set to true if the leftmost charac-
ters (up to six) of the array COM2(3) are equivalent to
the leftmost characters of array COM1(3). There is the
possibility of comparing a blank array COM2(3) with a
six character name in COM1(3) and they will set VALUE2
to true. (i.e., the program considers the COMl and
COM2 equivalent).

C. List of FORTRAN Library Routines

This section describes all the routines in the FORTRAN
library. There are several conventions used in describing
the functions of the library:

add

convert
divide
exponentiation
Fortran
utility
store (hold)
input

load
multiply
negate
output
subtract
clear (zero)

1. For function names:

HEHO O
[nmwanu

NONnoOoO=ZREHHI

2. For arguments: integer

real

complex

double precision

exponent

oYU+
[[I | I

Any routine listed twice, one with an "X" like(A$66)
AS66X
means there are two versions in the library. The "X"
version indicates it is written to use the high-speed arith-
metic option, which our machine has.

10-10

Each routine is listed under the library where it is to
be found. The column "filed under" tells under which routine
listing the routine in question will be described more fully.
"Description" is a brief explanation as to what the routine
does. An asterisk (*) indicates that this is either a new
routine (unavailable from Honeywell) or contains changes
that we have made from Honeywell version.

(a) FINLIB

Routine Filed Under Description

ABS ABS Ry = |Rq]|

AC1-ACS ACl The pseudo-accumulator used by the
machine

AIMAG ATMAG if C = Ry + iR2 then Ry = ATIMAG(C)

AINT AINT truncates real to integer but
expresses it as real

ALOG ALOGX R; = LOGg (Rj)

ALOGX

ALOG1l0 ALOGX Rl = LOglo (Rz)

AMAXO MAXO chooses largest argument (of list
of integers) (must have more than 1)
and expresses it as Real

AMAX1 MAX1 chooses largest argument (of list
of reals) (# of arguments >1) = R

AMINO MINO same as AMAXO except minimum of
list is chosen

AMIN1 MIN1 same as AMAX]1 except minimum of
list is chosen

AMOD AMOD R3 = Rj(mod Ry)

*AND RS Ry = logical AND bits of Ry + Ry

ARGS ARGS converts indirect address of
argument to its direct address

ATAN ATAN Ry = arctan (R;)

10-11

Routine Filed Under Description

ATAN2 ATAN R3 = arctan (R;/Rj)

* ATTACH FILPAK attach to user file directory

A$22 A$22 R3 = R; + Ry

(A$52) A$52 Cy, = Cy + Ry

A$55 A$55 C3 = C; + Cy

(A$62) AS62 D, = D} + Ry

AS66) AS66XRA D3 = Dy + Dy

A$66X

AS$81 As$81 Add integer to characteristic of
D, i.e., multiply by a power of 2

CABS CABS if C = Ry + iR, then
cabs(c) = Ry =‘/R12 + R22

CCos CCos Cy = cos(C;) (in radians)

CEXP CEXP c, = o'V

CHAIN CHAIN reads in next segment of a chained
program

CLOG CLOG Cy; = logg(Cy)

CMPLX CMPLX C; = CMPLX(R;,Ry) uses Ry as real
part, R, as imaginary part to form
complex number

*CMREAD Read read DOS command line

*COMEQV NAMEQV command equivalence test (up to 6
characters compared to 6 characters)

*CONCOM RS constant common - constants available
to all

CONJ CONJG Cy = complex conjugate of Cj

COos Sin, COS Ry = cosine (Rj) (in radians)

CSIN CSIN Cy = sine (Cjy) (in radians)

10-12

Routine Filed Under
CSQRT CSQRT
*C$SKBUF FRW
*C$12 Cs$12
Csleé Cs$16
*C$21 c$21
Cs$25 C$25
C$26 C$26
Ccs6l Cs61
C$62 Cs$62
Ccs$8l Ccs8l
DABS DABS
DATAN DATAN
DATAN2 DATAN2
DBLE DBLE
DCOS DCOS
DEXP DEXP
DIM DIM
DINT DINT
DLOG DLOG
DLOG2 DLOG
DLOG10 DLOG10
DMAX1 DMAX1

Description

part of 0$31~-0$38

converts

converts

converts

converts

converts

integer
integer
real to

real to

to real
to double precision
integer

complex format

real to double precision
converts double precision to integer
converts double precision to real

converts double precision exponent
to integer

Dy = Dy

D, = arctan (Dj)

D, = arctan (Dl/Dz)

Dy = Ry - converts mode of argument
D, = cosine (D7) (in radians)

D, = eDl

Ry = Ry - Ry if (R} - Ry) > 0

Ry = 0 if (R; - Ry) < 0

I, = DINT(D;) truncate to integer
D, = Logg (Dy)

D, = Logz(Dl)

Dy = Logyo(DPy)

chooses largest argument of list

(length 1) of double precision ar-
guments =D

10-13

(

(

(

Routine Filed Under Description

DMIN1 DMIN1 same as DMAX1l except chooses smallest

DMOD DMOD D3 = Dl (mod D2)

DSIGN DSIGN magnitude of 1lst argument, sign of
2nd argument (2 double precision
arguments)

DSIN DSIN D2 = sine (Dl)(in radians)

DSQRT DSQRT D2 =‘/Dl

* =

DS$11 M$11 I, = I,/I;

D$22 M$22 R, = R, /R

pe22%) 37 R

(D$52) D$52 C, = C;/R;

D$55 D$55 c; = C,/C;

D$62 D$62 D, = Dl/Rl

D$66) AS66XRA Dy = D2/Dl

D$66X

*EXIT READ return to DOS

EXP EXP R, = e"l

ES11 ES11 I, = I **I

E$11x) 3002

= **

E$21 ES$21 R, = Ry**I,

ES$22 ES22 R; = Ry**R;

(E$26) E$26 D, = Rl**Dl

= * %

E$S1 ES51 C2 Cl I,

= * %

E#61l ES$61 D2 Dl Il

= * %

ES$62 E$62 D, Dy **R

= * %

ES66 ES66 D3 = D,**D,

FLOAT FLOAT

Rl = Il converts argument mode

10-14

Routine Filed Under Description

FS$AR FS$IO Fortran IV I/0 system handles control
& conversion

*FSAT FSAT transfers arguments

F$CB F$IO0 same as F$AR

F$D2 F$D5-9 write stop code for end-of-file on
paper tape

F$D5-9 F$D5-9 Mag. tape end-of-file driver

FS$SDN F$D5-9 variable driver

*FSER F$HT outputs 2 character error message

F$F5-9 F$F5-9 Mag. tape backspace driver

F$FN F$F5-9 Mag. tape variable backspace driver

*FSHT FS$HT When "stop" is encountered in Fortran

*FS$IO FSIO same as F$AR

*FSL1-6 F$L1-6 logical ifs

*FSRN FS$SRN variable input driver selection

*FS$SR1 FR1 Input BCD from typewriter

‘FS$R2 FS$R2 Input BCD from paper tape reader

F$R3 FS$R3 Input BCD from card reader

*FSR4 F$R4 Input BCD from DOS file unit

F$R5-9 F$R5-9 Magnetic tape input driver

*F$SR31-38 FR31-38 input from disk file units 1-8.

*FSTR DTRCE Fortran trace

*F$TRCE FTRCE Fortran trace

*FSWN FSWN Variable output driver selection

*FSW1 FWl Output BCD on typewriter

10-15

Routine
FSW2
*FSW4
FSW5-9
*FSW31-38
*GETA
*Getwrd
HOMUFD
HS$22
H$55
H$66
IABS
IDIM
IDINT
IFIX
INT
*ILOC

ISIGN

*ISNU

*15001

*1$031-038

*LS
*LT
L$22

L$33

Filed Under

Description

F$W2
F$W4
F$W5-9
FW31-38
FILPAK
Getwrd
FILPAK
H$22
HS55
H$66
IABS
IDIM
IFIX
IFIX
IFIX
SFTPAK

ISIGN

FRW

FREAD

FREAD
SFTPAK
SFTPAK
LS$22

L$33

Output BCD on paper tape
Output BCD on DOS file unit #2
Magnetic tape output driver
output to disk file units 1-8
pick up accumulator

See section B

Attach to HOME-UFD

Single precision real hold
Complex hold

Double precision hold

Integer absolute value

Integer positive difference
Truncate double precision to integer
Converts argument mode I = R
Truncates real to integer

Z = ILOC(X) puts address of X in Z
(2 integers) to create value with
(1) magnitude of 1lst argument

(2) sign of 2nd argument

expand input buffer

to input a 40-word buffer from
teletype

input buffer from disk
left shift

left part of
Single-precision load
Form inclusive or

1c-16

Routine Filed Under Description

L$55 L$55 Complex load
L$66 L$66 Double-precision load
*MOD M$11 I3 = Iomod I (integer remainder)
MAXO MAXO Picks largest integer of group of
integers, returns integer
MAX1 MAX1 Picks largest real of group of
- reals, returns integer
MINO MINO same as MAXO for minimum
MIN1 MIN1 same as MAX1 for minimum
*M$11 MS$S11 I3 = Iy*I4
(M$22) M$22 R3 = Ry*Ry
M$22X
(M$52) M$52 Cy, = C1*R;
M$55 M$55 C3 = Cy*Cy
(M$62) M$62 Dy, = D1*Rg
(M$66) A$66XRA D3 = Dy*Dq
M$66X
*NAMEQV NAMEQV name equivalence test, (six characters
to six characters)
N$22 N$22 negate real (R, = -Rj)
N$33 N$33 (only in logical "if" starts) hegate
logical Ly = NOT (Lj)
N$55 N$55 negate complex Cy = -(Cp)
N$66 NS$66 negate double precision D, = -Dj
*OR RS bit wise or of two integers
OVERFL OVERFL indicates if error flag is necessary
*OVERLA OVERLA DOS overlay feature

10-17

Routine
OSAC
OSAC
OSAP
OSLF
OSLO
OSLP
0OS$PC
OSPF
OSPP
*0S$S001
*0$031-38
*PUTC
*RESTOR
*RESUME
*RETURN
*RDCOM
*RDLIN
*READ
*RS

*RT
*SAVE

*Search

Sign

SIN

SLITE
SLITE
SSWTCH

Filed Under

Description

OSAP

O$AP}
OSAP

ost}
O$LP
OSLP
ospp}
O$PP
OSPP
FREAD
FREAD
PUTC
RESTOR
OVERLA
OVERLA
GETWRD
RDLIN
FILPAK
SFTPAK
SFTPAK
RESTOR
Read

Sign
SIN, COS

SLITE

SLITE}
SLITE

carriage control - types line,
returns carriage, advances to new
line

advance to new page, advance to
new line print new line

punch a line, punch carriage return,
advance to new line

output to teletype

output to disk units 1-8
store character in array
restores core image

resumes core image

overlay feature

read teletype line

read line from disk unit one
read from DOS file

right shift

right part of

saves core image

change status of DOS unit

(2 reals) magnitude of 1lst, sign
of 2nd argument

R, = SIN(Rj)
sense

switch
operations

10-18

Routine Filed Under
SNGL C$62
(SQRT) SQRTX
SQRTX

$$22 A$22
(S$52) S$52
S$55 S$55
(s$62) S$62
(sses) AS$66XRA
S$66X

TANH TANH
*TIDEC TODEC
*TIOCT TODEC
*TODEC TODEC
*TNOU PutC
*TNOUA PutC
*TONL PutC
*TOOCT PutC
*T11N PutC
*T10U PutC
*WRBN WRBN
*WRLIN Rdlin
*WRITE Read
*XOR RS
z$80 7$80

Description

converts argument mode Ry = Dy

R, = R

2 1
Ry = Ry = Ry
c, =C, - R
c, =C, - Cp
Dy =D - &
D, = D, - D,

R2 = hyperbolic tangent (Rl)
input decimal number, teletype
input octal number, teletype
output decimal number, teletype
output string of characters
same as TNOU except no newline at end
output newline

output octal number

input character

output character

WRITES BINARY ON DISK

write line to disk unit 2
write to DOS file

bitwise XOR of two integers

clear (zero) double precision
exponent

10-19

XI BASIC

A BASIC interpreter is available.

manual for how to program in BASIC.

See the Honeywell BASIC
system,

BASIC is a self-contained
A user does not create a BASIC program using the editor,

but instead enters his program by typing it under the input
section of the BASIC system.

To invoke BASIC, type BASIC., Then follow the instructions
given starting at page 5-4 of the BASIC manual.

11-1

XII GASP SIMULATION SYSTEM

GASP is a group of FORTRAN subroutines designed to be used
in programming simulation models. These subroutines include
input processing, statistical distributions, data collection
routines, and report generation., The programmer must write
a calling program and as many event routines as his model
requires, The purpose of this memo is to describe how to use
GASP on the DDP-516. (For details on the GASP routines and
their functions, the reader is referred to SIMULATION WITH GASP
II by Pritsker and Kiviat.)

A GASP LIBRARY

The GASP subroutines and functions are stored on the U
directory in file GASPLIB. These routines are described
below. The order in which they are listed is the order in
which they are stored on the file. The routines marked *
usually will not be called directly by the programmer.
Routines marked "F" are functions.

GASP (NSET) - GASP is the master control routine.

*DATAN (NSET) - Initializes all GASP COMMON variables, reads
in initial events and initial file entries.

*SET (JQ, NSET) - Initializes filing array NSET, updates
pointer system that establishes the relationships between
entries of file JQ, and maintains statistics on the number
of entries in file JQ.

FILEM (JQ, NSET) - Files an entry in File JQ of the array
NSET.
RMOVE (KCOL, JQ, NSET) - Removes an entry from File JQ of

array NSET. Any entry whose column number KCOL is known
can be removed from any file in array NSET.

FIND (XVAL, MCODE, JQ, JATT, KCOL, NSET) - Locates a column
KCOL in Files JQ of the array NSET. KCOL contains a value
bearing a relationship designated by MCODE to some value,
XVAL., JATT is the row of NSET containing the attribute
value to be used in finding KCOL.

12-1

*PRNTQ (JQ, NSET) - Computes and prints the time-integrated
average and standard deviation of the number of entries in
a particular file (JQ) and the maximum entries since the
file JQ are also printed out.

*SUMRY (NSET) - Processes data collected in COLCT, TMST,
and HISTO and prints out a data summary.

ERROR (J, NSET) - Called when an error is detected in any
GASP routine except PRNTQ, SUMRY, and MONTR. The error
message printed provides a code that indicates the subroutine
in which the error occurred. In addition, the file status
and summary statistics are printed and the simulation is
terminated.

