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PREFACE

The problem of "Analysis of Shock Wave Phenomena for Freeway
Control" was undertaken as part of an overall freeway-corridor
traffic improvement program. Our effort is an attempt to shed
some light on the understanding of how disruptive shock phenomena
occur on the freeway and what happens to vehicles as a result.
This report presents our work on one important aspect of this
problem, the problem of the traffic flow redistribution on a
multi-lane freeway following the occurrence of a shock wave due to
a lane blockage.

The related but separate problem of how to modify the traffic
flow through the use of controls either to minimize the occurrences
of shocks or to minimize their effects on the traffic stream 1is
also an integral part of this freeway-corridor program. A pre-
liminary investigation of this aspect of the problem was also
undertaken and our findings to date will be released in a separate
report to follow.
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1. INTRODUCTION

In this report we study the problem of traffic redistribution
following the onset of a lane blockage on a multi-lane freeway.
The onset of a lane blockage generates traffic density waves which
may propagate either down or upstream of the blockage depending
upon the traffic density. In the blocked lane where the density
at the blockage is very high, a discontinuity or shock wave is
generated which propagates upstream. When vehicles approach the
blockage caused by an accident, a stalled car or a tire changer,
for example, they are required to slow down, and in some instances
will actually come to a halt. Because of the rates at which ve-
hicles slow down, the slowdown will not be uniform throughout the
line of cars in the blocked lane. As a result, there will be a
large increase in the density near the blockage as cars begin to
pile up and the familiar accordian effect will take place. This
accordian effect can be described in mathematical terms as a shock
wave or density discontinuity which propagates back from the point
of the blockage and affects a number of cars approaching the block-
age. The precise number of cars so effected depends upon the
traffic density in the lane and on how quickly they can maneuver
out of this lane. If the traffic density on the freeway is light
such that the congestion in the blocked lane is able to dissipate
through the other lanes, the discontinuity will eventually cease
propagating further upstream and steady state conditions will be
established. In other words, under light traffic conditions ve-
hicles have enough room to either gradually slow down or to maneu-
ver out of the lane to prevent a continued pile up of cars. In
mathematical terms the shock wave stops propagating and the traffic
density does not increase any further. We say that a steady state
has been reached. This state may contain a higher density of cars
than previously but there is no further increase in the traffic
density due to the blockage. On the other hand, if the density
on the unblocked lanes exceeds some critical density, steady state



may never be achieved; the shock wave will continue to propagate
upstream slowing down more and more vehicles, until the traffic
density in which the shock wave travels falls below the critical
density. There has to be enough spacing between cars, a density
below some critical density which will prevent the pileup. Only
when the spacing between cars becomes large enough (or the density
small enough), will the pileup be averted. Until this is the case,
the shock wave will continue to propagate and the density of cars
(or pileup) will continue to increase.

In this report we treat, in detail, only the light density
problem showing that after a finite time, steady state conditions
become established. For this case, the resulting traffic density
in each lane of the freeway is determined as a function of posi-
tion behind the blockage and as a function of time since the block-
age occurred. In this way, we hope to obtain a lane profile of
the traffic redistribution following a lane blockage on a multi-
lane freeway. The traffic redistribution is due to lane changing
following the occurrence of the blockage. Thus, we will find the
new traffic concentrations in each of the lanes of the freeway as
a function of time following the occurrence of the blockage and
compare these with the traffic densities in the lanes before the
blockage occurred.

The analysis which follows is an extension of the work by
Munjal, Hsu and Lawrence.1 These authors assumed a constant value
for the wave velocity c in the continuity equation. This implies
that all traffic disturbances occurring on the freeway propagate
in only one direction, either downstream or upstream. However, it
is known that disturbances will propagate upstream only when the
concentration is sufficiently high (above a density Km at which
the flow is maximum) and will propagate downstream when the density
is below that level. Nonetheless Munjal et al1 attempted to treat
the case when the density in the unblocked lanes was less than
the density at maximum flow, Km’ though the blocked lane contained
a density which is greater than Km near the blockage. But this



requires that the wave velocity be positive (i.e. downstream) in
the unblocked lanes and negative (i.e. upstream) in the blocked
lane and thus the assumption of constant c cannot be valid for the

problem.

In this report, the restriction of constant c in all freeway
lanes is relaxed, instead, c will be allowed to take on positive
or negative values depending upon the traffic density in the lane.
Thus, for light traffic density in the unblocked lanes traffic
disturbances will propagate downstream (c positive), while in the
blocked lane near the blockage the propagation will be upstream
(c negative), see Figure 1 and note that ¢ (slope of q-k curve)
is positive for k<Km and negative for k>Km.

Independent of this requirement that the wave velocity,c be
allowed to take on both positive and negative values, we shall
also distinguish between the steady state and non-steady state
cases. Munjal's analysis assumed steady state conditions to hold
and thus was not able to include the traffic density buildup
following the occurrence of the blockage. The traffic density
buildup during the initial several minutes (the precise time
depending upon such things as the traffic densities in the lanes)
following the blockage can be treated only by a nonsteady state
analysis. In fact it is necessary to show that steady state will
be achieved. If it is not, clearly any analysis which is based
on the existence of steady state cannot be meaningful. We shall
show that steady state is achieved under light traffic density
conditions and calculate both the initial traffic density build
up and the resulting steady state traffic densities after this
initial buildup.



2, FLOW-CONCENTRATION ASSUMPTION

1

We shall assume, as in Munjal et al™, that vehicular velocity

is independent of vehicular concentration whenever the concentra-
tion is less than some value Km and that for concentrations greater
than or equal to Km, the velocity V is related to concentration,

k as shown below

Vo= ap/Kp, ko< Ko (1a)
v a, K.
=_T—Kj'm ]El"l’kiKm' (1b)

where AU is the flow at concentration Km and where Kj is the jam
concentration. The flow which is just the velocity multiplied by
the concentration, then becomes a piecewise linear function of the
concentration given by (see Fig. 1)

q
a =gk, k< K, (2a)
m
B k) ks ok (2b)
q 1-Km7Kj Kj)» o ="

2.1 CONTINUITY EQUATION, CONSTANT c

The net flow across a lane boundary per unit distance of road-
way is assumed to be proportional to the difference in concentra-
tion between lanes.



