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SUMMARY
Introduction

This report presents the results of a study to develop
models and procedures for the quick evaluation of trans-
portation policy options on urban travel behavior. The
methods and tools for policy analysis described in this
report can be used to estimate the travel demand effects
of a wide variety of transportation policy instruments
with currently available data in a matter of hours, or
minutes, with the aid of a calculator.

To evaluate the effects of a transportation policy,
travel purposes are separated into two broad groups, work
and nonwork, reflecting differences between each in the
structure of underlying tripmaking behavior. It was deter-
mined during the course of the study that existing mode choice
models for work trips could be applied for quick policy
evaluation but that currently available models of nonwork
trip behavior were ill suited to the task. Consequently, the
work travel section of the report describes procedures for
applying probability choice models to generally available
grouped data. However, to analyze the effects of policies
on nonwork travel, it was necessary to estimate a simpli-
fied travel demand model which was designed to be broadly
applicable to a variety of planning and data contexts.

Both the work and nonwork trip demand models and pro-
cedures were exercised on sets of policy issues which are
of current interest. These included gasoline taxes, parking
restrictions, transit service improvements and the introduction
of new modes. Where appropriate, travel demand elasticities
with respect to level of service changes are computed and
validated on the results of previous research.



Models and Procedures

A review of data and source materials revealed that
little was available to help the policy analyst who required
quick, if approximate, estimates of the demand effects of
potential policy actions. Though there is a large body of
transportation related data for many separate urban areas,
it varies widely in quality and is kept in cumbersome form.
The only reasonably current national data base on household
travel behavior is the 1969 Nationwide Personal Transportation
Survey (NPTS). Additionally, the present generation of be-
havioral demand models ~-- multinomial logit models estimated
on disaggregated observations -- cannot be applied directly
to these data sources in order to predict accurately the
effects of changes in transportation level of service. Though
the journey to work is reasonably well represented by such
models there is the further problem that multinomial logit

models of nonwork travel are difficult to use and have, to
date, failed to demonstrate their validity. The models

and procedures developed in this study for work travel and

nonwork travel are described separately below.

Work Travel
To apply existing probability choice models of work
trip behavior to currently available data entails three

major problems:

Aggregation. Quick analysis often requires data which
summarizes a large amount of travel information into a
relatively small number of data elements. The application of
the logit model to such data usually leads to biased predictions.

Transferability. The available models have been esti-

mated on data from specific urban localities and there is
some question as to whether such models can be generalized

to other urban areas.

xi




New Modes. Typically, the most reliable models have
been estimated on a limited number of mode choices (bus
and auto-drive-alone) whereas the full set of mode choices
available to a tripmaker includes auto passenger travel
and, in some contexts, alternative forms of transit.

After a review of the performance of various existing
logit models of work trip modes split, it was decided that

the 1972 CRA model, estimated on Pittsburgh data, would be
used for further analysis.l! This model predicts the

probability that an individual will choose either bus or

driving alone for the usual journey to work. The proba-

bility is represented as a function of the level service

variables (costs, line-haul and wait time, walk access

time) of the alternative modes, the autos per worker in

the household and a constant term. The transferability

problem is solved, largely, by adjusting either the constant

term or the coefficient on autos per worker. To apply the

model to new modes, a heuristic approach to predicting the

probability of taking each new mode is derived; the approach

relies on assigning values for the level of service variables

for each new mode and applying the model in such a way that

the tripmaker faces a complete range of mode alternatives.
various methods for dealing with the aggregation problem

are developed; the approach to be recommended depends on the na-

ture of the data base which is utilized in model application. For

the NPTS data, the data file on individual trip records was

cross tabulated into twelve market segments in such a way

that aggregation bias was minimized; this produced a manageable

data format for quick evaluation of national policy. To apply

the model to typical urban data bases required adjustments in

the model itself so that it could be used with sketch plan

zone (or district level) data bases on travel behavior and

transportation networks; these adjustments entailed the use

lrhe model is described in Thomas Domencich and Daniel McFadden,
Urban Travel Demand: A Behavioral Approach (Amsterdam, North
Holland Publishing: 1975)

xii



of a simplified Taylor's series approximation (based on an
approach to the aggregation problem originally developed by
Talvitie)! and the use of the area of the zonal interchange as
a variable to correct for aggregation bias. The procedures
were validated on Los Angeles data.