COLCT (X, N, NSET) - Collects sample data on the value of
variable X. N is the code given to variable X by the
programmer,

TMST (X, T, N, NSET) - Collects sample data on observations
of a variable X over a period of time, N is the code assigned
to variable X, and T is the current time.

MONTR (NSET) - Provides capability to monitor events by
printing either the entire filing array or only the next
event to be removed from the event file.

DRAND (ISEED, RNUM) -~ The GASP pseudo-random number generator.
ISEED is the intial random integer, and RNUM is the random
number generated.

F UNFRM (A, B) - Generates a deviate from a uniform distri-
bution on the interval (A, B).

F AMIN (ARGl, ARG2) - Finds the minimum of two floating-
point variables. '

F AMAX (ARGl, ARG2) - Finds the maximum of two floating-
point variables.

F XMAX (IARGl, IARG2) - Finds the maximum of two fixed-point
variables.

HISTO (X1, A, W, N) - Tabulates the number of times X1 is
within the cell limits of histogram N. A is the lower of
the second cell of the histogram and W is the width of each
cell,

12-2

F ERLING (J) - Generates a deviate from an ERLING distribu-
tion. J corresponds to the row of array PARAM containing
the parameter values for use with this function.

NPOSN (J) - Generates a deviate, NPSSN from a POISSON distri-
bution. J corresponds to the row in array PARAM containing
the parameters for this distribution.

F RNORM (J) - Generates a deviate from a normal distribution.
The parameters for RNORM are stored in row J of PARAM.

F SUMQ (JATT, JQ, NSET) - Computes the sum of all attribute
values stored in row JATT of file JQ.

F PRODQ (JATT, JQ, NSET) - Computes the product of all
attributes in row JATT of file JQ.

In addition, a subroutine EVNTS must be written to schedule
the events of the system. The length of the simulation run
may be controlled through a scheduled end of simulation
event subroutine (ENDSM) called by ENDSV or the termination
time may be specified in the input data. (See section 2.0)
A subroutine OTPUT may be written for specially tailored
output. OTPUT is always called by GASP so a dummy sub-
routine consisting of just a RETURN command should be in-
cluded in the program if no special output is required.

INPUT FORMAT

There are eight different data card types. The sample Input
Data Worksheet presents the layout of these cards. An ex-
planation of the variables initialized on the data cards is
presented below, When typing data on the teletype, free-
formatted input (using commas) may be used.

CARD 1
GASP Variables Definition
NAME Programmer's name.
NPROJ Project number,
MON Month number.
NDAY Day number,
NYR Year number.
NRUNS Number of simulation runs to be
made.,

12-3

CARD 2

NPRMS Number of sets of parameters to
be used in simulation.

NHIST Number of histograms required for
this simulation.

NCLCT Number of variables for which

statistics are collected in
subroutine COLCT.
NSTAT Number of variables for which
y statistics are collected in
subroutine TMST.

ID Number of columns (entries) in
the filing array NSET.
M Maximum number of attributes

associated with any entry of
the filing array.

NOQ Number of files contained in the
filing array.

MXC Largest number of cells to be
used in any histogram.

SCALE Parameter used to scale attribute

values to avoid truncation
errors due to the use of a
fixed-point array for the
filing array.

CARD 3 (optional)

Defines number of cells in each histogram if histograms are
used.

CARD 4
values of vector KRANK are initialized. [KRANK (J) = is
attribute on which File J is ranked.]

CARD 5
Values for vector INN, INN(J) specifies whether file J is

low-value-first (LVF) or high-value-first (uvr) . If
INN(J) = 1, file J is LVF and if INN(J) = 2, file J is HVF.

12-4

CARD 6 (optional)

Used if parameters are used. (See Section 5.)

CARD 7

GASP Variables Definition

0 End-of-simulation event has
been furnished by the programmer.
The ENDSM routine should set
MSTOP to -1.

4 + The simulation is to end when

TNOW = TFIN.

MSTOP

~ Programmer has indicated the
simulation run is completed
and final reports should be
given, if requested.

0 Do not clear statistical
JCLR storage areas.

1 Clear statistical storage areas.

0 Final GASP summary reports to
be printed (SUMRY + OTPUT will
NORPT be called.)

1 No final summary reporting
required.

NEP 7 A control variable which deter-
mines the data card type at
which subroutine DATAN will
begin to process for the next
simulation run.

TBEG Beginning time of the simulation
run, i.e., initial value of
TNOW,

12-5

TFIN Final or ending time of the
simulation if MSTOP is positive.
If +, SUMRY is automatically
called.

/ 0 Random number seed is not to be
changed, and TNOW is not to be
JSEED set to TBEG.

-,+ Random number seed ISEED is set
to JSEED.

CARD 8

To initialize filing array and to insert initial entries
into it.

C ERROR CODES

Subroutine ERROR prints error codes when an error OcCcurs
during execution of a GASP model. The standard codes and
their error sources are listed below. Any unassigned

numbers may be used as error codes for programmer written

routines.

Error Subprogram in Which Error Subprogram in Which
Code Error Occurred Code Error Occurred

84 PRODQ 93 GASP

85 SUMQ 94 PRNTQ

87 FILEM 95 DATAN

88 SET 96 not used

89 FIND 97 RMOVE

90 COLCT 98 SUMRY

91 TMST 99 MONTR

Note: Codes 94, 98, and 99 are printed out by the detecting
subroutine and not subroutine ERROR.

12-6

D DISTRIBUTION FUNCTIONS

Parameters are used to store the arguments of the distribution
functions that are used. The following table summarizes the
parameter assignments that must be used for the different

functions:
Parameter Number
Function 1 2 3 4
RLOGHN (J) | u min X max X Jx
ERLNG (J) l/uX min X max X K
NPOSN (N, NPSSN) X-ng n, max X -not used-
RNORM (J) u minX max X \F;

E GASP FILES

A GASP model may contain up to four files. File 1 must
always be the event file. Any other files may be assigned

as required. Up to four attributes may be associated with
each file.

The attributes for File 1 are assigned to the following:

Attribute 1: Scheduled time of event

Attribute 2: Event Code (if more than 1 event type is used)
Attribute 3: Optional

Attribute 4: Optional

Every GASP model must contain at least one file~-the event
file.

F GASP LOADING

In loading a large program under DOS, the ordering of the sub-
routines in the files is important. In loading a GASP model,
the file listing textbook are extremely helpful. (A copy of
Appendix D is attached to this memo.)

12-7

The following procedure illustrates the loading of a GASP
model:

(file TEST1 contains user written routines)

USER: CLRCOR
RESPONSE: GO
OK
USER: LDR B~TEST1
RESPONSE: GO
MR, OK '
USER: ATTACH U
RESPONSE: OK
USER: START GASPLIB
RESPONSE: GO
MR, OK
USER: ATTACH USER DIRECTORY
RESPONSE: OK
USER: START B«TEST1
RESPONSE: GO
MR, OK
USER: ATTACH U
RESPONSE: OK
USER: START GASPLIB
RESPONSE: GO
MR, OK
USER: START FTNLIB
RESPONSE: GO
MR, OK
USER: START 63002
RESPONSE: GO load map is typed
LC, OK
USER: ATTACH USER DIRECTORY

RESPONSE: OK
USER: SAVE *TEST 100 *PBRK 1000

If program is to be run:

12-8

USER: R *TEST
RESPONSE: GO
type data.

DEBUGGING AIDS

Subroutine MONTR provides the capability to selectively
monitor events. It gives the option of a printout of all
files or only the next event to be removed from the event
file.

Monitor events can be inserted at the start of a simulation
run by inserting an event into the event file with an event
code of 100 or 10l. Code 101 causes the entire filing array
to be printed. Code 100 causes each event to be printed
until a second event with a code of 100 occurs. The program-
mer may want to modify MONTR from the standard GASP II
version to obtain additional information about a particular
simulation.

Diagnostics are limited to the error codes printed by sub-
routine ERROR and the FORTRAN compiler. Programmer written
subroutines such as the event routines should make use

of the model.

ADDITIONAL INFORMATION

A careful reading of the GASP textbook is recommended for
anyone attempting to use GASP., The routines have been tested
on the DDP-516, however, problems may still be encountered.

A version of GASP for the IBM 1130 was converted for use on
the DDP-516. Any difficulties with GASP should be reported
to Judy Gertler (Rm., 11-29, Ext, 2231).

12-9

APPEN

DIX D

SUBPROGRAMS USED BY GASP II SUBPROGRAMS

GASP Subprograms Users of This
Subprogram Used Subprogram
GASP DATAN MAIN

MONTR
RMOVE
EVNTS
SUMRY
OTPUT
ERROR
DATAN ERROR GASP
EXIT
DRAND
SET
FILEM
SET XMAX DATAN
ERROR FILEM
EXIT RMOVE
ERROR-1 EXIT GASP, DATAN
SET, FILEM
RMOVE, COLCT,
TMST
ERROR-2 MONTR Same as ERROR-1
PRNTQ
SUMRY
EXIT
FILEM ERROR DATAN
SET
RMOVE ERROR GASP
SET
COLCT ERROR NONE
AMIN
AMAX

12-10

TMST ERROR NONE

SUMRY EXIT GASP
PRNTQ ERROR-2
PRNTQ EXIT ERROR-2
SUMRY
MONTR EXIT GASP
ERROR-2
FIND : ERROR NONE
HISTO EXIT NONE
NPOSN DRAND NONE
RNORM
EXP
RNORM DRAND NPOSN
ALOG
cos
DRAND RANDU DATAN, NPOSN,
RNORM
ERLNG EXIT NONE
DRAND
ALOG
RLOGN NONE
RNORM
EXP
UNFRM DRAND NONE
SUMQ ERROR NONE
PRODQ ; ERROR NONE
AMIN NONE COLCT, TMST
XMAX NONE SET
AMAX NONE COLCT, TMST

12-11

XIII DAP

A. Introduction

This chapter tells the user how to run the DAP assembler.
See the Honeywell DAP manual for how to program in DAP.

B. Normal Assembly

Assume you have a DAP source program on file TEST in your
directory. To assemble the program you must do the following
steps.

user: INPUT TEST
response: OK

Prepare file TEST to be read on logical unit 1. DAP ex-
pects to read source text from unit 1, and write binary data
on unit 3.

user: BINARY B«TEST
response: OK

Prepare a file with name B<TEST to be written on logical
unit 3. If file B«TEST already exists, prepare file B<TEST to
be overwritten. If B«TEST does not presently exist, generate
a file initially containing no data but with name B<«TEST.

user: DAP

response: GO
NO ERRORS IN ABOVE ASSEMBLY
AC,
OK

The DAP assembler reads the source file TEST, "rewinds"
the file when the END card is detected and reads the file again
for the second pass. During the second pass, the assembler
_generates binary output on B<TEST. If any errors occur, they
will be typed on the teletype along with the line containing
the error. When the second pass is complete, DAP tells you if
any errors have occurred, types "AC" for assembly complete,
then returns to DOS which types "OK".

user: CLOSE ALL
response: OK

13-1

Release logical units from any files they are associated
with. 1In this case files TEST and B<+TEST are released from
logical units 1 and 3 respectively. These logical units are
not free to be associated with different files.

C. Options

It is not possible to assemble more than one DAP program
or subroutine at once. This means each DAP subroutine must be
in a separate file and assembled by a separate sequence of
commands., ‘

It is possible to generate a DAP listing file with a format
as described in the DAP manual. In this case, errors are not
typed but appear at the appropriate place in the listing file.
The following is an example of this option.

user: INPUT TEST
response: OK

user: LISTING B<TEST
response: OK

The listing command means open unit 2 for writing. The
DAP assembler expects to write the listing on unit 2.

user: BINARY B<+TEST
response: OK

user: DAP 400 100555

response: GO
NO ERRORS IN ABOVE ASSEMBLY
AC,
OK

user: CLOSE ALL
response: OK

The user may examine the listing file on the display using
the LOOK command or he may examine it using the test editor.

D. Calling FORTRAN Programs from DAP Programs

See Chapter X, Section B, part 5 for this procedure.

E. XREF

XREF generates a cross reference index to symbols in a DAP
source file. This index is useful as an addendum to DAP listing
files. To use; type

user:
response:

user:
response:

user:

response:

user:
response:

INPUT "DAP source file"
OK

LISTING name
OK

XREF
GO
OK,

CLOSE ALL
OK

13-3

XIV LOADER

A. Introduction

This chapter describes how to load programs from relocat-
able binary files which are produced by the FORTRAN compiler
or the DAP assembler.

B. Simple Load Procedure

If a user has a program which is contained in a single DOS
file, the loading procedure is easy. Example:

user: CLRCOR
response: GO
OK

CLRCOR is a DOS command that puts zero in all locations
available for loading user programs. This step should always
be done before loading.

user: LDR B€TEST
response: GO
MR, OK

The loader (command name LDR) loads the binary file B«TEST
from the users file directory. When the loader detects a piece
of binary data equivalent to the $0 line of a FORTRAN source
program or the END line of an assembly source program, the
loader types MR, meaning "more" or LC, meaning loading complete,
then returns to command level DOS. The loader automatically
loads programs beginning at location 1000 octal with "links" b
beginning at 100 octal. Programs are loaded in the extended
addressing mode.

In many cases, the loading of the FORTRAN library is also
required. The following is an example of this.

user: ATTACH U
response: OK

We must load a binary data file, FTNLIB, to complete our

load. Since this file is used by all users, it is accessed
through the U directory, a directory which is used by all users

14-1

it is accessed through the U directory, a directory which is used
by all users and belongs to no one user. We have "attached" to
the U directory in preparation for loading this file.

user: START FTNLIB
response: GO
ILC, OK

The DOS internal command START transfers to the location
given as its first numerical argument. If no numerical argument
is given, control is transferred to the location plus one from
which DOS was last entered. The location in this case is the
place in the loader to continue a load. The loader starts
reading the FTNLIB file but only loads those routines necessary.
"LC" indicates a complete load.

user: CLOSE ALL
response: OK

The loader leaves the last file read in an active state.
CLOSE ALL closes out the file.

user: START 63002
response: GO

complete load map is typed.
The load map consists of names paired with octal numbers. The
first seven names have a special meaning. In the following,
higher locations in memory extend towards location 77777.
1. *START - Location where first program load was begun.
2. *HIGH - Highest location loaded, plus one.
3. *NAMES - The loader stores the names of the loadmap as
a list running downward from the bottom of the loader.
Programs cannot be loaded over these locations.
4., *COMN - The bottom location of loaded common areas.
Common starts at 57777. Programs cannot overlay com-

mon.

5. *PBRK - The location where the next program will be
loaded by the loader.