Figure 1. Schematic V-k and q-k Curves Based on Equations
(1) and (2) Based on a Representation from Drake,
Shofer and May4
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Let ki(x,t) and qi(x,t) denote the concentration and flow,
respectively in lane i at position x and time t. Figure 2 depicts
the flow of vehicles from a segment of length Ax in lane i where
adjacent lanes i-1 and i+1 receive (or give) vehicles to the seg-
ment depending upon the concentration difference between lanes.
The net flow of the segment is

a3 (x*6%,t) - i (x,1) + a[(-ki_l(x,t)) SETNENS
- ki+1(x,t):| Ax

where a is a proportionality constant.

The net flow out of the segment must equal the rate of loss
of vehicles from the segment

- %f [ki(x,t)Ax].

Equating the two, dividing by Ax and taking the limit as Ax-0 gives

aqi aki

= AT ! a('ki-l vo2ky - ki+1) =0 (3)

assuming the flows and densities to be continuous functions of x and
t.

Since a; is assumed to be a piecewise linear function of ki’
we have, from Equations (2a) and (2b)

q akl
— —— , k.< K
aqi Km X m
Eral ok
- qm/(Kj-Km) %, K; > K- (4)

For an n lane freeway we have, with this substitution

ok. ok )
s v C ottt a (-ki_l + 2k, - ki+1> =0, 2 <i<n-1

ot 99X
(5a)




where

> K (5b)

B qm/(Kj_Km)’ ki

m
and, for the outside lanes 1 and n, each having only one adjacent
lane, we have

ik ﬁkl
st ¢+ Coax T2 (kptkp) =0

ok ok
35 ¢ g ta (k gtk ) =0 (6)

The continuity Equations (5) and (6) may be combined into
vector form. Let

kq
. .
k —
k
n
and
1 -1 7]
S S
i 2 1
A ={A..L=
1]\
-1 1
L. —
where
=7 - - E =7 = =-1"°- =2
App=s Agp= 15 Ap o™ 1 Agpls Ay 5 g7Ay 547015 Ay=2s for

2<i<n-1; all other elements of A are zero.



If the velocity c (note from Eq. (5b) that c indeed has
dimensions of velocity) assumes the same value in all lanes (that
is, if the concentration is either less than Km in all lanes or
is greater than Km in all lanes), The continuity equations may be

written as

> >
ok 3k >
3t P Cax @ Ak=20 (7)

which is the continuity equation used by Munjal in Reference 1.



3. THE EFFECT OF LANE BLOCKAGE UNDER
LIGHT TRAFFIC CONDITIONS

We assume the traffic density to be less than Km in the un-
blocked lanes. Here the above continuity Equation (7) is not
valid since the concentration will be above Km in the blocked
lane near the blockage and hence c will not be constant.

Instead let
cq; = - qm«?j - Km) (8a)

the value in the blocked lane, assumed to be the shoulder lane or

lane 1 and
c, = ap /K (8b)

the value in the unblocked lanes, and let C be the diagonal matrix

2 (8c)

such that C C..=c

1171 ~ii~ %2
In the region near the blockage where k1 > Km and ki < K

2 < i < nm.

m
for i=2,..... n, the continuity equation may be written as
> >
9k ok B
E+C5§+aA§—O. (9)

This is a much more difficult differential equation to solve
than Equation (7) in which the coefficient c is a scalar. In order
to solve this equation, we first discuss the applicable boundary
conditions of the problem and then, in Section 4, develop the
equations which determine the propagation of the density dis-
continuity formed as a result of the traffic pile up in the blocked
lane. Subject to these boundary conditions and discontinuity pro-
pagation, solutions to the system of continuity Equations (9) are
developed in Section 5.
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We assume that the concentration in all lanes would have some
value Ko everywhere if the lane blockage did not occur, (KO<Km,
light traffic conditions). The blockage is taken to occur at x=0
in lane 1 and remains there for all times t20. The analysis for
the case when the blockage is removed at some time t=T will be
considered in another paper. For times t<0 no blockage exists and

k; (x,t) = K (10)

0

for all i, all x, t<O0.

At the point of blockage, on the upstream side, the vehicular
velocity Vl(x,t) in lane 1 goes to zero or

v,(0,t) =0, t >0. (11)
The velocity and concentration are related from Equation (1) by

Vosa /K, ko< K (12a)

\

K.
V = qm/(Kj~Km)<El - 1) s ko2 K (12b)

so that we must have for the blocked lane 1 the condition

kp(0,t) = Ky, t20 . (13)

At the onset of the blockage, t=0, we have in lane 1 also that

kl(x,O) =K ,x<0

0 (14a)

I
-~

kp(0,0) = K . (14b)

In words, in the blocked lane 1, a traffic density Ko exists be-
fore the time that the blockage occurs, t<0. (The same density
Ko also exists in the other lanes prior to the occurrence of the
blockage, Equation (10).) Later, at the time that the blockage
first occurs, at time t=0, the density for all points upstream

11



of the blockage, for x<0, remains at the k level since the ef-
fects of the blockage have not had time to propagate, (Equation

(14a)); however, at the place of the blockage (x=0) the density
increases to jam concentration values K. at this time {Equation

(14b)). The density remains at jam values K. for all subsequent
times t>0 (assuming the blockage is not removed (Equation (13)).
Thus, a discontinuity, (Kj - Ko) exists initially at x=0. The
discontinuity, also known as a shock wave propagates upstream

of the blockage. 1In the case of a single lane, the discontinuity
would separate the vehicles which were stopped by the blockage

from the unperturbed stream of vehicles as shown schematically in
Figure 3.