Nonwork Travel

For nonwork travel, the range of choices available to
a tripmaker is much more varied than in the case of work
travel. An individual may choose between a number of alter-
native destinations including the alternative of going home
after each stop on a journey and the person may choose the
frequency of travel; this is in addition to the mode choice
decision. Given this structure to nonwork travel behavior,
it was concluded that a model which represented the range of
travel choices as a continuum would be as appropriate as a
model which represented travel choices as discrete entities.
Such a model would be in a simplified form more suitable for
quick estimation of policy impacts. Additionally, it was
recognized that equations in linear form would have the
decided advantage of overcoming the aggregation problem that
occurs when nonlinear models are applied to aggregated and
noncomparable data bases.

Two disaggregated simultaneous equation models of
nonwork travel behavior were estimated from NPTS data. The
unit of observation for these models is the travel record
of an urban household over a four day period drawn randomly
from the national population. Model I is a two equation
model which predicts the number of automobile vehicle miles
traveled (VMT's) and the number of transit trips by the
household over a four day period; Model II is a three equation
model which predicts the number of auto trips, the average
length of auto trips and the number of transit trips made by

'Antti Talvitie, "Aggregate Travel Demand Analysis with Dis-
aggregate Travel Demand Models," Proceedings -- Trangportation
Research Forum, Vol. XIII (October, 1973).
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a household over a four day period. The independent variables
in the models include transportation level of service charac-
teristics, household socioeconomic variables and urban area

specific descriptors of size.
The model parameters were used to compute direct and

cross elasticities with respect to level of service and
these elasticities were used to evaluate the effects of
various policy scenarios on nonwork travel. Further study
is necessary to apply the models directly to data bases
which do not contain separate samples of transportation
characteristics for auto and transit tripmakers. However,
the travel behavior elasticities computed from application
of the model to NPTS data appear to be useful for a wide
range of policy applications. The independent variables
in the model were chosen largely on the basis of being re-
lated to potential policy instruments to make the model a
useful planning tool.

Policy Evaluations and Estimated Elasticities

To determine the =ffect of a policy on travel behavior,
two ccmputational approaches have been traditionally applied:

1) The policy can be represented by a percentage change
in an independent variable, or set of variables, in the model
and this is multiplied times the elasticity derived from the
model to get the percentage change in travel behavior variahles
(VMT's, transit trips, etc.);

2) The policy can be represented by a new value for an
independent variable, or set of variables, and the model is
simulated to predict travel behavior at these new values
and then compared to base case predictions of travel behavior
to determine the percentage change in travel behavior variables.

xiv



In practice, it was found that the first approach was
most suitable to the nonwork trip model and the second
approach was used for the work trip model. Though the first
approach is usually easier to apply, sometimes elasticities
are not defined or they are best represented as functions
of variables rather than unique numbers.

To demonstrate the models and procedures developed in
the study, several policy scenarios were analyzed as examples.
A brief summary of selected predicted effects is presented in
Table S~1. Because changes in VMT's are presently of most
interest in transportation policy objectives, only these
effects are presented in the summary given in Table S-1.

The predicted effects of a policy on total travel is
the weighted average of effects on work travel and nonwork
travel. The weights equal the proportionate contribution to
VMT's of each trip purpose category. From the NPTS survey,
these weights are equal to:!

work travel = .4158
nonwork travel = 5842

In the case of transit, the national proportions are equal
to:2

work travel = .7207
nonwork travel = ,2793

yousehold Travel In The United States, NPTS Report No. 7
(U.S. Department of Transportation, Federal Highway Administration,
Washington, D.C.: December, 1972) Table A-2.

2Computed from statistics presented in Table 3-2 of this
report and Table A-12 in Home-to-Work Trips and Travel, NPTS
Report No. 8 (U.S. Department of Transportation, Federal Highway
Administration, Washington, D.C.: August, 1973).
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Table S-1

PREDICTED RESULTS OF SELECTED POLICY SCENARIOS
USING NPTS DATA

Percent Change in VMT's

Work Nonwork Total
Policy Scenario Travel Travel Travel
100 Percent Gasoline Tax -13 -15 ~14
Regionwide Parking Tax! -14 5 -3
|10 Percent Decrease in Transit -3 0 =
Line haul and Wait Time
High Performance Dial-A-Ride? - -10 -6
50 Percent Increase in Auto 9 10 10
Fue! Economy
Transit within Six Blocks of -7 -10 -9

Al'l Households

For specific urban areas, these proportions may well
be different. Also, if the effects of policies on other
variables, such as transit trips or auto trips, are pre-
dicted then the work trip versus nonwork trip weights will
be different.