6. *BASE - The next location the loader will load links.
This number may not exceed 1000.

14-2

7. *LIST - A special variable defined with address of location

1. See the list processing section of the chapter on
FORTRAN for details of its use (IX.B.l)

Other names in the load map are subroutine name paired
with the location they are loaded. If a load map is typed
when all subroutines are not loaded (MR), those names followed
by * indicate subroutines needed which have not been loaded.
The number following tells the last place these routines were
called from.

If the *HIGH number was 5000, the user should type:

user: SAVE *TEST 100 5000 1000
response: OK

Generate a core image file named *TEST containing location
100 to 5000 as data. Also save a vector of machine initial
conditions for restoration when the file is resumed. The
machine conditions are given beginning as the fourth parameter
of the SAVE command. They are in order program counter, A-
register, B-register, index register and keys. In this parti-
cular case the program counter initial conditions is set to
1000 octal because the main program was loaded beginning at
location 1000. All other machine registers are left to the
value they were the last time control was returned to DOS. In
particular, the keys are set to indicate extended mode, as the
loader runs in extended mode and was the last program to
return to DOS. 1In this way, *TEST is saved to run in the
extended addressing mode, the mode it was loaded in. The user
may specify all machine registers explicitly if he wishes.

The above step should always be taken by the user before

running his program so that if his program fails, he may rerun
it for debug purposes without reloading.

14-3

C. How to Find Program Errors by Examining the Load Map

Often, a user will make an error that is not caught by the
compiler but can be detected on a load map.

1. Failure to get a "load complete" Message

This can happen if subroutine or function names have been
misspelled either in a call statement or the subroutine state-
ment. Also, if a subscripted variable has not been dimensioned,
FORTRAN will assume the variable is actually a FORTRAN function
and the name will appear in the load map.

2. Library Routine Examination

FORTRAN will automatically convert real-to-integer and
integer-to-real. This conversion is done by subroutines CS$12
and C$21. Often, a user will be working strictly with integers
or real numbers. In this case, the presence of C$12 or C$21
indicates the user has not declared all his variables to be of
the correct mode. The user should examine his program care-
fully and correct these errors.

D. Loading Two or More Files

Let us call these binary files B+«Tl, B<«T2, and B«T3. The load-
ing procedure would be:

user: CLRCOR
response: GO

OK
user: LDR B+«Tl
response: GO

MR, OK
user: START B+T2
response: GO '

MR, OK

user: START B<«T3
response: GO
MR, OK

The user may now load the FTNLIB as normal if he wishes.

E. Loading the FORTRAN Library

The format analyzer subroutine FS$IO must be loaded below
40000 octal. A user should check his load map to make sure
this is the case. If formatted I/0 is not used, then there is
no problem. In a large program, a user can load FSIO in lower
core by loading a few subroutines, one of which contains for-
mat statements, loading the FORTRAN library, the rest of his
program, and then the FORTRAN library again. The FORTRAN 1i-
brary, and other libraries in the U directory contained at the
beginning a library mode block which causes only those routines
necessary to be loaded from the library. This flag is added to
the library by the Binary Editor. See Chapter XVI.

F. Loading Large Programs

l. Problem

If a user loads a large program, he may get a memory over-
flow message (MO) from the loader. He should first determine
what caused the memory overflow message, as many problems may
cause this message. Some of these problems can be solved by
an alternate loading procedure as explained in part 2.

The loader will abort a load after filling up about 23,000
memory locations. The DDP-516 has a 32,768 bank of memory.
When a user is loading a program, part of this memory is used
by the operating system and the loader. The following is a
map of the memory with locations given in octal.

0-100
Reserved for hardware bootstraps, interrupts, etc.

100-777
Reserved for user program links(indirect refer-
ences between sectors).

1000~-57000 (approx.)

Available for user programs. The loader normally
uses this space,

14-5

57000 (approx.) - 63777
The loader program.

64000-64777
This space is reserved for DEBUG, a machine
language debug package often used to debug user
programs.

65000-66117
Empty.

66120-77777
Disk Operating System.

After a MO error message is encountered, the user should
get a load map and examine the first two lines of the map. The
MO error is encountered for one of four reasons.,

1) The program's code has overlapped the program's common
area., Common is allocated downward starting at 57777
octal. That is COMMON normally overlaps the loader.
The user can detect this problem by comparing *PBRK
and *COMN to see if they match. If so the user
should use the alternate loading procedure.

2) The programs code has overlapped the loader names
table. This is the problem if *NAMES is equal to
*PBRK. The user should use the alternate loading
procedure,

3) The program has filled up the link table. This is
true if *BASE is 1000. See part 3 for solutions.

4) None of the above conditions can be found by examining
the load map. The message can also occur if the user
has preset common variables in his FORTRAN program.
The comiler will not catch this bug. The user should
examine his program for this problem.

2. Alternate Loading Procedure

Normally, Common is allocated downward from 57777 octal,
because if a user has all 8 DOS disk file units open at once,
the area from 60000 to 67777 is used for DOS file buffers. 1In
HLDR, a version of the loader, Common is allocated downward
from 63777 allowing 4000 octal more memory for user programs.
Only two files may be open simultaneously during program
execution if this loader is used.

To use HLDR simply type HLDR in place of LDR when loading
programs.

If the user's program still will not fit, overlays must
be used. See chapter XVIII on Overlays.

3. How to Minimize Links

A recurring problem faced by users with large programs
on the DDP-516 is running ocut of room in sector zero for links.
See Library memo #36 for the procedure to minimize links.

14-7

XV EDITOR

A. Introduction

The EDITOR is an on~line program within the DOS software
system which allows the user to create files and edit them by
context., This section serves as a USER'S GUIDE to the EDITOR.

The EDITOR is entered from the supervisor by means of the
command

ED 'filename'

This command will cause a search of the user's file
directory. If 'filename' is found it will be read in the EDIT
will be printed (indicating the user is in EDIT MODE). If
'filename is not found, or no filename is specified, INPUT will
be printed and the user will be placed in high-speed input mode.
All filenames must be alpha-numeric beginning alpha, i.e., no
', 14', etc.

B. Error Restart

An error that takes program control out of the editor can
be recovered by starting at 1000 octal. The editor starts at
1001 octal and a new file may be edited by START 'filename'
1001.

C. File Size Restriction

The editor brings the entire file into core for editing.
If the file is too large (longer than 2000 lines of DAP code),
the editor will type BUFFER OVERFLOW LOADING. The user should
at this point use an alternate editor. To use this editor
type FILED 'filename'. FILED is a file-to-file editor which
uses two auxiliary files while in use, EDT1 and EDT2.
Unlimited length files can be handled FILED cannot "back up"
one or more lines in the text as ED can, but can go to the
beginning of the text repeatedly by means of the TOP command.

D. High-Speed Input Mode

When a user wishes to create a file or make additions to
an old file he enters this mode. High-Speed input mode allows

15-1

the user to type at any speed he wishes because no response is
typed for input lines. When the user types two successive
.NL.'s, the EDITOR will place the user's console in EDIT MODE.

E. Edit Mode

When the user enters the EDIT MODE, EDIT is typed out on
the user's console. From this point until the user types two
.NL.'s the user's console will remain in this mode. All EDIT
changes take place immediately, so that the user may make
recursive medifications to his file.

The user's file is made up of groups of characters, delim-
ited by .NL. characters. The EDITOR makes use of these .NL.'s
to edit files on a line-oriented basis. The user may imagine
a pointer that can move down (or up) a "listing" of his file.
The user is, at any point in time, looking at only a single 1
line of his file - the one at which the pointer is stationed.
The pointer is not affected by transitions between EDIT and
INPUT modes and can only be moved by specific command while
in the EDIT mode, or by typing lines in the INPUT mode.

If the user enters EDIT mode from INPUT mode the pointer
is positioned at the last statement typed by the user while
in INPUT mode. If however, the user begins in EDIT mode the
pointer is positioned at the first line of the file. If the
end of file is reached by an EDIT request the comment:

BOTTOM

is typed out. The pointer will be positioned at the last line
of the file.

Any command which is not a legitimate EDITOR request will
cause a "?" to be printed. Requests may be upper or lower case
or any mixture,

The arguments of a request must be separated by at least
one space. Most requests may be abbreviated, and their
descriptions (and abbreviations) appear in the EDIT REQUESTS
section. No spaces are needed between requests and integers.
Several requests may appear on a line if they are separated by
commas.

F. Display Feature

The command VERIFY if followed by (DISPLAY will cause all

15-2

subsequent output to appear on the IDI display. Output can be
switched to the teletype by giving the BRIEF command. Lines of
text output appear until the screen is full, at which time the
bell is rung and the editor waits for you to examine the screen.
The next character typed following the bell is not interpreted
as an editor command but as a control to the display. A new-
line or carriage return causes the display to "move up" one
line. A "vertical tab" causes the picture to be pushed up six
lines, whereas any other character causes the picture to be
pushed up by 30 lines.

G. Tabulation

To facilitate ease of input, the EDITOR makes use of tab
stops. These stops are originally set at 6 and 12 characters
from the left, but by using the TABSET request (see EDIT
REQUESTS) up to 8 tabs can be set anywhere along the line. To
use tab feature, the user simply types a backslash (\). This
character is interpreted as meaning fill in this line with
blanks until the next tab stop. Hence, if one wishes to input
the following DAP code: (Periods represent spaces in line).

A, . . ,DAC. ., . .STOP
he needs simply type:

A\DAC\STOP

H., Erase and Kill Characters

Lines typed to the editor may be changed if an error is
made. The character " is the erase character. Typing this
character will cause the preceding letter to be deleted from
the line. Successive use of this character will cause succes-
sive characters to be removed. A "?" will "kill" the entire
input line up to the ?. The erase and kill characters are
effective whether in the INPUT or EDIT mode. The erase or kill
character may be changed by means of the ERASE or KILL edit
request,

I. Special Characters

The character '#' will match any number of spaces in a
LOCATE or FIND command.

The character "!" is a wild card character and will match
any character., It cannot be used in the CHANGE command.

15-3

The character "

following conventions:

CARAT is the logical escape with the

A000 octal character

A
L move to lower case

A
U move to upper case

J. Edit REQUESTS

In each of the following requests, if the request causes
the pointer to reach the top of the file, TOP is typed and the
request is terminated. If the request causes the pointer to
reach the bottom of the file, BOTTOM is typed and the request
is terminated. There is a dummy "null"” line at both the top
and the bottom of the file which is for editing convenience
and does not appear in the file when it is on the disk rather
than in the editor buffer in core. The letters which compose
the abbreviation for each command are underlined.

PRINT 'n'

If 'n' is positive, the PRINT request prints 'n' lines

starting with the line at which the printer is currently

positioned. If n=0 or left unspecified, one line will

be printed. If 'n' is negative, the PRINT request moves

the pointer up 'n' lines and prints that line. Upon
completion, the pointer will be left pointing to the
last line printed. If the end of file is reached,
BOTTOM is typed and the pointer is positioned at the
last line of the file, a dummy "null" line. If the
print request causes the pointer to reach the top of
the file, TOP is typed and the pointer is stationed .
there, at a dummy "null" line. A print request when
the pointer is either at the top or bottom of the file
will type .NULL. indicating a dummy blank line. If

'n' is negative when using FILED, the command is ignored.

NEXT 'n’

The NEXT request moves the pointer forward if n positive,

or backward if n is negative 'n' lines from the current
line. If n=0 is not specified, it is assumed to be 1
and the pointer will be moved to the next line in the
file. If 'n' is negative when using FILED, the command
is ignored.

15-4

TOP

The TOP request causes the pointer to be positioned at
the first line in the file, a dummy "null" line.

BOTTOM

The BOTTOM request moves the pointer to the last line
of the file, a dummy "null" line.

FIND 'string'

The FIND request moves the pointer forward from the
line following the current line to the first line
beginning with 'string'. This facilitates location
of lines by statement labels. If an end of file is
reached, the pointer is positioned at the last line
of the file.

LOCATE 'string'

The LOCATE request is used to move the pointer forward
from the line following the current line to the first
line containing 'string'. The full line is scanned.

CHANGE % 'stringl' % 'string2' % 'n' G

The CHANGE request examines 'n' lines starting at the
line at which the pointer is currently positioned. If
'n'=0 or left unspecified, it is assumed to be 1 and
only the current line will be examined. '%' is the
delimitor and can be any character except the break,
erase, or kill characters. 'Stringl" and 'string2"
are arbitrary character strings and may be of differ-
ent lengths. The action of this request is to search
the next 'n' lines for occurrences of 'stringl', If
it is found, it is replaced by 'string2'. If 'G' is
present (GLOBAL) every occurrence of 'stringl' in a
line will be replaced by 'string2'. Otherwise, only
the first occurrence of 'stringl' will be replaced

in each examined line.

RETYPE 'line'
The RETYPE request causes the line pointed to by the

pointer to be replaced by 'line'. The Pointer is not
moved by this request.

15-5

ENSERT 'line'!

DELETE

The INSERT request inserts a single line 'line' after
the 1ine currently pointed to without changing to
high-speed input mode. The pointer is repositioned
at the inserted line.

lnl

DELETE TO 'string'

VERIFY

The DELETE request deletes 'n' lines from the file
starting with the line at which the pointer is cur-
rently positioned. (If 'n' is negative, the command
is ignored.) 1If n=0 or is not specified, it is
assumed to be 1 and the current line is deleted. The
pointer is left at the line following the last line
deleted. If the end of the file is reached, all the
lines up to that point will be deleted and BOTTOM will
be typed. The DELETE TO 'string' option deletes all
lines including the present one up to a line contain-
ing 'string' as would be found by the LOCATE command.

VERIFY (DISPLAY

BRIEF

The VERIFY request makes the EDITOR 'talkative'.

After a verify request, the CHANGE, NEXT, TOP, FIND,
LOCATE, RETYPE, and LOAD requests will all print out
the current line after the changes (if any) have been
made. The command VERIFY is followed by (DISPLAY will
cause all subsequent output to appear on the IDI dis-
play. Output can be switched to the teletype by
giving the BRIEF command. Lines of text output appear
until the screen is full, at which time the bell is
rung and the editor waits for you to examine the screen.
The next character typed following the bell is not
interpreted as an editor command but as a control to
the display. A newline or carriage return causes the
display to "move up" one line. A "vertical tab"
causes the picture to be pushed up six lines, whereas
any other character causes the picture to be pushed

up by 30 lines.

The BRIEF request makes the EDITOR quicker because
response is kept to a minimum, The PRINT request is
the only one which will print any lines of text. This
is the initial mode of the EDITOR.