NORMAL TRAFFIC PROPAGATION OF DENSITY
CONCENTRATION -
Discontinuity
1\ = K
: ([ L
DIRECTION OF < k = Kj T
—_— Discontinuity BLOCKAGE

TRAFFIC FLOW

Figure 3. Schematic of a Single Lane Highway Blockage

In the multi-lane case, the vehicles between the upstream
discontinuity and the blockage point would not be entirely stopped
since vehicles would escape into the unblocked lanes, thus re-
ducing the concentration in the blocked lane below jam concen-
tration, Kj, (except at the blockage point). However, there
would still be a discontinuity separating concentrations above
Km from the unperturbed concentration KO. That is, the traffic
concentration at the blockage x=0 diminishes from jam upstream
of the blockage but never diminishes to the value K, it had before
the blockage occurred. Thus, an upstream dlscontlnulty will exist
which separates a concentration Ko from a higher one due to the
blockage. This will be explained in the next section.

12



Before proceeding it should be noted that vehicles have been
assumed to switch from the blocked lane only as a result of the
increased concentration (or equivalently, the reduced velocity)
there, but not because they see a blockage ahead. This assumption
is made in the terms of the continuity equation which makes lane
transfer proportional to the difference in concentration. Because
of this assumption, it is not certain how closely the results can

quantitatively be expected to agree with experimental data.

15



k. PROPAGATION OF THE DISCONTINUITY IN THE BLOCKED LANE

We now derive a relation between the traffic concentration
existing at the discontinuity and the velocity of propagation of
the discontinuity. This discontinuity has propagated upstream
from the blockage located at x=0 and has reached location x=§¢ at
time t. We wish to find the concentration associated with the
discontinuity at its present location (at the blockage, at x=0,
t=0, the concentration associated with the discontinuity was of
course, just Kj).

Referring to Figure 4, let ¢ (t) be the position of the dis-
continuity at time t. We define an interval [xl,xz] containing

discontinuity

NORMAL
FLOW —_— >

Concentration K0

Figure 4. Schematic for Vehicular Flow Through Discontinuity

the discontinuity as shown in the figure and require that the
number of vehicles be conserved so that the number of cars enter-
ing the interval equals the number leaving. We may note here that
this concept as well as that of a traffic density requires the
existence of a continuous function of space with all volumes of

14



interest containing many vehicles. When we speak of, for example,
a jam density at a blockage point we always mean volumes large
enough to contain many vehicles so that a density can be defined.
In this development as well as in any other using the concept of
density, it helps to consider the vehicles some large distance
below us. It is in this perspective with a '"birds eye view" and
a coarse resolution that the continuity equation and density con-
cept becomes easily understood. With this in mind, in assuming
that the interval] xl,le may be made arbitrarily small (as is
always done in a mathematical analysis of a discontinuity) we really
mean that the size of the interval may be made small enough so
that the number of cars contained in it is small compared to the
number of cars outside the region. The flow at Xy is given by

aq (xy,t) = ay Ko/Ky (15)

since there is normal flow at this point. The flow at x, (which
is on the blockage side of the discontinuity) is

q; (xoot) = x|} - T (16)

since we are assuming that kl(xz,t)>Km.

The total number of vehicles in the interval [xl,xz] at time

X
Ko[g(t) : xl] + / k, (x,t) dx.

This is changing at rate

£ (t)
ae at 3k (x,t)
% RNUEORIE - / —r— &
X

2
= %%.[KO - kl(E(t),t)] . (17)
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The last term has been neglected since it is small compared
with the others (akl/at is negligible in the interval [g,xz] )
to give the approximation shown. Equating the net flow into
the interval (see Eqs. (15) and (16) to the rate of change of
the number of vehicles in the interval, Equation (17), we have

n 9 kl(XZ’t)
T K - Tx /% |1 - K.
m m - j J

- a - ok} (x,oxp) = S [Ko : kl(E(t),t>] . (18)

where { ak } denotes the concentration difference between lanes.
The last term on the left hand side denotes the vehicle flow
from the blocked lane into the contiguous lane within the small
distance aAx = Xy Xy, This term is completely negligible com-
pared with the others so that, assuming ax small, Equation (18)
reduces to

K, Kj-kl(g(t) ,t)
n K; B Kj - K

= ‘31% [1(0 - kl(g(t),t)] (19)

where kl(g(t),t) is the concentration on the perturbed side of
the discontinuity. We have thus found a relationship between the
traffic concentration at the discontinuity k1 (¢(t),t), and the
velocity of the discontinuity, dg/dt.

The velocity of propagation of the discontinuity is thus

qa, K K-k, (E(t),t)
Ko K (BT Yy; K- ~ KK, - (20)

de _
dt ~

At t=0, £(0)=0, and kl(E(O),O)=Kj, thus the discontinuity
initially propagates at velocity

K . K
dg _ Yp o _ Nt
Eft‘/ TR KT T TR=X < 0. (21)

16



The negative value indicates upstream propagation. We also note

that as k1 (¢(t),t) increases, d¢/dt decreases (or, the absolute

value increases, that is, the shock wave travels faster upstream)
as we would expect. This may be seen by taking the derivative of
d¢/dt with respect to kl(g(t),t) which turns out to be

%é_ - I Kj(Ko-Km) <0

3
1 Ky (K oK) (Ko-kl(g (t) t))

, Ky < K. (22)

Under the assumption that Ko is so small that the concentra-
tion in the unblocked lanes does not exceed Km even with the dif-
fusion of vehicles from the blocked lane, we expect E(t)+£o as
t+o where Eo is a steady state location of the discontinuity.
d£/dt would increase asymptotically to zero, and kl(g(t),t) would
therefore decrease from Kj at x=0 to a limiting value at ¢ of

K

ky(8g) = K5 - o (Kokp) = Ko+ Ky (oK) /Ky (23)

which is obtained from Equation (20) after setting the velocity to
zero. This is the value of k1 which produces the same flow as at
Ko’ see Figure 5. Note that the concentration in lane 1, kl’ would
steadily decrease from K. at the blockage point to its limiting
steady state value at the point of discontinuity go' This steady
state value is larger than Km so that the traffic concentrations
between the blockage and steady state points will always be larger
than Km. The difference between the steady state value and Km is

K, + Kj(Km-KoVKm K = (Km- Ko)@i - 1) >0 (24)

17
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With the development in this section of the boundary
condition given by Equation (20) which relates the speed of the
moving shock wave boundary to the traffic concentration, we are
able to solve the Equations of continuity (9) for the concentra-
tion as a function of space and time along the freeway. This is
done in the following section.