No brief summary of the policies being analyzed can
explain all the assumptions employed in each scenario, and
the reader is consequently referred to the body of the report

for details. However, supplemental information is provided

in Table S-2 which gives selected estimated travel-demand direct

lWork travel results of this scenario were from simulations of a $1.00
parking tax on Los Angeles data. Nonwork travel results assume a 50 percent
decline in the availability of free parking.

2The Dial-a-Ride service is available for al! work trips with round trip
distance less than 9.| miles and for all nonwork trips regardiess of distance.
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and cross elasticities for various level of service variables.
These elasticities, as well as the predicted policy effects
will vary among urban areas. Using the procedures described
in the study it is possible to refine these estimates for
policy evaluation in a particular urban area using data

which is specific to the planning region being analyzed.

As in the case of estimating the percentage of travel
policies, the total travel demand elasticities are weighted
averages of the work and nonwork elasticities. Gaps in both
Tables S~1 and S-2 typically occur because some scenarios were
not tested on both the work and nonwork trip modules. Addi-
tionally, some scenarios were analyzed in the body of the
report which are not presented in these tables.

The results of the study indicate that it is possible
to estimate the approximate effects of various transportation
options quickly and with minimal commitment of computational
resources. Oftentimes it is necessary to make assumptions
based on ad hoc judgments and the estimates derived from
exercising the models and procedures need to be interpreted
with care.

Recommendations for Future Research

The implications for further research in the problem
area of developing quick and accurate policy evaluation
methods can be divided into the following three subject
areas:

Data. Of highest priority is the processing of available
data, or soon to be available disaggregate data bases,
into formats which are easy to use and to manage for appli-
cation of existing behavioral demand approaches. Also, to
the extent that new data would be important in any particular

planning application, it would be valuable to have procedures
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Table §-2
SELECTED TRAVEL DEMAND ELASTICITIES

Work Nonwork Total
Travel Travel Travel
YMT's
Direct Elasticity with Respect to:
Gasoline Price -.19 -.21 -.20
Auto Time per Mile  coeee * -.49 -— ¥
Cross Elasticity with Respect to:
Transit Linehaul plus Wait Time .32 Q1% L14%%
Transit Access Time L07-.|5¥** - ¥ kX
Transit Fare —  eee * .02 -—-*
Transit Trips
Oirect Elasticity with Respect to:
Transit Linehaul plus Wait Time -1.26 -.lo¥** -.91
Transit Access Time -.25--.59*** et ——-¥*
Cross Elasticity with Respect to:
Gasoline Price .47 .00 .34
Auto Time per Mile - .00 ---*

*work trip scenarios involving changes in these level of service variables
were not analyzed.

**Nonwork transit trip time includes the access time conponent; access time
was not isolated in the nonwork transit demand model.

¥**A range of elasticities for transit access time is given because the actual
response depends upon the market segments where fransit improvements are made.
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for mounting a telephone or mailback survey with relatively
few questions and a small sample (fewer than 200 households)
and that would only take a matter of days to perform and
code. Such surveys would be designed for application of
existing behavioral demand models.

Models. More experimentation with various specifications
of disaggregate nonwork travel demand models may yield more
accurate predictions than the models presented in Chapter 3.
One important factor in estimating such models will be
the availability of better data. It is suggested that
continuous choice models be tested.

System Performance. An issue which was not considered

in this report is the equilibrium between travel demand and
system performance. Many of the policies which were

examined will have secondary or feedback effects which could

be quantified with a system performance model such as a
simplified network representation. Such models are

currently not widely available nor has there been much

effort to integrate them with shortcut travel demand prediction
methods.

xix/xx







1. INTRODUCTION

The objective of this study is to develop procedures
whereby policy effects on urban travel behavior can be
estimated quickly and without a large commitment of re-
sources. This chapter outlines the implications of these
objectives and reviews the options available to planners
at the national and urban level.

As discussed at length elsewhere, it is most ap-
propriate to use behavioral demand models in order to
determine the effects on travel of transportation system
changes.! The specification of such models is to have
the system attributes (e.g., travel times and costs) de-
termine mode split, destination choice and frequency of

travel. The effects of changes in these attributes (which

are the result of policy implementation) are often repre-
sented by computing the percentage change in travel,

either by mode or 1in toto, that would result. The
percentage change in travel can be calculated in two

ways:

First, the estimated demand models may provide an
analytical form from which the elasticity can be cal-
culated directly;

Second, the travel demand models may be used to
simulate the effects of incremental changes in system
performance and the projected demand would then be com-
pared to base case demand estimates or data.