15-6

LOAD 'filename'

The LOAD request loads file 'filename' after the cur-
rent line in the EDITOR file. After the file is
loaded, the pointer points to a "null" point following
the loaded file. The load request is an easy way to
concatenate files into one large file. If the filename
is not found in the user's ufd, the editor will return
to DOS which will type "FILE NOT FOUND". To restart
the editor type "START 1000".

FILE 'filename'

QUIT

INPUT
INPUT

PUNCH

ERASE

The FILE request writes the EDITOR file out on a file
called 'filename'. If 'filename' is not given the
EDITOR assumes it is to write the EDITOR file out on

the original file specified in the EDIT or LOAD commands.
If no filename has yet been used with the EDITOR or

two or more filenames have been used, the EDITOR will
type NAME = ? as an error message. The user must re-
issue the request with a filename.

This request returns control to DOS without writing
the editor file.

(PTR)

'nl

l%l

The INPUT request places the user's console in high-
speed INPUT mode, after typing the message 'INPUT'.
Paper tape can be read on input with INPUT (PTR) but
no erase, kill, or escape characters are interpreted,
and logical tabs are interpreted. A blank line re-
turns to EDIT mode.

The PUNCH command will punch N lines on the paper tape
punch followed by a .LF., .CR., and a 20 inch trailer.

The eighth punch is never punched except for the .CR.
character,

The ERASE request changes the current erase character
to the character '%' (any ASCII printable character).
If '%' is any break character, however, the request

is ignored. The erase character is initially set to

15-7

"m1 Note: The break characters are the current erase
and kill characters plus ',',';','+','-', and .NL.

KILL '%'

The KILL request changes the current kill character to
the character '%' (any ASCII printable character). If
's' is any break character, however, the request is
ignored. The kill character is initially set to ter,

TABSET 'nl' 'n2' ...fn8'

The TABSET request sets the tabs to the spaces numbered
X1 (up to 8 tabs stops may be set). The x; must be in
numberically increasing order and separated by spaces
and must be less than 72.

PTABSET 'nl' 'n2' ...'n8'

Physical tabs are implemented on output and are preset
to 0, i.e., no tabs. The console teletype does not
have tabs. The time sharing ASR-35 terminals do have
tabs and the time sharing editor has the tabs preset
to 6 11 21 31 41.

K. String Buffers

NOTE: String buffering is mainly for use under a
Q.E.D.-type of editor. A description of it is given here for
general information but its value in the present version of
the EDITOR is marginal.

The EDITOR has three one line buffers into which
character strings can be stored and acted on. The commands
which work on string buffers are MOVE and XEQ. (See EDIT
REQUESTS) . The MOVE command moves one line of code from one
specified buffer to another. The buffers are STRA, STRB, STRC
(the three string buffers), EDLIN (the buffer containing the
latest command line typed) and INLIN (the buffer containing the
current line being edited). The XEQ command causes the speci-
fied buffer to be taken as a command line and executed.

The value of string buffers comes when a certain
command, or sequence of commands must be done over and over
again in a file. For instance, in a FORTRAN program one
might want to delete all occurrences of the line X=3. One
could do this by the following sequence of commands:

15-8

If however, one can use a string buffer the commands are:

TOP

I L X=3, D1, XEQ STRA

MOV INLIN STRA

XEQ STRA

TOP

D1
This is much easier to use if there are a large number of
changes to be made, but it is still a rather awkward way of
doing things. This is because in order to load a string buffer
it is necessary to load INLIN and then move the character line
to one of the string buffers. This, however, has the unfor-
tunate effect of leaving an extraneous line in the file. There-
fore, it is necessary to go back and delete it later.

For another example, suppose that before each labelled
COMMON area you want to remove the existing comment card and
replace it with another comment. Then one could use STRB to
hold the comment to be inserted and do the following:

TOP
I C COMMON AREA

MOVE INLIN STRB

15-9

L. COMMON, N-1, MOVE STRB INLIN, N2, XEQ EDLIN

D1

Note that the MOVE command writes over what was previously in
the buffer it is moving a string into. Therefore in the above
example the MOVE command replaces the input line in INLIN with

STRB. By using XEQ EDLIN we continually execute the current
command line,

MOVE 'buffer' 'buffer'

The MOVE request moves one line of code from one
specified buffer to another. The buffers are STRA,
STRB, STRC (the three string buffers), EDLIN (the
buffer containing the latest command typed), and
INLIN (the buffer containing the current line being
edited). See the section on string buffers for
examples of use of the request.

XEQ 'huffer'!

The XEQ request causes the specified buffer to be taken
as a command line and executed. The possible buffers
are STRA, STRB, STRC, EDLIN and INLIN. See the

string buffer section for examples of use.

This is a request meaning "execute (XEQ request) this
command line again". It is short for XEQ EDLIN.
Example to delete everything in a file from the current
line to the top of the file, type

DELETE, NEXT -1,*

TOP is typed when done.
To type out all DO statements in your program type

TOP

LOCATE DO, PRINT, *

15-10

XVI BINARY EDITOR

A. Introduction

EDB, a binary editor useful for operation on DDP-516
loader- compatlble object text blocks as generated by the
FORTRAN Compiler and DAP Assembler programs, is available for
creating and updatlng library subroutine files on disk or
paper tape. EDBIN is operational under both JULYDOS and TSDOS
(note, however, that the high-speed paper tape reader/punch
does not operate under TSDOS).

B. Features

(1) Input may be from disk or paper tape; output may
be to disk or paper tape.

(2) Multiple input files may be open concurrently.

(3) A large command set for creating and updating binary
files.

(4) Explicit error messages.

C. Initialization Procedures

EDBIN is loaded and initialized (at location 1000) by
inputting, through the ASR keyboard, a command line beglnnlng
with 'EDB'. In general, the command line for initialization
is as follows:

EDB (INPUT FILENAME) (OUTPUT FILENAME)

If either the input or output file is on paper tape, the
appropriate filename is '(PTR)'. Output is optional, and, as
a result, an output file need not be specified. Note that,
when an output filename to disk is specified, disk storage is
allocated to a file by that name.

When properly initialized, EDBIN types 'ENTER' and then
loops for user command input.

16-1

D. User Commands

Commands to EDBIN consist of the following (parenthesis
means optional) :

VERIFY Places the editor into 'verify'
mode. All subroutine names and
entry points, as they are en-
countered by EDBIN, will be out-
put to the teletype. Unless
otherwise specified by a TERSE
or BRIEF instruction, EDBIN is
assumed to be in the 'verify'
mode.

TERSE Places the editor into 'terse'
mode. The first name only of
each subroutine name block as
encountered by EDBIN will be
output to the teletype.

BRIEF Places the editor into 'brief'
mode. This inhibits the print-
out of all subroutine names and
entry points as they are en-
countered by EDBIN.

TOP or T Moves the binary location pointer
to the top of the binary input
file., Useful only when the input
file is on disk.

OPEN (NAME) Opens a file for writing only
(output file). NAME must be
specified for opening a file on
disk. Close ouf: previously
open output file if any.

NEWINF (NAME) or Closes the current binary input
N (NAME) file and opens a new file for
reading only (input file). The

binary location pointer will be
placed at the top of the new file.
NAME must be specified for opening
a new file on disk.
FIND NAME or Moves the binary location pointer
F NAME to a position on the input file
(disk or Paper tape) correspond-
ing to the beginning of a sub-
routine which includes NAME as
an entry point. If NAME is not
encountered on the input file,
' BOTTOM.' will be output to the
teletype.

16-2

COPY NAME or
C NAME

INSERT NAME or
I NAME

GENET (G) or
G (G)

OMITET (G) or
0 (@)

Copies all main programs and sub-
routines (omitting special action
blocks; i.e., end of tape blocks,
library mode flag blocks, force
load flag blocks, etc.) from the
current position of the binary
location pointer to the begin-
ning of a subroutine called NAME
or to the beginning of a subrou-
tine which includes NAME as an
entry point. If NAME is not en-
countered, copying will proceed
to the bottom of the input file
and '.BOTTOM.' will be output to
the teletype. This command moves
the binary location pointer.
Opens a second file for reading
only and copies it entirely (omit-
ting all special action blocks)
onto the output file., Upon
completion, the second input file
is once again closed. During an
INSERT, the binary location
pointer is unmoved and remains
positioned on the original input
file. An INSERT command operates
only when the second input file
and the original output file are
both on disk (however, the origin-
al input file may be paper tape).
Copies the subroutine to which
the binary location pointer is
currently positioned and follows
it with an end-of-tape mark (203g,
223g on paper tape; zero word

on disk). If a global copy is
requested, all subroutines from
the current position of the bin-
ary location pointer are copied,
each followed by an end-to-tape
mark. When the bottom of the
input file is encountered,

' .BOTTOM.' is output to the tele-
type. This command moves the
binary location pointer.

Copies the subroutine to which

the binary location pointer is
currently positioned. If a

16-3

QUIT or Q

global copy is requested all sub-
routines from the current position
of the binary location pointer
are copied, omitting all special
action blocks. When the bottom
of the input file is encountered,
' . BOTTOM.' is output to the tele-
type. This command moves the
binary location poi pointer.
Closes all files and exits to the
operating system. (When paper
tape is the output file, and end-
of-tape mark is punched before
closing).

Thus far, all commands with the exception of GENET complete-
ly disregard (i.e., omit) special action blocks. The following
instructions to EDBIN are included specifically for generating
special action object blocks on the output file.

RFL

SFL

ET

Generates a reset-force-load-flag
(library mode) block on the out-
put file. This block is used to
initialize a true library file
and enables the selective loading
of subroutines within the file
until a set-force-load-flag (force
load mode) block is encountered.
This command operates only when
output is to disk.

Generates a set-force-load-flag
block on the output file. This
block is used to reenable the
DDP~516 Loader Program in force
load mode. In this mode all
subroutines, whether or not re-
quired, will be loaded (assump-
tion is that the user knows what
he is doing). A true library
file should be terminated by an
SFL block followed with an end-
of~-tape mark. This command oper-
ates only when output is to disk.
Generates an end-of-tape mark on
the output file (203g, 2234 on
paper tape; zero word on disk).

EDBIN opens all lines with 'ENTER' and marks most errors
with '?'. Other error messages include

16-4

FILE NAME DOES NOT EXIST OR ALREADY OPEN
USER MUST SPECIFY INPUT FILE

YOUR INPUT FILE LOOKS LIKE SOURCE CODE
CHECKSUM ERROR-IRRECOVERABLE

BLOCK ERROR~-IRRECOVERABLE

E. Examgles

Several examples are given below, each with an example
and step-by-step explanations. In each description UPPER CASE
indicates machine response whereas lower case is user action.
Letters to the left are references to notes which follow.

1. To delete routines from a library.

EX. In user's drectory he has a library, LIBE, containing 6
files, He wishes to create a new library, without 2 of the
routines in it.

contents of LIBE

ROUT 1

TEST 1 <———mwo
TEST 2 <«<—————
ROUT 2

More

Again

} to be removed

Attach user's
OK

a) edb libe file
GO

b) ENTER, brief

c) ENTER, copy testl
BOTTOM

d) ENTER, find rout2

e) ENTER, copy all
BOTTOM

£) _{ENTER, et

ENTER, q
OK

l6-5

Notes

a) This command puts you into the binary editor. The first
name following edb is the name of the original file. The
second name is the name of the created file. If you intend to
edit the file, you must include the 2nd name--different from
the original one. If you do not, the machine will balk at
first "copy" instruction it receives--it does not know where
to copy on to.

b) When you first enter edb, after ENTER, if you put "brief"
the system will not type out everything it does. The default
option is "verify".

c) The "copy" command will copy (into the created file) all
the files up to but not including the file name you give it.
Here routl (but not testl) is copied into the file FILE.

d) The "find" command sets the pointer at file name given
(Rout2).

e) "copy all" will copy everything from ROUT2 (where the pointer
is) to the end of LIBE into FILE.

f) These two commands generate an end-of-tape mark and put you
back into D.O.S.

NOW
contents of LIBE contents of FILE
ROUT1 ROUT1
TEST1 ROUT2
TEST2 _ MORE
ROUT2 AGAIN
MORE
AGAIN

If you wish to retain the name "LIBE" you must just "delete
libe" to get rid of old version then "name file libe" to change
the name "file" to "libe".

2. To put subfiles of one library into separate files.

16-6

Ex.

a)

b)

c)
d)

e)

£)

In user 1 directory FILIN exists. It contains 3 different
subroutines FILEl, FILE2, FILE3. You wish to put these in 3
separate files to be handled individually,

attach

contents of FILIN

FILEl
FILE2
FILE3

user

edb filin filel

GO
ENTER,

ENTER,
BOTTOM

ENTER,
ENTER,

ENTER,
ENTER,

ENTER,
ENTER,
ENTER,
ENTER,
OK

brief’

copy file2

et
open file 2

copy file 3
et

open file 3
copy all

16-7

Notes

a) You go into the binary editor with original file name
FILIN and indicate you wish to create a file named FILEl.

b) "copy" copies into filel from filin all things up to,

but not including file2.

c) Open file 2 will close file 1 and open file 3 for writing.
d) Indicate how much to copy (in this case you indicate that

copying is done from where the pointer is up to, but not in-
cluding file3).

e) "copy all" will instruct that everything from where the
pointer (at file3) is to be copied.

NOW

contents of FILIN

FILEl
FILE2
FILE3

Aside from FILIN, your directory also contains three more files
--(the binary versions of) filel, file2 and file3. If you
wish, you may delete FILIN now.

3. To combine files under one name.

Ex. USER1l now has FILEl, FILE2 and FILE3 in his directory. He
wishes to combine them under 1 name.

16-8

Userl's directory

filel
file2 remember---these are all binary versions of the
file3 programs.

attach user 1

a) edb filel filout
GO
ENTER, brief
ENTER, copy.all
BOTTOM

b) ENTER, insert file2
BOTTOM
ENTER, insert file3
BOTTOM
ENTER, et
ENTER, g
OK

Notes

a) The file to be put in 1lst is filel so it is the lst name
after edb. FILOUT is indicated as the file to be created.

b) To add more files (after filel) all you need do is "insert"

them in order. No need to go back to D.0.S. as long as they
are the binary versions of the program.

NOW

userl's directory

filel
file2
file3
filout

16-9

XVII INTERACTIVE DEBUGGING AIDS

A. DEBUG

DEBUG, a programming aid for on-line debugging, is loaded
(into location 777, and 64000 through 64777g) and initiated in
the extended mode under both JULYDOS and TSDOS by inputting,
through the ASR, the command word 'DEBUG'. When initiated
(at 64000g), DEBUG types a '$' and then loops for user input.