19



5. NUMERICAL SOLUTION OF CONTINUITY EQUATIONS FOR
BLOCKAGE IN LIGHT TRAFFIC

In this section we formulate and develop a numerical solution
to the problem of blockage of lane 1 under light traffic conditions,
that is, for traffic densities k in the unblocked lanes which re-
main less than Km even after diffusion of traffic from the blocked
lane.

The boundary condition for the density in lane 1, kl’ is
given at x=0, t=0 as

k(0,8) =K. , t >0,

J (25)

The boundary condition for the densities in the other lanes,

kz,£=2,....,n are given at the shock wave position £(t) as

kz(g(t),t) =K, ,t>0,2=2,...n. (26)

This condition follows from the fact that the unblocked lanes are
affected only by diffusion across lanes which is a continuous
process. Thus vehicles in the unblocked lanes adjacent to the
shock wave have not been adjacent to perturbed flow "for any length
of time", hence the concentration remains at Ko at this point.

In other words, as the lane 1 shock wave propagates upstream,
the concentration in the other lanes increases due to diffusion of
vehicles from the blocked lane. However, since the diffusion is a
continuous process this increase in concentration cannot occur at
points adjacent to the shock wave but only after the shock wave
has passed. The boundary curve £ (t) is not known explicitly. It
is determined by the previously obtained condition for the speed of
the discontinuity

q K K.-k. (£(t),t
%% - Ko-kl(ETt),t) Kﬁ - %(—K )} (27)

J m

20



Shock wave
boundary
E(t

- Ja«—x = 0 boundary

Upstream (C,0) Downstream

Figure 6. Space-Time Diagram for Lane 1 Indicating
Characteristic Lines and Shock Wave Boundary
Line. Outside of Shaded Region the Concentration

Assumes the Unperturbed Value, Ko
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which depends on the unknown quantity kl(g (t),t). We are solving
the system of equations (see Section 3):

5k ok =
-5E+Ca—x+aAk=0, (28)
or,
ok, ok,
S e a(kl-kz) =0 (29)
ok ; ok
5t T 2 3%t a('ki-l*Zki'ki+1) =0 (30)
2 <1ic<n
ok ok
3t " S22 ¢ a(_kn-l+kn> =0 (1)

We use the Forsythe and Wasow2 method employing the powerful
method of characteristics3 to solve the set of differential equa-
tions. Because of space limitations it must be assumed that the
reader has a basic textbook knowledge of the method of characteris-
tics. If not, the reader is referred to the two references men-
tioned above for an excellent introduction to this method. Those
readers who have neither the time nor the inclination to follow
the mathematical solution of Equations (29)-(31), and (20), may
skip the remainder of this section and proceed directly to Section 7.

Referring to Figure 6, we note that outside the shaded region
bounded by the shock wave, the density in all lanes assumes the
unperturbed value Ko (the shock has not reached these points out-
side the shaded region). Within the shaded region the concentra-
tion exceeds Km and is at jam, K. at the blockage location x=0 for
all times t>0. The figure further depicts the characteristic
lines of the set of differential Equations (29)-(31) (see Ref. 3,
for example, for the theory of characteristics). The characteris-
tics on which dx/dt = Cq5 result from the continuity Equation (29)
for lane 1, and reflect upstream propagation from the blockage to
the discontinuity. The characteristics on which dx/dt = c, result
from the continuity Equations (30),(31) for all other lanes, and
reflect downstream propagation from the discontinuity to the block-
age in the other lanes. We choose the grid lines to lie along
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characteristics. This avoids certain restrictive conditions on
the ratio of the horizontal to the vertical grid spacing otherwise
necessary to insure that the solution to the discrete equations
approaches the solution to the differential equation as grid
spacing approaches zero. In order to solve the set of Equations
(28) or (29)-(31) we first transform coordinates to «, B, where

a = X - clt

B =x - cyt (32)
The characteristic lines are now of the form o« = constant and g =
constant. We use these as grid lines for the discretization. That
is, for the "splitting up'" of the continuous equation into discrete
or finite parts so that it may be numerically solved. The differ-
ential Equations (29)-(31) transform to

ok

(cl-cz) 3@1 + a(kl—k2> = 0 (33)
ok
(cz-c1> A a(—k£_1+2k2-k2+1> =0 (34)
2 < % < n-1
ok
(Cz’cl) 30 a('kn-1+kn> =0 (35)

ok _ ok  pa , 2k 8 _ ok ok
3t 9de@ ' 3t BB " ot 1 Ja 2 98
ok _ 8k o, 3k 9B _ 9k , 3k
9x da ' 9X 38 2x 9@  9R

Equations (33)-(35) represent the continuity equations in
the (a,P) coordinate system. In this coordinate system, the region
in which the differential equations are solved is shown in
Figure 7 in terms of a schematic of the grid system that is used
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Figure 7. o, B Grid Lines Showing Shockwave-Blockage
Boundaries’
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in the discretization. This region, as seen in Figure 7 is bounded
by the blockage represented by x=0 or g = cza/c1 on one side and
the shock wave on the other.

Vertical grid lines are of the form a=a; and are spaced uni-
formly at intervals of h, (ai=ih). Horizontal grid lines are of
the form p=B,- These are not uniformly spaced. Bi is taken to be
the value of p at the intersection of the 1in§ a=a; with the shock
wave curve. The path of the shock wave is not initially known.

We are to find these values as well as the values of the concentra-
tion at the grid points. The actual method of solution is left to
Appendix 1. The numerical results of this solution of the con-
tinuity and shock boundary equations are presented in section 7.

In the next section, we present the solution of these equations in
the steady state limit.
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6. STEADY-STATE SOLUTION FOR LANE BLOCKAGE IN LIGHT TRAFFIC

Before presenting the numerical results to the general case
treated in the previous section where we solved the continuity and
boundary condition equations for a lane blockage under moderately
light traffic conditions, we develop a solution to these equations

in the steady state limit.