Neither of the two approaches is a priori preferable;
which approach is used in any given circumstance depends
upon the availability of data, the complexities of the
demand model and the type and range of system changes
which are being examined. Either approach, however, re-
quires a well-specified and accurate behavioral demand
model.

!See Measurements of the Effects of Transportation Changes
(1972: CRA) for a complete discussion of this issue.
Little elaboration of this point need be made, however,
because it is now widely accepted in transportation
research.
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The models and procedures developed in this study
have the characteristic that they can be utilized to per-
form policy evaluation in a short time (e.g., hours or min-
utes) with relatively limited computer and man-power
resources. This requirement constrains the data format
to be used in the application process. As will be dis-
cussed below, most currently available data are simply
not processed so as to be easily manipulated in order to
allow quick response by planners. Thus, in addition to
model development, the study analyzes data base prepar-
ation issues.

The most easily applicable process to finding the
effects of policies on travel behavior is to have a single
number represent the elasticity of travel demand with
respect to a change in a particular system attribute.
Unfortunately, owing to the wide variety of transportation
environments which face individual households and metro-
politan areas, such an elasticity may be less precise than
is desirable in policy evaluation. For example, the ef-
fects on auto behavior of a policy will be sensitive to
alternate mode level of service; e.g., one would expect
a gasoline tax to have a greater impact in reducing VMT's
in urban areas with highly developed transit systems than
in urban areas which are heavily auto dominated. This
consideration leads to treating elasticities as though
they were functions of other variables. However, ease
of analysis and quick reaction requirements for policy
evaluation indicate that the functional form for the
elasticities should be relatively simple and have rela-
tively few variables (i.e., data requirements). Moreover,
the number of equations in order to determine the ag-
gregate effects of a transportation policy should be kept
to a minimum.



The rest of this chapter discusses a number of the
above issues in more detail. The next section considers
data commonly available for transportation policy evalu-
ation. The following section briefly reviews existing
behavioral demand models and their potential for policy
evaluation in terms of specification and statistical
validity. The final section reviews the applicability of
current demand models to policy evaluation from the per-
spective of data availability and quick reaction re-

quirements.

1.1 REVIEW OF EXISTING DATA

A short summary of available data for use by planners
will help determine the characteristics a useful model
should have. We make no comment on the quality of the
data, but rather point out the suitability of the data in
their existing forms for meeting the objectives of ease
and quickness of model application. Four widely avail-
able data categories are discussed.

l1.1.1. Nationwide Data

National data which has observations on both urban
trip characteristics and level of service of modes is
quite limited. The only available resource covering a
wide range of trip purposes appears to be the Nationwide
Personal Transportation Survey (NPTS). This survey of
6,000 households in 1969 is a valuable source of urban

travel data.!

Moreover, the survey will be updated in the
late '70's so that a well-specified demand model can be
recalibrated on and/or applied to current data at the

national level at that time. Individual trip records

!see Appendix A for more description of the NPTS data
base.



are available though characteristics of urban areas (aside
from population categories) are not available and location
of households has been purged from the data file and
destroyed. Nonetheless, to the extent that the model

is useful to national planners, methodologies have been
developed in this study to apply to the NPTS data file

and its summaries.

1.1.2 Regional Summary and Tabular Data

For most urban planning authorities, the basic
source of travel related data is a one-shot household
survey made, typically, during the 60's. These data tend
to be updated with socioeconomic and land use information,
particularly as they become avilable from the Census.
Updated data on actual trips is usually estimated and
lacks in reliability, even though checks are made
using screenline counts. Nonetheless, tabular data,
in the form of mode splits, frequency of trips by
length, system inventories, etc., are sometimes avail-
able and may be relatively easy to manipulate given
appropriate travel demand models.

It was found in this study that such data are
not uniform across urban areas and considerable ex-
pense is entailed in locating the relevant items for
even just the major cities. Tailoring a national model
to accept these diverse data summaries would require
that the model rely mostly on socioeconomic character-
istics of urban areas and a few rude descriptors of
transportation facilities. The usefulness of such a
model as a policy evaluation device would be arguably

suspect.



An alternative approach is to take existing, often
disaggregate demand models and develop an approach to
applying these to regional summaries of trip char-
acteristics. This is tried in Sections 2 and 3 with
mixed results.