Commands to DEBUG are as follows (parenthesis mean option-
al):
SA Dump, in octal, the contents of
the A-Register

$A 'OCTAL VALUE' Set the contents of the A-Regis-
ter to the specified octal value

$B Clear all breakpoints

$B L1 Set breakpoint at L1 (4 maximum)

$B L1 L2 (L3) Set breakpoint at L1, dump L2-L3
on break

$C (N1) Continue execution from breakpoint
N1l times

SD L1 (L2) Dump, in octal, L1-L2, open L1

for new value

S.LF. Dump next location, open it for
new value ;

$'OCTAL VALUE" Replace current open cell with
specified octal value, then dump
next

$M L1 L2 M1 M2 Dump every cell in L1-L2 for
which AND (M2, XOR(LIST(L), M1l))
.EQ.O

$S (Ll1) Start execution at Ll1. When no
L1 is specified, execution begins
at location specified in the last
'$S L1' operation (under JULYDOS,

17-1

when L1 has never been specified,
execution will proceed to super-

visor)
$Z L1 (L2) Zero all cells in L1-L2
? Ignore all characters from last

'S' to current '?'

DEBUG opens all lines with '$' and marks all errors with
1219

B. HAMBUG

Hambug is a run time debugging aid written by Jim Hamilton.
It occupied locations 20000-22777 vital and 777 octal with a
starting address of 20000 octal,

The program expects input from the typewriter in the form
of command lines. Any command line may be modified by the kill
character (?) or the erase character (#). The terminating
character (carriage return) will cause Hambug to execute the
command line,

The main advantage of HAMBUG over debug is the ability to
dump locations in instruction formats. Other major advantages
are the ability to dump or change locations in character or
decimal mode.

The following is a description of the commands. Actual
commands are underlined.

I. Mode Changing Commands

a. I - set mode to instruction
b. D - set mode to decimal

c. O - set mode to octal

d. H - set mode to character.

Mode is initially set to octal.
II. Dump Core Locations

a. 1000 - dump location 1000 octal in the mode previously

set

17-2

III.

See

If location 1000 contains 120240 octal, output will be:

1000 121240 octal mode
1000 -20319 decimal mode
1000 character mode

(space space)

1000 JST*1240 instruction mode

Section VIII for a detailed description of the modes.
1000,1003 dump locations 1000 to 1003 inclusive

If 1000-1003 contain and mode is octal, output is:

1000 000001
1001 000001
1002 000001
1003 000001

1000/3 -~ dump 3 locations

starting at 1000
1000+5-1/3-1 - dump 2 locations
starting at 1004

Change Core Locations

a.

177

Octal Mode

To put 3 location 200 the command is:

U 200 3 - Update location 200 will 3

To put 77 in location 200 and 277 in location 201 and
in location 202:

U 200 77 277 177

To put 101 in locations 5000 to 5005:

U 5000,5005 101 or
U 5000/6 101

Decimal Mode

17-3

Update location 1005 octal with 97 decimal

U 1005 97
Example of other

U 10/100 297
U 103, 104 9971

c. Character Mode

Update 1000 with
1001 with
1002 with
1003 with
1004 with
is done with the

update commands in decimal mode are:

characters CH
characters AR
characters AC
characters TE
characters R

command below

U 1000/CHARACTER/

The / character in this case acts as a delimitor
although any character except ?, #, can be used.

The same result can be achieved by

U 1000 $CHARACTERSS

d. Instruction Mode

Updating while

IV. Start Command

Hambug stores within

in instruction mode is illegal.

itself saved values of the active

machine registers. These values are initially set to zero.
These registers may easily be accessed and changed using HAMBUG.

S 1000

Move saved A, B, X, K registers to the

- active registers and jump to 1000
- - dump saved A register
- - dump saved B register

dump saved X register
- dump saved K register

A 1000 - Update saved A register with 1000

|t} < R XpO| 3
1
I

~ This command is meaningless and will not

work as it does in DEBUG.

17-4

V. Breakpoint commands
B 1000
Put breakpoint at 1000. When user program is
started by use of the S command, whenever control
passes to location 1000, control will trap to HAMBUG.
Active registers are stored away within HAMBUG and
"BREAK", is typed out,.
P
Proceed from breakpoint. Move saved active machine
registers to A,B,X,K and start at the location of the
breakpoint +1.
B 1010
Remove breakpoint from 1000, insert one in 1010.
B
Remove breakpoint,
VI. The Special Character (.)
Period (.) always has the value of the 1lst location dumped
or updated on the most recent dump/updat command. (.) can

only be used with dump commands.

Example of use
Octal mode

1000/1
output is
1000 000000

./l (Immediately after last command)

output is

1000 000000

~1/1

output is

777 000000

2000/10 followed by ./l will give
2000 000000

17-5

VII. Carriage Return

Carriage return typed alone is the same as the command to

typed the next location.

VIII. Format of Modes on Dumping
a, Instructiaon Mode

All generic instructions are printed with no address.

All input-output instructions are printed with 4
octal digits following the instruction.

All memory reference instructions are printed along
with 5 octal digits which represent the actual address
referenced by the instruction (indirect references not
traced out). —__

All shift instructions are followed by the decoded
shift count.

If the indirect bit is set, a * is printed adjacent
to the instruction. -

If the index bit is set, a ,1 is printed after
the address part of the instruction (with the exception
of STX and LDX instructions).

If the word resembles no instruction, Hambug will
type out the letters *** followed by 6 octal digits.

Examples
location octal instruction
15000 101040 SNZ
15001 130001 INA 0001
15002_ 103010 JMP* 15010
15003 142010 JMP* (00010,1
15004 141077 LLL 01

b. Octal Mode
All locations are printed as six octal digits.
c. Decimal Mode

All locations are printed as a variable number of

17-6

digits and as a negative number if the leftmost bit is

set.

ExamEles
octal decimal
000000 0
000014 12
177777 -1

77777 32767

d. Character Mode

All locations are printed as 2 characters

Example
octal character
146706 MF
142240 Dy,

IX. Miscellaneous

Multiple commands may be typed on the same line.

ExamEle
0 1000 D 1000

If 1000 contains 12 decimal response is
1000 000014
1000 12

List of all commands

refers to saved A register
insert and remove breakpoint
set mode to decimal

set mode to character

set mode to instruction

set mode to octal

proceed from breakpoint

"OHINUWw

17-7

refers to saved B register
start command
update command
refers to saved index register
carriage return) dump next location
1

~Xano

(o refers to current location
to dump any location, type its address in octal
K refers to saved keys
? kill character
erase character
C, TRACE
Introduction

A new debugging routine X16DEBUG has arrived from Honeywell
and promises to be a great improvement over the current DEBUG.
This memo contains a description of its availability and use.

Availability

X16DEBUG is currently available on DOS by typing TRACE. It
is one sector long and starts at 64001.

Command Structure

Each command consists of a single-letter function code;
followed by a colon and one or more octal values. Values are

separated by commas, and the last value used must be followed
by a carriage-return.

Values are right-justified octal integers, if no digit
follows a comma, the value is made zero.

First value is a starting address.

Second value, if used, is usually the end address of the
block started by the first value (function c,b,F,H4,L,S,V), or
an initial content for register 'A' (functions E,J, M,R,T).

Third value, if used, is either the start address of an-
other block (functions C,V) or an initial content for register
'B' (functions E,J,M,R,T), or an object pattern (functions F,S).

Other values are interpreted variously (see specific func-
tions).

If values V4 and/or V5 are unspecified, they are set to all
one's (177777).

ERRORS
A slash may be used to abort any input and return to start.

Function code is defined by last character before colon.
If wrong character is keyed, follow it with
Proper letter code for desired function.

Octal value fields ignore all characters except 0,1,2,3,4,
5,6,7,/, *,comma,carriage~return. To cancel an incorrect octal
value, key in "*", -
Note = If more than 5 digits are keyed, last 16 bits are used. |

Any attempt by the user program to change extended,
nonextended mode during interpretive execution is trap-
ped and the message CA is typed followed by a dump of
the instruction warning; the GOTS DDP-516 has been
modified so that, in the extended addressing mode indexing |
will occur before indirection if the effective address

is in sector 0 and is less than 32, The interpretive
execution part of TRACE has been modified to work cor-
rectly for our machine. Except for routines which have
been written in DAP by the user, this should be no

problem,

USE

Access Memory Words

A:V1(CR)

-Access word(s) in memory (starting) at location V1.
The 'DEBUG' program types out the address, V1, and its
content, then waits for keyboard input.

-To change the content, key in the new octal value, fol-
lowed by a 'CARRIAGE-RETURN'., The program then types
out the next higher address and its content.

-To progress to the next higher address without changing

the content of the current location, key in a 'COMMA',
(Characters keyed in before this 'COMMA' are ignored.)

17-9

-The look/change cycle continues until the operator keys
ina '/'.

Breakpoint Set

B:V1 (CR)
-Insert breakpoint link in object program at location V1.

-If object program is later executed, and if control
reaches location V1, an indirect jump through location
'00060 returns control to the 'DEBUG' program, which
prints the register contents, then awaits further com-
mands.

-Print format is given under functions 'E' and 'R’.
-Only one breakpoint can be inserted in a program, only
at the execution time, and is removed after each use.
However, the breakpoint address is retained for re-use,

and requires user action only to change it.

-If object program does not reach breakpoint, stop
computer manually, and re-start in 'DEBUG' at XX007,.

-To remove breakpoint completely, key in B:1(CR).

Copy Memory Block in Memory

C:V1,V2,V3(CR)

-Copy memory block at locations V1 through V2 into block
at locations V3 through Vv3-v2-Vl. If V2 does not ex-
ceed V1, only the word at location V1 will be copies
(into V3). If V3 lies between V1 and V2, the block
between V1 and V3-1 will be repeated cyclically until
location V3-V2-V1 has been written into.

Dump Memory Block to Typewritter

D:V1,V2 (CR)

-Dump memory block at locations V1 through V2 to ASR
typewriter. The basic typing format is 8 octal words
per line, preceded by the octal address of the first
word printed on the line. (if this address does not

17-10

end with a zero digit, appropriate spaces are inserted
to maintain column integrity.) Repetitious words are
suppressed as follows:

1) If the remainder of the current line is identical
to word last printed, the line is terminated.

2) 1If one or more subsequent lines are identical to
word last printed, typewriter skips one line.

Execute Subroutine

E:V1,V2,V3(CR)
-Execute subroutine by performang 'JST' to location V1.

~-Prior to subroutine entry, V2 is loaded into register
A, and (except on the DDP-416) V3 is loaded into regis-
ter B.

~-The subroutine return should be via indirect jump through
its entry point, incremented by 0, 1, or 2.

-Upon return from the subroutine, the 'DEBUG' program
prints the register contents as noted under function
'R', except that one or two meaningless words may pre-
cede the specified format to indicate that the sub-
routine has incremented its return link by 1 or 2.

High Speed Punch in Self Wading Format

H:V1,V2, (CR)

~High~-speed punch, PAL2 format, of memory block at
locations V1 through V2,

Jump Trace Object Program (Dynamic)

J:V1l,V2,V3(CR)

-Dynamically trace object program starting at location
V1, with registers A and B initially set to V2 and V3,
respectively. A diagnostic printout is produced prior
to the interpretive execution of any object JMP or JST
or HLT. (See function 'T' for further details and
restrictions,)

17-11

Low Speed Punch in Self Loading Format

L:V1,V2(CR)
-Low-speed punch, PAL2 format, of memory block at location

V1 through V2. Operator should turn on ASR punch
approximately two seconds after keying 'CR'.

Monitor Object Program for Effective Address (Dynamic)

M:V1l,v2,vV3,V4 (CR)

-Dynamically monitor object program starting at location
V1, with registers A and B initially set to V2 and V3,
respectively. A diagnostic printout is produced prior
to the interpretive execution of any object memory-
reference instruction whose effective address equals V4.
(See function 'T' for further details and restrictions.)

Patch Object Program

P:V1,V2(CR)

-Insert patch to V1 in object program at location V2, by
replacing instruction at V2 with jump to location V1.
Storing the displaced instruction at V1, and entering
function 'A' with value V1.

-Operator must key in desired patch, with suitable re-
turn,

-Note...Vl and V2 must lie in the same sector.

Run Object Program

R:V1,V2,V3(CR)

-Run object program by performing '"JMP' to location V1.
Prior to program entry, V2 is loaded into register A,
and V3 is loaded to register B.

—Control does not return to the 'DEBUG' program unless

a breakpoint is encountered, or the operator takes
over manual control via the computer console.

17-12

-If a breakpoint is encountered, the print format is:
DDP-516: INSTR (A) (B) (X) (KEYS)

WHERE KEYS REPRESENT VALUES OF C, DP, PMI, AND SC.

Search Memory Block Under Mask

S:V1,V2,V3,V4 (CR)

-Search memory block at locations V1 through V2 for
words equal to V3 under the mask V4. (If no mask is
specified, the entire word is tested.) When a match
is found, the address and its content are typed out,
and the search continues until location V2 has been
tested.

Trace Object Program (Dynamic)
T:V1,V2,V3(CR)

-Dynamically trace object program starting at location
V1, with registers A and B initially set to V2 and V3,
respectively. A diagnostic printout is produced prior
to the interpretive execution of each object instruc-
tion.

-Printout is formatted as eight octal words, represent-
ing:

DDP-516: (P) INSTRA EA EA (A) (B) (X) (KEYS)
NOTE...FOR NON-MEMORY-REFERENCE INSTRUCTIONS, THE THIRD
WORD = '077777 AND THE FOURTH REPEATS THE INSTRUC-
TION WORD,
T:V1,v2,v3,V4 (CR)
-Same as above, but printout produced only when P=V4.

T:V1,V2,V3,777777,V5(CR)

—-Same as above, but printout produced every VS instruc-

tions.

Note., . .If V5 is negative, its absolute value is used.
If V5 is zero, it is treated as 65536.

17-13

T:V1,V2,V3,V4,0(CR)

-Same as above, but printout produced the first time
P=V4, and every instruction thereafter.

-Restrictions on all 'T' functions (including 'J' and
M')

1. HLT instructions always cause printout, followed
by a STOP. Tracing resumes when the 'RUN' but-
ton is actuated.

2. Interrupts are executed in real time, not in
interpretive mode. Tracing is resumed when the
interrupt routine exists.

3. Tracing of input-output routines is only possible
if no timing constraints are violated by the
fact that internal speeds are reduced by a factor
of about 60 (AVG) to 80 MAX) when no printout is
involved.