In the steady state limit, the shock wave has ceased to prop-
agate, the discontinuity remains in a fixed position and the
traffic density does not change with time. These steady state

conditions can be expressed as

d¢/dt = 0; x = d = constant (36)
ake=0,e=1,...n. (37)
at

By setting 8k/at=0 in the vector continuity Equation (9), we get
the following vector ordinary differential equation

C % +aAk=0 (38)
where
ky (%)
k = : (39)
k, ()

Let x=d be the steady state position of the discontinuity. This
steady state position has also been denoted by go in Section 4,
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Setting d&/dt=0 in Equation (20), we obtain the lane 1 boundary
condition at d

ky(d) = K, + Kj(l-Ko/Km) (40)

which is the traffic density at position d upstream from the block-
age in lane 1 after steady state has been established. We also
have the boundary conditions for the densities in the other free-
way lanes after steady state conditions have become established:

. = 41
kl(d) KO , 2 2,...0 (41a)

Finally, the lane 1 boundary condition at the blockage point is

ky (0) = K; (41b)

These (n+1) boundary conditions determine the n arbitrary scalar
constants in the solution to the differential equation and the con-
stant d.

Writing the differential equation as
&S =-ac Ak (42)

we let N be the i th eigenvalue of (-aC'lA) and let'Vi be the
eigenvector associated with this eigenvalue. For arbitrary scalar

constants Bl""’Bn’

K(x) = jz Bi exp(kix) vi (43)

is a solution to the differential equation. To determine the con-
stants d, Bl”"’Bn’ we use the boundary conditions and obtain the

following set of simultaneous equations;
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n
Z Bi Vir = & (44)

i=1
n
Z B, exp(xid) Vi = Kt K (1—KO/Km> (45)
i=1
n
:E Bi exp(kid> Vil = Ko , 2 < % <nmn (46)
i=1

where Vij denotes the j th component of the i th eigenvector.

Applying the n Equations in (45) and (46), we can solve for
(Bi exp[lid]) which is linear in Bi exp [xid]. We call this Gi’
for i=1,...,n, and substitute Bi=Gi exp[-xid] into the first equa-
tion, to obtain

n
> 6 exp(-xid) Vi = K (47)
i=1

This non-linear equation can be solved for d by standard methods,
for example, iterations of Newton's method. Finally, having ob-
tained d, we determine B, from B.=G, exp[-xid] which completes the
solution, and gives the steady state concentrations in each of the
freeway lanes. Numerical results are presented in the next section.
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7. NUMERICAL RESULTS: LANE BLOCKAGE IN LIGHT TRAFFIC

In this section we present the numerical results obtained by
solving the steady state problem discussed in the previous section
and the non-steady state general case discussed in Sections 3, 4,
and 5. In the steady state case, Equations (38), (40) and (41)
were solved. Figure 8 illustrates this, showing the variation of
traffic density in all four lanes with distance upstream from the
blockage point for times sufficiently long for steady state to
prevail. In the general case, the continuity Equation (28) to-
gether with the boundary conditions (25)-(27) were solved. Figures
9-13 illustrate this, showing the variation of traffic density with
time as well as distance; the variation of shock velocity with time
and distance; and the relationship between traffic density and
shock wave velocity.

The numerical results were obtained using the following illu-
strative numerical values for the constants:

q, = flow at K =1 vehicle/second

Kj = .05 vehicles/foot (264 vehicles/mile)
Km = ,02 vehicles/foot (106 vehicles/mile)
K0 = .01 vehicles/foot (53 vehicles/mile)
a = .15 second™!

N = 4 1lanes

where "a" signifies the number of vehicles diffusing across lane
boundaries per second per foot of roadway per concentration dif-
ference. The value a = .15 second,—1 for example, indicates that
when the concentration difference is .05 vehicles/foot (jam con-
centration in one lane while the adjacent lane is empty), .75
vehicles per second will switch into the empty lane in a distance
of 100 feet, (a-Ak:AXx).

These numerical values, in particular those chosen for the
jam concentration Kj and for the density at which the flow is
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maximum, K,, are only illustrative. They undoubtedly are too high,
though the ratio Km/Kj is probably right. Because of this fact, we
would expect all the qualitative features of the numerical solutions
for the traffic density and shock wave velocity to agree with other
values of Kj and K, (say, Kj=160veh/mile and Km=64veh/mile), how-
ever, we could not be sure of quantitative agreement with experi-
ment until we knew what values were appropriate for the roadway
under consideration. Figure 8b shows the difference when other
values of Kj and K are used. As expected, the qualitative fea-
tures do not change, though the absolute values of the densities,
of course, change.

Mentioning agreement with experiment, it is well to point out
that one disadvantage of this model of traffic dynamics (used in
the paper by Munjal1 as well as here) is that for k<Km (Km being
the value of concentration at which flow is maximized), the veloc-
ity is assumed independent of concentration (see Eq. (1), Fig. 1).
How well this holds is not certain and must be determined
by a validation test of the theory presented here.

A. Steady State Results-Figure 8

We first present the numerical results for the steady state
case. The reader is referred to Section 6 for the theoretical de-
velopment.

Lane 1 experiences a blockage at time t=0 at location x=0.
We assume a sufficiently long time has elapsed so that steady state
has been achieved and the density remains constant in time. We
find the prevailing concentrations at various upstream points on
the different lanes of the freeway, after the blockage has remained
long enough for steady state conditions to be realized.

These steady state concentrations for each freeway lane for
different positions upstream of the blockage are shown in Figures 8a and
For the numerical parameters used in Figure 8a, steady state con-
ditions are reached 2 minutes after the blockage has occurred. The
concentrations shown in the figure are thus those which exist after
the initial two minutes have elapsed.
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Figure 8a shows the steady state concentration in lane 1 de-
crease from a jam concentration of 0.05 vehicles/foot or 264 vehi-
cles/mile at the point of blockage to 0.035 vehicles/foot or 185
vehicles/mile some 40 yards upstream, an almost 30% decrease in
traffic density between the blockage point and a point 40 yards
upstream. The decrease is due, of course, to vehicles leaving the
blocked lane. At this upstream point, according to the theory
developed in this paper (see Section 4) a stationary discontinuity
exists in lane 1 which separates the unperturbed concentration,
Ko=0.01 veh./foot (53 veh/mile) of the upstream traffic from a
traffic concentration which is higher than that. This, from Equa-
tion (23) is given by

K0 + Kj(Km-Ko)/Km = 0,035 veh./foot (185 veh./mile).

This higher value of the concentration produces the same flow as

the unperturbed concentration K0 as previously described in Figure
5. Thus, practically, this means that a vehicle traveling in lane

1 which carries a traffic density K0=53 veh./mile will, upon reach-
ing a location 120 feet upstream of the blockage, drive into a
traffic jam of density K0+Kj(Kk-Ko)/Km=185 veh./mile. His speed
will be greatly reduced since the concentration is much higher
though the flow is the same (see Figures 1 and 5). He will try

to leave this lane before he gets to the blockage point since the
traffic density is becoming worse the closer he gets to the block-
age (at the blockage it is 264 vehicles per mile). In fact, a
number of cars do escape as can be seen(Figures 8a and b) by the increase
in the traffic density of the other lanes. These steady state
concentrations in the other lanes at the location 40 yards up-
stream of the blockage, have the unperturbed values K1 = 0.01
vehicles/foot. The concentrations increase to the values shown in
the figure, 0.0186 vehicles/foot, 0.0113 vehicles/foot, and 0.0102
vehicles/foot, for lanes 2, 3 and 4, respectively, as the blockage
at x=0 is reached due to vehicles from lane 1 leaving before the
blockage is reached. Lane 2 closest to the blocked lane experiences
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a larger concentration buildup than the other lanes which are fur-
ther away from the blocked lane.

Figure 8b is similar and is presented in order to show this
qualitative similarity when different numerical values are used for
the jam concentration and undisturbed traffic density.

B. Dynamic Results, Figures 9-13

Having presented the steady state results we now look at what
happens from the moment the blockage occurs until steady state has
been reached (for the numerical example given here, this happens
after two minutes). We do this with the aid of a series of graphs
showing the relationship between such parameters as shock speed
and traffic density as well as by showing the buildup of traffic
density with time until steady state is reached. The graphs were
obtained from the solution of the continuity equations and boundary
conditions, Equations (25)-(28).

1. Shock Wave Trajectory and Traffic Densities
in Lane 1, Figure 9

Recall from the theoretical development (Sections 3-5) that
following a blockage in lane 1 a discontinuity in traffic concen-
tration or shock wave is created in lane 1 which travels upstream
until steady state conditions are reached (assuming medium to light
traffic densities prior to the blockage). This shock wave was
shown to propagate upstream with velocity d¢/dt given by Equation
(20). We also showed that the concentration of vehicles in lane 1
was strongly affected by the propagation of this shock wave, de-
creasing from a high at the blockage point of Kj to a steady state
value at the upstream steady state position given by Equation (23).
In Figure 9 a space-time curve has been plotted which shows the
trajectory of the shock from the blockage point to the steady state
position 120 feet upstream. We have also indicated what the traffic
densities are along this space-time trajectory. With the given
numerical values for the constants, the shock wave very quickly
(after about seven seconds) travels half the distance between its
starting and end points. Steady state conditions however, are not
reached until some 113 seconds later. On the same graph, the
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traffic concentrations existing at different upstream space-time
locations are shown. For example, at x=t=0, where and when the
blockage first occurs, the traffic density is at jam concentration,
0.05 vehicles/foot. Further along the trajectory of the shock at
x=-41 feet upstream and and t=4 seconds, the concentration in lane 1
diminsishes to about 0.0436 vehicles/foot. At the steady state
position, x=-121.7 feet and t=120 seconds, the concentration ceases
to change and remains at the steady state value of 0.035 vehicles/
foot. Thus Figure 9 shows that the shock wave generated at the
blockage at location x=0 at time t=0 at which location and time the
traffic density is at jam concentration Kj=0.05 veh./foot, travels
at first very quickly upstream, diminishing in velocity as it
propagates, until finally the propagation ceases altogether at the
steady state location. The traffic concentration is seen to re-
duce from the Kj=0.05 veh./foot value to the steady state value of
0.035 veh./foot given by Equation (23). The reduction in the
traffic density as we move further upstream from the blockage is
seen to reduce quite rapidly at first, from 0.05 veh./foot at time
t=0 to 0.0436 veh./foot some 6 seconds later, to 0.0387 veh./foot
in another 9 seconds. The concentration after that time diminishes
only much more slowly, from 0.0387 veh./foot to 0.035 veh./foot in
about another 105 seconds. Obviously, the greatest traffic density
build up, coinciding with the greatest upstream shock wave propa-
gation speeds occurs in the first 10 or 20 seconds from the start
of the blockage. In general, even with different numerical values
of the parameters, we would expect the greatest traffic density
build up to occur within 15% or 20% of the total time measured from
the onset of the blockage until steady state is reached when the
density ceased to change.

2. Shock Wave velocity as a Function of Time, Figure 10

Figure 10 shows the velocity of the discontinuity or shock
wave from Equation (20) as a function of time since the onset of
the blockage. The figure clearly demonstrates that the shock wave
velocity rapidly decreases with time approaching zero in about two
minutes after the occurrence of the blockage. The figure clearly
indicates that steady state is approached.
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3. Shock Wave Velocity as a Function of Position, Figure 11

Figure 11 also shows the shock wave velocity, in this graph,

however, as a function of position upstream of the blockage. The
initial moderate decrease in the velocity of the discontinuity with

increasing distance upstream followed by a sharp decrease to zero
velocity further upstream clearly shows the approach to steady
state where the velocity of the shock is zero.

4. Traffic Concentration as a Function of Shock Wave
Velocity, Figure 12

In Figure 12 we plot the traffic concentration in the blocked
lane as a function of the shock wave velocity. As expected, the
traffic density in the blocked lane decreases from jam concentration
Kj with decreasing shock wave velocity. It can be seen that the
decrease in concentration is most rapid in the initial stages of
the shock wave propagation, decreasing from 0.05 veh./foot to about
0.036 veh./foot as the shock wave slows down from about 10 feet/sec.
to approximately 1.5 feet/sec. After that, the traffic density,
slowly approaches a constant 0.035 veh./foot as the shock speed
approaches zero and steady state is attained.