Verify Memory Block Against Copy in Memory

V:V1l,V2,V3(CR)

-Verify memory block at locations V1 through V2 against
a copy in locations V3 through V3~V2-Vl. The program
types the address and content of each location in the
V1l block which does not match corresponding word in the
V3 block.

17-14

XVIII. OVERLAYS

A. Introduction

Many users have programs which either overrun memory
or overflow the link table.

Two system subroutines OVERLA and RETURN have been
written that allow a user to overlay one core image by
another, then return to continue execution of the original
core image if the user desires. Communication between the
two core image programs is through COMMON, which is not over-
laid. Any number of overlay segments may be used and to
any depth.

To make use of the overlay feature in an efficient
manner, the user must break his program up into two or more
semi-independent parts. Overlays will not be useful if the
segment is called into core thousands of times during the
execution of your program. Overlay segments take on the
order of 1 second to load into the machine.

B. Simple Example of Overlay

This example consists of a main program and one overlay
segment.

PROG 1

COMMON NUM
CALL TIDEC (NUM)
CALL OVERLA (6H*SEG,_,,0,0,0)

END
$0
SEG
COMMON NUM
CALL TODEC (NUM)
CALL EXIT
END
$0

Each program is compiled and loaded separately as if they
were two independent programs. Each program is loaded with

the FORTRAN library and any other routines until a load complete

18-1

message
COMMON .
to 2000

To
program

1.

2.

is given. The core images saved do not include
In this case each core image will occupy from 100
octal, approximately.

start the program, the user types R *PROGl. The

waits for the user to type a number

calls subroutine OVERLA with the first argument a
six character hollerith string equal to the name of
the saved overlay segment *SEG and starts execution
at 1000 octal in this case.

subroutine OVERLA resumes the file *SEG as if the
user had typed RESUME *SEG on the teletype. This
action reads in the core image *SEG and starts exe-
cution at 1000 octal in this case.

the program *SEG types out NUM on the teletype then
returns to DOS through CALL EXIT. The common variable
NUM was not changed by the resuming of the program
*SEG.

Pictorially, this is how the flow of control went

1000

*PROG *SEG
1000
V - Y
CALL OVERLA CALL EXIT [™ to DOS
NUM NUM

C. Overlay with Control Returning to Main Program

$0

PROG1

COMMON NUM

I=1

CALL TIDEC (NUM)

CALL OVERLA (6H*SEG, ., 6H*PROGX,64,1024)
CALL TODEC(I)

CALL EXIT

END

18-2

$0

SEG
COMMON NUM

CALL TODEC (NUM)

CALL TONL

CALL RETURN (6H*PROGX,0,0,0)
END

The above two programs are compiled and loaded separately as

before.

l.

To start the program type R *PROGl. The program

sets T to 1. It was 0 as are all unset variables
at the beginning of execution.

waits for user to type a number

calls subroutine OVERLAY with the same first argu-
ment as before. The second argument is the name
of the file on which to write the present core
image. The third and fourth arguments are the
beginning and ending locations of the present core
image.

subroutine OVERLAY writes out the present core image
with name *PROGX with limits 64 and 1024. The

saved program counter is set so that when *PROGX

is resumed, execution will start at the statement
after CALL OVERLA. Subroutine OVERLA now resumes
*SEG as in the first example.

the program *SEG types out NUM on the teletype,
followed by a new line

*SEG calls subroutine RETURN with the first argument
equal to the saved file to resume execution '

subroutine RETURN resumes the file *PROGX. Execu-
tion starts at the statement following CALL OVERLA
in that saved file

*PROGX (which is the same program as *PROG except
in a different stage of execution) types out I
which has previously been set to 1

control is returned to DOS.

—— e

1000

Pictorially, this is how the flow of control went.

*PROG *SEG *PROGX
* 1000 *
0 1000
- =
CALL OVERLA CALL RETURN CALL EXIT —*
DO

D. Description of Subroutines OVERLA and RETURN

CALL OVERLA(infile, outfil, sa, ea)
CALL RETURN(infile, outfil, sa, ea)

Subroutine OVERLA checks the second argument to see if
it is a name. If so, it saves a core image from location
sa to location ea as name outfil. Outfil must be a six
character hollerith string or a three word array containing
such. A program counter is saved with the core image such
that when outfil is resumed by a CALL RETURN, control passes
to the statement following the CALL OVERLA. Subroutine OVERLA,
after saving away the file outfil if that parameter is not
zero, then resumes the file with the six character hollerith
string infile, just as if the user had typed RESUME INFILE.

Subroutine RETURN is identical to subroutine OVERLA.
Only the name is different to help the programmer keep
straight what he is doing.

E. Several Overlay Segments, Each Returning to Main Program

Example:
PROG1

COMMON NUM
CALL TIDEC (NUM)
CALL OVERLA(6H*SEG1L"6H*PROGX,64,1024)
CALL TIDEC (NUM)
CALL OVERLA(6H*SEG2_"6H*PROGX,64,1024)
CALL TIDEC (NUM)
CALL OVERLA (6H*SEG3Ls, 6H*PROGX,64,1024)
CALL TODEC (NUM)
CALL EXIT
END
$0

18-4

$0

$0

SEG1
COMMON NUM
CALL TODEC (NUM)
CALL RETURN (6H*PROGX,0,0,0)
END

SEG2
COMMON NUM
CALL TODEC (NUM-10)
CALL RETURN (6H*PROGX,0,0,0)
END

SEG3
COMMON NUM
CALL TODEC (NUM+10)
CALL RETURN (6H*PROGX,0,0,0)

The reader is urged to figure out the output of the program
and the steps taken. The flow of control is drawn below.

100
1000

2000

100
1000

2000

PROG 1 *SEG1
100
1000
| S
2000
*PROGX *SEG2
* 100 _
N\ 1000 *
1.4
2000
*SEG3
100
1000 *
2000

18-5

————

e ——

Notice that when each segment is brought in, the same file
name is used to store the current main program core image.
The name should never be the same name as the file the user
resumes. Notice that no segment must be saved by the overlay
procedure because no segment is ever entered twice.

F. Nested Overlay Segments

This section contains an example of overlay segments
that call in other overlay segments then return to the main
program. Overlay segments may be nested to any depth.

Example:
PROG1
COMMON NUM
CALL TIDEL (NUM)
CALL OVERLA(6H*SEGl ,6HPROGX,64,1024)
CALL TODEC (NUM)
CALL EXIT
END
$0
SEG1
COMMON NUM
CALL TODEC (NUM)
CALL TONL
CALL OVERLA (6H*SEG2 ,6H*SEG1X,64,1024)
CALL TODEC (NUM-10)
CALL RETURN (6H*PROGX,0,0,0)
END
$0
SEG2
COMMON NUM
CALL TODEC (NUM+10)
CALL TONL
CALL RETURN (*SEG1X,0,0,0)
END
$0
*PROG1 *SEG1 *SEG?2

Flow of control:

Y = V=T ¥

*PROGX *SEG1X
K -]

DOS

18-6

G. Problems in Using Overlays

1. A user must be very careful in using overlays with
programs that use interrupts. A user must either
make sure his interrupt handling routine and any
routines it uses are never overlaid or turn off the
interrupts, overlay, then turn the interrupts back
on. In particular, graphics users should turn the
display off, overlay, then turn the display back
on through calls to CLKON and CLKOFF.

2. Debugging requires care. Case 1 is a user who sus-
pects a'bug in his main program. Using DEBUG, he
should insert a breakpoint as normal. Case 2 is
a user who suspects a bug in his overlay program.
The user should restore the program, insert the
breakpoint, then save the overlay program away as
if he had just loaded the program. When the break-
point is encountered in the overlay program the
expected action takes place.

3. The word GO is typed every time a program is loaded
by OVERLA or RETURN. This tells the user he has
entered a new core image. If this output is annoying
or delays a program give the command KILGO before
running your program. KILGO will prevent GO from
being typed.

18-7

[

XIX. MOVING LARGE PROGRAMS AND DATA IN AND OUT OF THE DDP-516

TCC personnel will get large programs in and out of the
DDP-516 if users request - ask Jan Carlson room 11-27., 1If
users wish however, they may do the work themselves.

A. Input from Cards

The user or operator must use the H832 and the DDP-516.
The user should have prior experience with the H832 before
using it. The card deck should be punched on an 0.29 card
punch and end with two cards containing $EOF starting in
column 1.

Step 1 - Turn on the H832.

Turn the key of the main processor to the on position.
Load the disk pack labeled DOS MASTER on the disk drive zero
and turn the drive on. Load your cards in the card reader.
Turn the power on, the transport on and push the START button.

Step 2 - Boot the Disk Operating System.

Turn to the console: All switches on the console should
be in the middle position except three. The abs-of switch
should be in the abs position; the device select switches
should indicate 13 in binary where "on" is down; and the IOP
1l switch should be down. Push the system and start buttons.
The disk should click for a few seconds and the following
lin should be typed on the console teletype - "DATE"

Step 3 - Initiate Card Reading

The user should now type the following

user: type date
response: TIME=
user: type time
response: OK

user: CARDIN

Turn to the DDP-516 teletype and type CARDIN name, where
name is a filename in which the cards will be stored. Cards
should be read by the card reader. When done, the 516 must
be restarted at 70000 octal and the CLOSE ALL command given.

19-1

B. Large Listings

Source files longer than five pages are usually printed
on the line printer when the user wants an up-to-date listing.

Step 1 - Turn on the H832
See step 1 of part A for details

Step 2 - Boot the Disk Operating System
See step 2 of part A for details

Step 3 - Initiate Line Printer Output

The user should now type the following

user: type data
response: TIME=
user: type time
response: OK

user: LPOUT

Turn to the DDP-516 teletype and type LPOUT name, where
name is the file to be sent to the line printer. Other files
may be sent by repeating the command to the 516 with new
file names. When done, the CLOSE ALL command should be given.

C. Input from Paper Tape

Users will rarely use paper tape for input. Paper tape
input is used to put new or revised software delivered by
Honeywell or some other 516 users. The paper tape can be
in one of three forms - source code, object code, or core
image.

To Load a source code tape into the DOS file system;
put the tape in the paper tape recorder, then

user: ED
response: INPUT
user:

response: EDIT

user: INPUT (PTR)

response: paper tape is read in; EDIT (if EDIT is not typed,
restart machine at 1000 octal and type CR.)

user: FILE 'filename'

response: OK

to load object code, put the tape in the paper tape
reader, then

19-2

user: EDB (PTR) 'filename'
response: ENTER

user: BRIEF

response: ENTER

user: COPY ALL

response: tape is read into file 'filename'
ENTER

user: ET

response: ENTER

user: QUIT
response: OK (back in DOS)

To load a core image tape, check the label to make sure
it will not load over the operating system (locations 66120
to 77777 octal). Put the tape in the reader, then

user: START 1
response: tape is read in, halts the machine when done or
returns to DOS.

user: restart the machine at 70000
response: OK

user: SAVE 'filename' 'sa' 'ea' 'pc'
response: OK

Saves the core image from location 'sa' to 'ea' with
saved program counter 'pc' for use with RESUME.

D. Output to Paper Tape

The user will generate paper tape output only when he
wishes to give a paper tape program to another DDP-516
installation.

To punch source code:

user: ED 'filename'
response: EDIT

user: PUNCH 10000

response: file is punched out
BOTTOM

user: QuUIT

response: OK (back in DOS)

19-3

To punch object code:

user: EDB 'filename' (PTR)

response: ENTER

user: BRIEF

response: ENTER

user: COPY ALL

response: file is punched out
ENTER,

user: QUIT

response: OK (back in DOS)
To punch core image code:

user: RESTOR 'filename'
response: OK

user: PALAP 24000 'sa' 'ea' 'pc'’
response: tape is punched
OK (back in DOS)

For a more complete description of the PALAP command see the
following section.

E. PAL-AP

Introduction

PAL-AP provides a user with the ability to punch, in
'invisible format', self-loading paper tapes of any desired
segment of memory. PAL-AP is presently useful for operation
with DOS.

Operating Procedures

PAL-AP is loaded (into locations 24000g through 25374g)
and initiated in the extended mode by inputting, through the
AST keyboard, a command line beginning with 'PALAP'. When
PAL-AP is initiated, a self-loading paper tape will be
punched, followed by a return of control to the supervisor
(signalled by the typeout of 'OK' on the ASR).

The command line for initiating PAL-AP is as follows:

PALAP 24000 (SA) (EA) (PC) (KEYS) (OUNIT) (BOOTSTRAP)

19-4

SA Starting address of segment
EA Ending address of segment

PC Value of program counter. The PC will be
set to this value after loading (using the
self-loading bootstrap) the punched segment.
This enables load and go without user inter-
vention. A PC value of zero will cause a
program halt after self-loading, and requires
the user to restart.

KEYS ' Value of program control keys (C-bit, DP mode,
EXTMD, shift count). The keys will be set
to this value by the self-loading bootstrap
prior to execution of the punched segment.

OUNIT Output unit. Output (punched tape) may be
produced from the ASR-33, ASR-35, or the
high-speed punch.

'0' - high-speed punch
'1' - ASR-35
'2' - ASR-33

BOOTSTRAP Loading address of bootstrap (PAL-AP
actually modifies this value to the LOGICAL
AND of the specified address with 37000g,
plus 566g. This enables the bootstrap to
be loaded from location 566g through location
777g of any sector in the lower memory bank).
If the specified address is a zero, the
default address for loading the bootstrap is
24566g) .

Once a self-loading tape has been produced, the procedure
for load and go is as follows:

1) Place the leader portion of the program in the paper
tape reader.

2) Type, on the ASR, KEYIN (the command line for KEYIN
may include an A-register setting for load-time
relocation of the bootstrap. The setting, for proper
execution of the bootstrap, must be of the form
XX566g) .

3) If the PC value in the PALAP command line was set to

zero, the program will halt prior to execution. This
requires that the user restart with the appropriate

19-5

value in the program counter.

Punched Tape Structure

Any PAL-AP punched tape has the following overall structure:

1) No frame on the tape will contain what resembles a
rubout character (3778). This insures compatibility
within the framework of TSDOS.

2) PAL-AP will first punch out its own loader (bootstrap)

section in '8-8 format', followed by twelve inches of
leader,

3) Next, the desired program is punched in 'invisible
format' which is recognized by the bootstrap.

The bootstrap is capable of loading itself starting in
the location specified by the PALAP command line, loading the
user program, and initializing the user program for execution.

The user program is punched in blocks of 50 words each.
Salient characteristics of the block structure area are as
follows:

1) A start of message character (2018) is punched at
the beginning of each block.

2) Following this, the address of the first memory
location is punched in 'invisible format' (4-6-6
code) .

3) Each block is ended by a checksum, followed by an
end of message character (223g).

4) Nine frames of leader are punched between blocks and
twelve inches of leader are punched at the beginning
and end of a program.

The format of the punched words is as follows:

1) Non-zero words are punched in 'invisible format'.
Each 16-bit word is written as a four-bit and two
six-bit characters on tape. The four-bit character
represents the high-order four bits of the word.

Each six-bit character has the high-order bit in
channel eight and the five low-order bits in channels
five through one. Ordinarily, nothing is written in
channels eight through five of the four-bit character
or in channel six and seven of the six-bit characters.

19-6

2)

3)

Eight characters cause special action by the ASR.
These are 0238 and 223g (x-off), 021g and 221g (x-on),
012g and 212g (line feed), 005g and 205g (wru). These
are translated into 173g and 373g, 176g and 376g,

175g and 375g, 174g and 374g, respectively. In the
case of each of these characters, channels six and
seven are punched.

When one or more consecutive zero words are encountered
in memory, they are represented by one punched word.
This word consists of the two's complement of the
number of consecutive zero count words encountered.

In order to distinguish these zero count words,

channel eight of the high-order (four-bit) character

is punched.

Procedures for Punching and Loading Multiple Segments

The structure of PAL-AP is such that multiple segments

of memory (contiguous or non-contiguous) may be punched and
later loaded with a minimum of user responsibility. As an
example, consider the following:

A user types the command line -

PALAP 24000 100 777 1

PAL-AP will now punch locations 100g through 777g to

the high-speed punch and return control to the supervisor.

The user now types a second command line -

PALAP 24000 30000 37777 1

PALAP will now punch locations 300008 through 37777g to

the high-speed punch and return control to the supervisor.

The user now types a third command line -

PALAP 24000 60000 65777 70000 020000

PAL-AP will now punch locations 60000g through 65777g to

the high-speed punch and return control to the supervisor.

The punched tape now contains images of all three segments

of memory and may be loaded by typing the following command
line -

START 1

19-7

This command will load all three segments and cause
program initialization at 70000g in the extended mode. This
is possible because:

1) The PC values for the first two command lines were
both set to one (the location of the key-in loader).

2) The PC value for the third command line was set to

the desired starting address of the user program (in
this case 70000g).

3) The KEYS for the first two command lines were both
set to zero (non-extended mode).

4) The KEYS for the third command line were set to the

extended mode (for user program execution in that
mode) .

19-8

XX. DOS SYSTEM MAINTENANCE

This section gives the procedures that should be followed
by the person or persons responsible for setting up the DOS
system.

To be done daily.
1. Turn on machine

2. Put the DOS MASTER disk pack on disk drive 0 and turn
on the disk drive.

3. Boot load DOS by putting the paper tape labeled DOS
BOOTLOADER in the reader and starting the computer at
location 1. All sense switches should be in the reset
position. Response should be OK on teletype.

4, Run FIXRAT, a software maintenance program by typing:

user: ATTACH DIAG
response: OK
user: R FIXRAT

If any error messages appear see Jan Carlson.

5. Copy the DOS MASTER disk into the daily backup disk by
putting the disk pack on drive 1, turning it on and

typing:
user: ATTACH DIAG
response: OK
user: R COPY
GO
response: disk will be copied
OK

6. If the day is Monday or Thursday, copy the Monday or
Thursday backup disk by using the procedure of step 5

7. Time Sharing may be run on a regular basis. If so, it
is the duty of the system maintenance person to set up
Time Sharing and take it down. Starting with the DOS
system running, to set up Time Sharing for 7 users:

put the paging disk on drive 1 and turn it on.

20-1

user: ATTACH JDOS
response: OK

user: R XXDOS
response: OK
user: ATTACH DIAG
response: OK
user: RR *TSDOS
response: GO
QUIT
user: ? STARTUP 10 2 1 1 2

response: LOGIN PLEASE

user: RESTOR BBFIX
response: OK

To set up Time Sharing for 3 users, don't put the paging
disk on and replace the STARTUP command in the above
procedure with

STARTUP 10 1 0 1

8. To take down time sharing, type SHUTDN on the console
teletype. Response should be TSDOS NOT IN OPERATION.
If one wishes to use DOS, it must be boot loaded from
paper tape at this point. Turn off paging disk and put
it away.

9. To take down DOS, simply turn the machine off.

FIXRAT

A, Introduction

FIXRAT is a JULYDOS software maintenance program. FIXRAT
should be run only by authorized system maintenance operators,
not general users. FIXRAT checks out a JULDOS disk pack to
verify that all files on the disk can be read and have a legi-
timate format. If there are problems, FIXRAT will repair or
delete the broken file and print an error message on the
teletype. FIXRAT should be run daily.

B. Review of File System

To explain in detail the operation of FIXRAT, it is
necessary to briefly review the file structure of JULYDOS.
Information on the disk is recorded in files, and these files

20-2

are composed of fixed length records, 432 words each, which
are recorded chained together by pointers on the disk. A
file is simply an ordered linear array of words known by a
single six-character name. The file system has no notion of
the contents of the file.

The collection of files belonging to a user is organized
into a User-File-Directory (UFD). Each UFD is a file and con-
tains a four-word entry per user file (presently 62 files
maximum) , 3 words of name (6 characters) and one word for
starting record address.

The collection of all UFD files is organized into a
Master-File-Directory (MFD) which is itself a file much like
the UFD's. (The MFD is also used in TSDOS to hold the names
of commonly used disk commands, FORTRAN, NAP, etc.) The
MFD begins at record one on the disk.

The files on the disk are recorded as chained strings
of fixed length records as shown schematically in Figure 1.

Zlo

N WORDS

N WORDS

P WORDS

Figure 1. DOS File Structure

Each record of the file has three words at the beginning which
function as follows: word one points to successor record
(zero if none), word two points to the predecessor record
(zero if none), and word three is count of the data words con-
tained in the record. The forward and backward pointers are
especially important because they allow easy traversal of

20-3

the file forward and backward while at the same time providing
a large measure of protection against snow-balling disk errors.

Since files are composed of chained records, the selection
of records can be left entirely to the file system. The file
system must select free records when a file is to be written
or extended, and the free records of a deleted file must be
returned for later re-use. For this purpose a Disk-Record-
Availability-Table (DSKRAT) is maintained with one-bit for
each record on the disk; a "1" means the record is available
and a "0" means the record is in use. Since there are 8120
records on the disk, 8120/16 = 507.5 words are required for
DSKRAT. DSKRAT is allocated 512 words for simplicity. The
DSKRAT is recorded as a file on the disk and its 1lst record
is on record #0, its 2nd is on record #2.

C. Operation of FIXRAT

Before describing FIXRAT in detail, a word of warning
must be given. FIXRAT is intimately connected with the
JULYDOS system. If JULYDOS is ever reloaded or modified,
FIXRAT may have to be changed. In particular, FIXRAT uses
JULYDOS subroutines RREC, WREC, ATTACH, and UPDATE. It also
uses the JULYDOS common areas LSMAN and FILDIR. Any rede-
sign of JULYDOS may mean FIXRAT must be changed also. R
FIXRAT DISK will check out logical disk drive 0-3 if DISK is
blank, ONE, TWO or three, respectively.

Step 1 - FIXRAT causes JULYDOS to attach to the MFD.

Step 2

FIXRAT picks up the beginning record address of the
first file in the directory and calls subroutine
REDFIL.

Step 3

Subroutine REDFIL reads the first three words of
each record of the file. These words contain the
forward pointer, backward pointer and word count
respectively. For each record, REDFIL verifies

has correct format for a file, a "1" bit is en-
tered in a "local" DSKRAT called TSTRAT. A counter
of all records used is bumped by 1 for each record
read.

Step 4 Step 3 is repeated for each beginning record address

of each file in the directory.

Step 5 FIXRAT causes JULYDOS to attach to the first UFD

in the MFD, skipping over the MFD as a special case.

Step 6 Steps 2 and 3 are repeated for each file in the UFD.

20-4

That is, FIXRAT reads every record of every file
in the UFD, checks it for proper format, enters
the proper bit in the TSTRAT, and counts the record.

Step 7 - Step 6 is repeated for all UFD's in the MFD. 1In
this way every file on the disk is processed.

Step 8 - The TSTRAT table is inverted. Each "0" bit in the
table is changed to a "1" bit. Each "1" bit is
changed to a "0" bit.

Step 9 - Records 120 to 1177 are set to used. These records
are reserved for core memory storage for TSDOS.
FIXRAT compares the local TSTRAT table against the
JULYDOS DSKRAT table. If they match, a message is
printed out to that effect. If they do not match,
FIXRAT replaces the JULYDOS DSKRAT with the newly
calculated TSTRAT which represents the records the
combined directories say are in use at the present
time. The program changes a JULYDOS variable
CHRAT to TRUE and calls the JULYDOS subroutine
UPDATE. This procedure writes the newly replaced
DSKRAT on the disk. A mismatch message is typed.

Step 10 - FIXRAT types out the number of records used and
unused in octal then returns to JULYDOS command
level.

Under no error conditions, FIXRAT types the name of
each user directory processed followed by the number of
records allocated to files in that directory. Errors induce
additional typeout.

The above description should give an overall view of
FIXRAT. Step 3 in the description assumes a record is in the
correct format for a file. Six types of incorrect formats
cuase FIXRAT action. In every case, a message followed by
the directory name, file name, and offending record number is
typed. In each case the file directory entry is removed from
the directory.

Error type 1l: The beginning record address (BRA) of a
file is 0.

Message: FILE OF NO RECORDS DELETED.

Special note: DSKRAT has a BRA of 100000 octal. The
leftmost "1" is ignored by the JULYDOS
system but is recognized by FIXRAT to
indicate a special file with effective
BRA of 0.

20-5

Error type 2: Zero or negative word count.
Message: ZERO OR NEGATIVE WORD COUNT.

Error type 3: The backward pointer of the successor to
the current record does not point to the
current record.

Message: POINTER MISMATCH

Error type 4: The backward pointer on the first record
of a file is not zero.

Message: ERROR IN FIRST RECORD.

Error type 5: Two files point to the same record. That
is, the current file being processed ap-
parently uses a record which has already
been used by a file FIXRAT has previously
processed during the current run of FIXRAT.

Message: TWO FILES POINT TO SAME RECORD

Error type 6: File in illegal area. The record has
correct format but is in a bad place on
the disk. The restrictions are: records
0 to 117 octal are used for all UFD's,
the MFD and the DSKRAT. Records 120 to
1177 are reserved for storing user memory
during TSDOS operation. Records 1200 and
up are available for regular user files.

Message: FILE IN ILLEGAL AREA.

FIXRAT recognizes UFD's from regular files by the be-
ginning-record address of file directory entries. All files
with a BRA less than 120 are considered UFD's, with the ex-
ception of DSKRAT. All files with BRA's greater than 120
octal are considered TSDOS commands. Therefore, if a new
UFD is created, it must have a BRA less than 120 octal.
UFD's are created by command CREATE.

Known bugs: The counter of records left is off slightly
too low. When the disk is very full, this counter will register
a very large octal number.

D. Operator Instructions. for FIXRAT

To run FIXRAT, attach to DIAG and resume FIXRAT. The
name of each directory is typed prior to processing of that

20-6

directory. FIXRAT will return to JULYDOS when done. If the
message "100 DISK ERRORS" is typed, a particular record on the
disk cannot be read. This is caused by either a bad or worn

out disk pack or a misaligned disk drive. If any error messages
appear, FIXRAT must be rerun until none appear.

20-7

=4

XXI. QUICK REFERENCE GUIDE

A. Connect with System

TSDOS - go to one of the ASR-35 teletypes in the teletype room.

DOS -

Push the 'orig' button - you should get a dial tone.
Dial 2866 or if busy 2870. When answer signal is
heard, push "full duplex" button. You are ready to
type commands.

if console teletype does not respond to commands, boot
load the system. Load a ten foot paper tape labeled
BOOTSTRAP in the paper tape reader. Turning to the
console, check that all sense switches are in the
reset position and start the computer with the program
counter set to 1. The BOOTSTRAP should read into the
machine and the response should be OK. You are ready
to type commands.

B. Sign On

user:

ATTACH ufd

response: OK

C. List Directory

user:

LISTF

response: list of files is typed

D. EDIT File

user:

ED file

response: GO

EDIT

(editing)

user:

FILE file

response: OK

E. Compile and Check

user:

response:

FTN file

CC, OK

21-1

GO (errors if any typed along with line causing error)

F. Compile with Errors only in Listing File

user: FTN file 1000 777
response: GO
CC, OK

(listing file will be L+file)

G. Compile with Symbolic Assembly Listing

user: PTN file 1000 40777
response: GO
CC, OK

(listing file will be L+file)
H. Assemble

user: INPUT file
response: OK

user: BINARY B<«file
response: OK

user: DAP
response: GO
(errors typed here if any)

no errors in above assembly
AC, OK

user: CLOSE ALL
response: OK

I. Assemble with Listing

user: INPUT file
response: OK

user: LISTING L«file
response: OK

user: BINARY B+file
response: OK

user: DAP 400 100555

response: GO
no errors in above assembly
AC, OK

J. Load and Get Map

user: CLRCOR
response: GO
OK

21-2

user: LDR B+fill
response: GO

MR, OK
user: START B+fil2
response: GO
MR, OK
user: ATTACH U
response: OK
user: START FTNLIB
response: LC, OK
user: ATTACH ufd
response: OK
user: START 63002
response: load map is typed
OK

K. Save Core Image and Go

user: SAVE *file 100 *pbrk 1000
response: OK
(note *pbrk is number following pbrk on load map)

user: R *file
response: GO
program is running

L. Kill Runaway Program

under TSDOS

user: (CONTROL X-OFF)
response: QUIT

user: PM

response: program counter, A, B, index, and keys register is
typed. The purpose of this step is to find where
your program went wild.

under DOS

Turn to control push button console. Put the MA-SS-RUN
switch in SS position. You may now read from the lights where
your program went wild. Restart DOS by setting the program
counter to 70000 octal, putting the MA-SS-RUN switch in RUN
position and pushing the start button. OK should be typed.

21-3

M. Sign Off

user: CLOSE ALL
response: OK

user: ATTACH
response: NOT FOUND

N. Special Characters

Erase one character

? Kill line
(CONTROL X~OFF) Quit, 'back to TSDOS
Tab

0. Summary of DOS Commands

The following is a list of all internal commands available
to the user. The letters which compose the abbreviations
for each command are underlined. A * indicates this is a
TSDOS command only. Abbreviation may be used only under TSDOS
with the exception of the RESUME command.