5. Traffic Density in all Four Freeway Lanes as a
Function of Time, Figure 13

Finally, in Figure 13 we show the traffic concentration for
each of the four freeway lanes at the x=0 location as a function
of time.

If steady state had been reached, as in Figure 8, then the
concentration in all four lanes would remain constant and four
horizontal lines, one for each lane, would be drawn for this graph
showing a constant density over time. This is because this graph
shows the traffic density at one particular location on the road
(here the x=0 location) and for steady state the traffic density
does not change with increasing time. Since steady state, in fact,
is not reached until two minutes after the occurrence of the block-
age, the graph shows instead the increase of the traffic density
at the x=0 location in each of the freeway lanes in the first two
minutes since the occurrence of the blockage. The concentration
in the blocked lane, lane 1, remains constant at jam concentration
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since the blockage has not been removed. The concentrations in
the other lanes increase with time from their value before the on-
set of the blockage, K0= 0.01 vehicles/foot to higher values as
vehicles from the blocked lane diffuse into the other lanes. As
expected, the greatest increase in concentration occurs in the lane
closest to the blocked lane, (lane 2). The traffic density at x=0
in lane 2 increased 50% from its unperturbed value Ko=0'01 veh./
foot at time t=0 to 0.015 veh./foot some 7 seconds later. The
density levels off at 0.0186 veh./foot, its steady state value,
after two minutes. The densities in lanes 3 and 4 also increase
from their initial unperturbed values K,=0.01 veh./foot but remain
at lower traffic density levels than does lane 2 since they are
farther from the blocked lane.

For other values of the jam concentration Kj’ ambient concen-
tration K0 and concentration at maximum flow Km, other concentra-
tion-position-time curves would be generated which could be com-
pared with experimental data when available. Since such data is
not presently available, we shall be content with simply pointing
out that the curves so generated would show the same functional
dependence as the ones shown here, namely, the generation of a
shock wave at the location of the blockage at time t=0 which propa-
gates upstream with a rapidly decreasing velocity until steady
state-zero velocity conditions are reached. The concentration in
the blocked lane decreases very rapidly with both time and position
upstream of the blockage initially and then more slowly until
steady state conditions are reached. The concentration in the
other lanes increases rapidly at first and then more slowly with
the lanes closest to the blocked lane experiencing the greatest
concentration increase.
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8. CONCLUSIONS

We have treated the problem of the traffic redistribution
following the onset of a lane blockage on a multi-lane freeway.
Our work differed from previous ones in that we allowed for both
up and downstream traveling waves, as one must, following a lane
blockage on a multi-lane freeway.

It was shown that the onset of the lane blockage generated a
concentration discontinuity which traveled upstream of the blockage
while downstream traveling waves propagated in the other freeway

lanes under moderately light traffic densities.

We distinguished between the steady and non-steady state cases,
and solved the equations of motion to obtain the concentration in
each of the freeway lanes both before and after steady state had
been achieved. The theory developed here is ready for a valida-
tion study against actual freeway data to be taken following the
occurrence of a blockage. Following a successful validation
study, the theory may be applied to the implementation of a con-
trol system to minimize the deleterious effects that follow the

onset of the blockage.
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APPENDIX 1, SOLUTION OF EQUATIONS (33) - (35) oF SecTionN 5

In this appendix we outline the method of solution of
Equations (33) - (35), the continuity equations in the ao,B
coordinate system. We repeat these equations here for convenience.

akl
(cl-cz) 38 + a(k1 - kz) =0 (33)
akz
(c2 - cl) 35 T @ (—kz_1 + Zk2 - k1+1) = 0,2<2<n-1 (34)
akn
(c2 - cl)-ga— + a (-kn_1 + kn) =0 (35)

For convenience we also repeat Figure 7 which shows the a,B8
grid lines and the shockwave-blockage boundary lines.

The first step in the solution is to determine g, and kl(al,gl).

These variables are determined by the lane 1 continuilty equation

(cl-cz) ;;l + a(kl-kz) =0 (33)

discretized over the interval connecting (al,alcz/cl) to (al,ﬁl)
and by the shock wave speed boundary condition

B R
o1 : m jm

To use this condition, we may point out that the slope of the curve

x = £(t) in (e,p) coordinates is given by

dg _ (dg dg
H = (a-f - C2>/(a— - Cl) . (1'1)

\as can be seen from Figure 7 where the shock wave curve x = g(f)
is shown to the left of the blockage curve. The slope, of course,
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is just the derivative of p with respect to o. We also note that
the average slope of the curve p=pg (e¢) over the interval [O,al] is

(Bl-c2 al/cl)//}1

as can be seen in Figure 7 using the definitions of the slope to

given by

a curve. We equate this to the sum of the individual slopes at

H(%) (%)
2 de / _o do/ o

where (dﬁ/da)a=0 is determined from the fact that k1(0,0)=Kj and
(dp/da),_,
above is tﬁus expressed in terms of the (a,p) grid and can there-

=0 and at a=a.

1

is expressed in terms of ky(ey,87). Condition (20)
fore be discretized and hence numerically evaluated.

The lane 1 continuity equation
ok

(cl—cz) §§l + a(kl-kz) =0 (33)

itself was discretized by replacing akl/ap by the difference
quotient (e.g. Figure 7):

kl(al’Bl) - kl(al’czal/cl)
By - cpa1/cy

where kl(al, czal/cl) = Kj (since it is on the blockage line,
Figure 7), while By and kl(al,pl) are variables to be solved for.
The term a(kl-kz) is evaluated at (al,pl) since kz(al,pl) = Ko and
ki(al,pl) is to be solved for.

We are now able to solve the resulting two simultaneous con-
tinuity and shock wave speed equations for Bl and kl(al,Bl). This
was done.
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Next, the continuity equations

(c27¢1) 5 * a('kz-1+2kz'kz+1 -0
2 <% <n-1 (34)
and
ok
o) 2 st - s

are discretized by replacing Bkz/aa by the difference quotient

e.f e ) kSL(OLZ’Bl){I kz(al’sl)

and evaluating the terms a(—kﬂ_1+2kﬂ-k£+1) and a(-kn_l+kn) at
(al,ﬁl). Since we know kg(al,ﬁl) for all £ (it is equal to Ko) we
solve each equation ({=2,....,n) for kz(az,gl). Thus, we now have
the values of kE(QZ’ﬂi) for ¢=2,....n, and i = 1,2,

To determine kl(az,pl) and kl(az,ﬁz) we use the lane 1 con-
tinuity equation

3k,
(cl—cz) 5 a(kl—k2> =0 (33)

which can be solved for kl(az,ﬁl), knowing kz(az,ﬁl) and using
kl(az,czaz/cl) = Kj‘

We can now determine kl(az,ﬁz) and P, by a method similar to
that which was used to find Bl and kl(al,ﬁl).

We then find the values of k2
lanes £ =2 to n by the method with which we obtained these values

along the grid line a=og for

along a=a,. We can thus iterate to determine the values of the
lane densities kl’ ..... kn from e=0 to a=ap, where m is as large as
desired. In this manner the four lane freeway with a blockage in
one of the lanes was solved to give the four lane densities, kl’
k2’ k3, and k4 resulting from this blockage.
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APPENDIX Z. WAVE PROPAGATION UNDER HEAVY TRAFFIC CONDITIONS

When traffic is heavier so that the concentration in the un-
blocked lanes exceeds Km as a result of the diffusion of vehicles
from the blocked lane, it is uncertain whether steady state would
be achieved. This point as to whether or not steady state is
achieved has not been analyzed here. It will be the topic of a
future paper.

There are three cases of interest: The one treated in this
paper which we call the moderately light traffic situation in which
the density before the blockage occurred was K0<Km which remains
less than Km in the unblocked lanes even after the blockage. The
second case is when the density is K0<Km before the blockage but
which increases to values above Km following the blockage in one
or more of the unblocked lanes due to diffusion of cars from the
blocked lane. Finally, the third case is the heavy density case
in which the density KO is greater than Km even before the lane
blockage.

For this latter case when traffic conditions are so heavy
that K0>Km, then the concentration in all lanes is above Km and
Munjal'sl solution can be applied. We have, from Munjal et all

1

k(x,t) = MB(x)M" k(0,t-x/cy) (2-1)

where B(x) is defined below and €, is the rate of change of flow,
q, with respect to concentration, k for k>Km, or

c; = - qm/(Kj—Km).
M is a matrix such that M_lAM=S where S is a diagonal matrix with
the eigenvalues A of A defined below. Thus the discontinuity

caused by the sudden blockage of lane 1 would propagate upstream
at constant rate €1- As the wave propagates upstream, we now show
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that the limiting values of k in all lanes approach the same value,
the average of the initial values, k,(0,t-x/c). Using Munjal's1

solution given by Equation (2-1) we have B(x) defined as the
diagonal matrix
[ 4, (x)
d, (x)
B(x) = .
4 (x)

where

d,(x) = exp [—Ai aX/cl]

For the 4-lane freeway case the eigenvalues are

Thus
d = - =
1(x) exp[ Al ax/cl] 1 (2-2)
and

= X
d; (x) = exp[-Ai ax/cﬂ + 0 as Ei+ to (2-3)

The particular values of A ; are A2=2-/7,A3=2 and Ag=2+/Z,
The M matrices are .given by

1 1 1 1
1 vZ -1 -1 -(VZ + 1)
M=
\ 1 1 - V7 -1 1+ V7
1 -1 1 -1
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[ 2 2 2 2

PR IR S, S SR ¢ I
M= o= 2 -2 ) 2
2 -VZ - T /7 -2 - VD)

§

Here B(x) - diag. [1,0,0,0] as x/c1 + o, Therefore, defining

o kl(O,t-x/cl)

B ol k,(0,t-x/cy)

Y kS(O,t-x/cl)

8 k4(0,t—x/c1)

e o - -
we have, using Equation (24)
o
k(x,t) —><g) as %—» o (2-4)

a

where o is the first component of M-lk(O,t-x/cl). Hence

_ 1 X X X X
o 7 {k1<0,tcl> + k2<0,t"c—1> + kS(O’t-C—l> + k4(0,tz:z>} . (2'5)

Thus, as x/c1 becomes large, travelling with the velocity of the
wave so that t-x/c1 remains constant, the concentration approaches
the same value in all four lanes, the average over the four lanes
of the perturbations at the blockage point. In other words, in
this heavy traffic situation, the concentration for large times

is the same in each of the four lanes. It is given in terms of

the concentrations at the blockage location as indicated by
Equation (2-5). We may also note that initially at t=0 we have jam
concentration in lane 1

kl(0,0) = Kj
and concentration K0 in the other lanes

k;(0,0) = K_, i=2,...n
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so that traveling with the wave the concentration at x=c1t >> 0 at
time t approaches (see Equation (2-5).

ky (eqt, t)> (1/4)[k;(0,0) + k,(0,0) + k;(0,0) + k, (0,0)]

= K. + SKO 0=1,2,3,4
or, in general,
k (cit,t) - K5 * (m-1K; g=1,...n
g1
n
for an n lane freeway. One word of caution is in order here. In

this heavy density case we may need to specify downstream condi-
tions as well as upstream ones. This is because immediately down-
stream of the blockage in lane 1 the traffic density is zero. For
some distance downstream of the blockage in that lane the density
will remain below Km (contrary to the original assumption that

k >Km) since cars cannot immediately return to this lane from the
other lane after the blockage has been passed but will only diffuse
gradually. The value of kp, (0,t) for t=0 is known only for ¢ =1,
(kl(O,t)=Kj for F >20). However, the values of ky, (0,t) for t=0
for the other lanes could very well be affected by the downstream
rate of diffusion of cars from these lanes to lane 1. This has

not been investigated in this paper and is a subject for future
research.
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