ASSIGN device [console]

ATTACH ufd password [disk]

BINARY name

name
CLOSE

} [unit,] ... [unitgy]

unit
name l

COMINPUT ¢ TTY

T {CONTINUES

DELETE name

INPUT name

LISTING name

LISTF

OPEN name unit status

PM

RESTOR name

21-4

RESUME name [pc] [a] [b] [x] [keys]

SAVE name sa ea [pc] [a] [b] [x] [keys]

START [pc] [a] [b] [x] [xeys]

ON
SWITCH device
OFF

STARTUP disk [disk] [disk] [disk]

The following is a list of all DOS external commands
which are simply saved system programs that are loaded into
the user's segment and executed. These commands can not be
abbreviated. A % indicates this is a DOS command only.

% ALOOK name
BASIC

% BOOT

% CARDIN name
CLRCOR

COPY namel name?2
% CREATE ufd [disk]
CRIBBAGE

DAP [400] [param]

DEBUG
% DLISTF
% DUPE
ED [name]

EDB namel [name2]
FILED [name]
FTN name [1000] [paraml]

HAMBUG

21-5

] LPOUT name
LOOK name [csize]

% PALAP 24000 sa ea [pc] [ounit] [bootstrap]

% PASSWORD [name]
PAUSE

% RDIBM

% RDTAP

% RENAME namel name2

% SKIP

3 WEOF

% WRIBM name

% WRTAP name

% XREF

P. Summary of Editor Requests

BOTTOM
BRIEF

CHANGE_# 'stringl' % 'string2' %,'n'_G
DELETE 'n'

DELETE TO 'string'

ERASE 'character'

FILE ['filename]

FIND 'string'

INPUT

INPUT (PTR)

INSERT 'line'

KILL 'character'

21-6

LOAD 'filename'

LOCATE 'string'

MOVE 'buffer' 'buffer'

NEXT 'n’

PRINT 'n'

PTABSET 'nl' ['n2'] ... ['n8']
PUNCH 'n’

QUIT

TABSET 'nl' ['n2'] ... ['n8"]
TOP

VERIFY [DISPLA]

XEQ 'buffer'

*

XXII. ERROR MESSAGES

A. Disk Operating System

The following error messages indicate that either the
DOS system has been partially overwritten by a user program
or system files on the disk have been overwritten. The user
should boot load the system and try again. If these error
messages are still produced, he should immediately notify
Jan Carlson or Michael Form of the DOS system failure.

BAD POINTER READING

BAD POINTER WRITING

BUFFER SPACE EXHAUSTED

CHKSUM ERROR IN ATTACH

CHKSUM ERROR IN MFD

FILE I/0 DEVICE NOT ATTACHED

IMPROPER CALL TO RTNBUF

INITIAL BACK POINTER NOT ZERO

NO DEVICE TO UPDATE

RAT CHKSUM ERROR

SYSTEM UNIT ACTIVE

UNIT 8 ACTIVE

The following errors indicate user errors and are re-
coverable

AVAILABLE RECORDS EXHAUSTED
the disk storage available to users has been used up.
User must either delete some of his files or tell

system people.

BAD CALL TO DSPRES

22-1

BAD CALL TO DSPSAV

BAD CALL TO SAVE

BAD CALL TO SEARCH

BAD CALL TO RESTOR

BAD command - necessary command argument missing
BAD PARAMETER

BAD PASSWORD

BAD POINTER DELETING - a broken file has been successfully
deleted

command NOT FOUND

DELETE FILE IS OPEN
DISPLAY IN USE

DISPLAY NOT ATTACHED

EOF READING

ERROR RESTORING filename
FILE NOT OPEN FOR READING
FILE NOT OPEN FOR WRITING
filename ALREADY OPEN
filename NOT FOUND
ILLEGAL CALL TO READ
ILLEGAL CALL TO WRITE
ILLEGAL INSTRUCTION AT location
NO UFD ATTACHED

PASSWORD INCORRECT
PROGRAM HALT AT location

PUNCH NOT ATTACHED

&

=

AR
BD
BL
CE
CG
CH
CM
CN
CR
DA
DD
DM
DT

EC

EQ

EX

READER NOT ATTACHED
REWIND FILE NOT OPEN
UFD OVERFLOW

UNIT IN USE

UNIT NUMBER OUT OF LIMITS - TSDOS message only

FORTRAN

ADDRESS OFSET TOO LARGE (-8192.LE.AF.LT.8192).

ARITHMETIC STATEMENT FUNCTION HAS OVER 10 ARGUMENTS.

SUBROUTINE OR ARRAY NAME NOT IN AN ARGUMENT

ITEM NOT AN ARRAY NAME

CODE GENERATED WITHIN A BLOCK DATA SUBPROGRAM
BLOCK DATA NOT FIRST STATEMENT

CONSTANT'S EXPONENT EXCEEDS 8 BITS (OVER 255)
COMPILER OR COMPUTER ERROR CAUSED A JUMP TO 00000
IMPROPER TERMINATING CHARACTER (PUNCTUATION)
COMMA OUTSIDE PARENTHESIS, NOT IN A DO STATEMENT
IMPROPER CONSTANT (DATA INITIALIZATION)

ILLEGAL COMMON REFERENCE

ILLEGAL USE OF A DUMMY ARGUMENT

DUMMY ITEM APPEARS IN AN EQUIVALENCE OR DATA LIST
DATA AND DATA NAME MODE DO NOT AGREE

IMPROPER DO TERMINATION

EQUIVALENCE GROUP NOT FOLLOWED BY COMMA OR CR (CARRIAGE

RETURN)
EXPRESSION TO LEFT OF EQUALS, OR MULTIPLE EQUALS

SPECIFICATION STATEMENT APPEARS AFTER CLEANUP

FA

FD

FR

FS

HF

HS

Ic

ID

IE

IF

IN

IT

MO

MS

NC

ND

NE

NF

NI

NR

NS

NT

NU

NZ

FUNCTION HAS NO ARGUMENTS

FUNCTION NAME NOT DEFINED BY AN ARITHMETIC STATEMENT

FORMAT STATEMENT ERROR

FUNCTION/SUBROUTINE NOT THE FIRST STATEMENT

HOLLERITH CHARACTER COUNT EQUALS ZERO

HOLLERITH DATA STRING EXTENDS PAST END OF STATEMENT

IMPOSSIBLE COMMON EQUIVALENCING
UNRECOGNIZABLE STATEMENT
IMPOSSIBLE EQUIVALENCE GROUPING
ILLEGAL IF STATEMENT TYPE

INTEGER REQUIRED AT THIS POSITION
ITEM NOT AN INTEGER

MODE MIXING ERROR

DATA POOL OVERFLOW

MULTIPLY DEFINED STATEMENT NUMBER
CONSTANT MUST BE PRESENT

WRONG NUMBER OF DIMENSIONS

NO END CARD PRIOR TO CONTROL CARD
NO REFERENCE TO FORMAT STATEMENT
INSERT STATEMENT WITHIN AN INSERT FILE
ITEM NOT A RELATIVE VARIABLE
SUBPROGRAM NAME NOT ALLOWED
LOGICAL NOT, NOT AN UNARY OPERATOR
NAME ALREADY BEING USED

NON-ZERO STRING TEST FAILED

22-4

Error Messages Generated by the Generating Subroutine
Library Subroutines

Error
Message Condition A$66/S$66 (Double Add/Sub)
DA Arithmetic Overflow DLOG/DLOG10 (Double Logarithm)
DL Negative or Zero Argument M$66/D$66 (Double Mult/Div)
DM Arithmetic Overflow or Zero
Divisor A$81 (Add Integer to Double Exponent)
EQ Arithmetic¢ Overflow EXP (Real Exponential)
EX Exponent Overflow F$IO (Format Scanner gnd Conversions)
FE Format Error E$1l (Integer Raised to Integer)
II Result Greater (2**15)-1 F$IO (Format Scanner and Conversions)
IN Input Error C$21 (Convert Real to Integer)
RI Exponent Greater than 15 A$22/5$22 (Real Add/Sub)
sa Arithmetic Overflow D$22 (Real Div)
SD Arithmetic Overflow or Zero |
Divisor M$22 (Real Multiply)
SM Arithmetic Overflow SQRT (Real Square Root)
sQ Negative Argument

104

PA

PH

PR

PW

RL

RT

sC

SP

SR

ST

SU

TF

TO

uo

Us

(@]

MORE THAN ONE OPERATOR IN A ROW

OPERATION MUST BE WITHIN PARENTHESIS

NO PATH LEADING TO THIS STATEMENT

PARENTHESIS MISSING IN A DO STATEMENT

* PRECEDED BY ANOTHER OPERATOR OTHER THAN ANOTHER *
MORE THAN 1 RELATIONAL OPERATOR IN A RELATIONAL EXAMPLE
REFERENCE TO A SPECIFICATION STATEMENT'S NUMBER
RETURN NOT ALLOWED IN MAIN PROGRAM

STATEMENT NUMBER ON A CONTINUATION CARD

STATEMENT NAME MISSPELLED

BAD ARGUMENT TO INTRINSIC SUBROUTINE.

ILLEGAL STATEMENT NUMBER FORMAT

SUBSCRIPT INCREMENTER NOT A CONSTANT

"TYPE" NOT FOLLOWED BY "FUNCTION" OR LIST

ASSIGN STATEMENT HAS WORD TO MISSING

MULTIPLE + OR~- SIGNS, NOT AS UNARY OPERATORS
UNDEFINED STATEMENT NUMBER

SYMBOLIC SUBSCRIPT NOT DUMMY IN DUMMY ARRAY, OR SYMBOLIC
SUBSCRIPT APPEARS ON A NON-DUMMY ARRAY

VARIABLE NAME REQUIRED AT THIS POSITION

FORTRAN LIBRARY

22-6

LG

PE

FE
MS

negative or zero arg for real
parity error reading mag. tape

mag. tape end of bit

DAP

Address Field missing where normally required; error in
address format

Erroneous conversion of a constant; Address Field of
data-defining pseudo-operation in improper format

Executable code generated before EXT pseudo-operation;
external name modified by addition; external name used
in Address Field of something other than a memory re-

ference instruction*

Major formatting error

Label (Location Field) missing where normally required;
error in label symbol*

Multiply defined symbol

Operation Field blank or not recognized; Operation Field
not legal for object configuration

Relocation assignment error*

Address of Variable Field expression not in sector being
processed or sector zero (applicable only in LOAD mode)

Improper use of Index Subfield; error in Index Subfield
Undefined symbol

Unclassified error in Address Field of multiple-subfield
pseudo-operation

Conditional assembly error; ELSE used outside of con-
ditional assembly; END reached before all IFs matched
by ENDCs*

*DAP-16 Mod 2 only.

22-7

E LOADER

Message
LC

MR

CK

BL

MO

Meaning
Loading complete

more subroutines
required

Checksum error in
last block read

block too large or
improperly formatted

memory overflow

22-8

Recovery Action
none

continue
loading

restart
loading

restart
loading

verify you

are not

attempting to load
a source file

restart loading

11.

12,

13.

14.

15.

l6.

REFERENCES

A General Description of the Paging Modifications to be
Incorporated into the DDP-516; KC-T-028; Dean Vanderbilt;
July 14, 1967.

Advanced Remote Display Station (ARDS 100A) Reference
Manual. Computer Displays Incorporated.

DDP-516 Assembler Manual; Doc. No. 70130072442A; Honeywell,
August 1970.

DDP-516 Fortran IV Manual; Doc. No. 130071364A; Honeywell,
April 1967.

DDP-516 Programmer Reference Manual; Doc. No. 70130072156E;
Honeywell; November 1970.

DDP-516 Operator's Guide; Doc. No. 70130072165A; Honeywell;
May 1969. :

DDP-516 Voice I/O; Stephen R. Rotman, Service Technology
Corporation job #D7031B; September 1969.

DOS, the DDP-516 Disk Operating System, J. Poduska, D.
Udin, J. Carlson, J. Green; February 1969.

Graphics Reference Manual, D. Kipping, August 1969.

High Level Analog Input Subsystem Model 840 Special Option
Instructions Manual; Doc. No. 7013007220B; Honeywell;
August 1969.

H632 Programming System Manual; Doc. No. 1300720094;
Honeywell; December 1968.

Low Capacity Multiline Controller Special Option Instruction
Manual; Doc. No. 70130072154A; Honeywell; February 1969.

Models 316 and 516 BASIC Language, Honeywell; May, 1971.

System Specifications for DDP-516 - Univas 1004 Communica-
tions Link; D. Yourshaw; Service Technology Corporation.
job #S0 430A; August 1969.

System 32/16 Coupler Option Manual; Doc. No. A253203;
Honeywell; May 1969.

TSDOS Reference Manual; L. Liebson, Service Technology
Corporation; November 1970.

R-1

11.

12.

13-

14,

15.

16.

REFERENCES

A General Description of the Paging Modifications to be
Incorporated into the DDP-516; KC-T-028; Dean Vanderbilt;
July 14, 1967.

Advanced Remote Display Station (ARDS 100A) Reference
Manual. Computer Displays Incorporated.

DDP-516 Assembler Manual; Doc. No. 70130072442A; Honeywell,
August 1970.

DDP-516 Fortran IV Manual; Doc. No. 130071364A; Honeywell,
April 1967.

DDP-516 Programmer Reference Manual; Doc. No. 70130072156E;
Honeywell; November 1970.

DDP-516 Operator's Guide; Doc. No. 70130072165A; Honeywell;
May 1969. :

DDP-516 Voice I/0Q; Stephen R. Rotman, Service Technology
Corporation job #D7031B; September 1969.

DOS, the DDP-516 Disk Operating System, J. Poduska, D.
Udin, J. Carlson, J. Green; February 1969.

Graphics Reference Manual, D. Kipping, August 1969.

High Level Analog Input Subsystem Model 840 Special Option
Instructions Manual; Doc. No. 7013007220B; Honeywell:;
August 1969.

H632 Programming System Manual; Doc. No. 130072009A;
Honeywell; December 1968.

Low Capacity Multiline Controller Special Option Instruction

Manual; Doc. No. 701300721544; Honeywell; February 1969.

Models 316 and 516 BASIC Language, Honeywell; May, 1971.

System Specifications for DDP-516 - Univas 1004 Communica-
tions Link; D. Yourshaw; Service Technology Corporation.
job #S0 430A; August 1969.

System 32/16 Coupler Option Manual; Doc. No. A253203;
Honeywell; May 1969.

TSDOS Reference Manual; L. Liebson, Service Technology
Corporation; November 1970.

R-1