1.1.3 Zonal Data

The vast majority of data available for trans-
portation planners is processed at the traffic analysis
zone level of aggregation. Some of this data, such as
trip tables developed from urban travel planning pack-
ages, is spurious. Nonetheless, the best data on
system attributes and socioeconomic variables is often
stored in this format. Using an entire set of inter-
zonal observations to apply a model should be avoided;
there are typically lO6 observations of zonal inter-
changes. One alternative is to utilize sketch plan
zones but, even here, there tend to be between 2,500
and 10,000 such zonal interchanges. A final level of
aggregation is the corridor; corridor data on travel
are sometimes available but it is necessary to be
creative about how one treats transportation system
attributes at the corridor level.

The conclusions which emerged from our consider-
ation of interzonal data are as follows: first, the
demand models should accept zonal data because such data
is widespread; second, a method of reducing the
number of observations from a zonal interchange data
set should be applied when the model is to be used
for policy evaluation. With respect to the latter
conclusion, two approaches to reducing the number of
observations are potentially available: first, the
data can be tabulated into summary formats; second, a
small but representative sample of zonal interchanges
may be selected from the entire population and set
aside for special analysis. 1In Section 2, it is shown
that the latter approach is generally more successful.




1.1.4 Disaggregate Data Sets

A small, but growing, source of data involve trip
records and system attributes at the individual house-
hold level. Household survey records as they are cur-
rently maintained are of little value because the number
of observations (in the tens of thousands) makes them
too cumbersome to be applied easily. A sample of a
smaller number, say less than 200, may provide a data
base which can be analyzed in more detail with relatively
small amounts of computer resources.

Currently, substantial research efforts into de-
velopment and application of disaggregate demand models
are underway by a number of diverse investigators through-
out the country. Moreover, disaggregate data sets of
appropriate specifications are not available in most
urban areas. For these reasons it was deemed to be un-
productive to focus on applying disaggregate demand
models to disaggregate data sets.

The exception to this research strategy involves the
NPTS data base described above. It is, operationally,

a disaggregate data set of national proportions. How-
ever, as shown in Section 2, the application of existing
disaggregate demand models to these data involves con-
siderable data preparation and ad hoc model manipulation
to reach desired ends. 1In Section 3, the NPTS data

base is used with greater success to estimate a policy
sensitive model on nonwork travel behavior.

1.2 REVIEW OF EXISTING BEHAVIORAL DEMAND MODELS

Historically, most research on urban travel demand
models was motivated by the need for planners to evaluate
proposed changes in urban transportation facilities.

Only recently, owing to the requirements of implementing
environmental and energy policy, has research been di-
rected toward utilizing travel demand analysis for broad



gauge or national issues. In either situation, be-
havioral travel demand models have been demonstrated to
be more useful than the more conventional Urban Transpor-
tation Planning System (UTPS) approaches. Though be-
havioral demand models have been shown to be quite
versatile in terms of evaluating a wide range of policy
issues, this flexibility has the consequent disadvantage
that the models tend to be rather complex and sometimes
cumbersome to apply.

Within the planning context, the initial behavioral
demand model was estimated by CRA in 1967 and has since
become known as the direct demand model.! More recently,
transportation research groups, principally at CRA,

MIT and Berkely, have experimented with estimating and
applying disaggregated logit models.?

This new generation of models are based on theories
of rational choice making by individuals -- a major
advance over UTPS in conceptualizing travel demand.

The models relate travel choices (mode, destination,
hour-of-day, and frequency of trips) to the costs and
times spent among the various alternatives. To the extent
that transportation policies can be cast in terms of
changes in transportation costs and times, the models can
then be used to predict the effects of these policies on
travel related choices.

lcharles River Associates, 4 Model of Urban Passenger
Travel Demand in the San Francisco Metropolitan Area, Cambridge,
Mass., 1967.

2Charles River Associates, A Disaggregated Behavioral
Model of Urban Travel Demand, Cambridge, Mass., 1972; Policies
for Controlling Automotive Air Pollution in Los Angeles, Cambridge,
Mass., forthcoming; Disaggregate Travel Demand Models,
Cambridge, Mass., forthcoming; Ben-Akiva, M., "Structure
of Passenger Travel Demand Models," Unpublished Ph.D.
Dissertation, Department of Civil Engineering, M.I.T.,
Cambridge, Mass., 1973; Adler, T. and Ben-Akiva, M.,
"A Joint Frequency Destination and Mode Choice Model
for Shopping Trips," MIT Department of Civil Engineering,
1974; MacFadden, D., "The Measurement of Urban Travel
Demand," Journal of Public Economics, 1974.



As mentioned above, the behavioral demand models were
developed mainly for the analysis of improved transpor-
tation facilities. For examples, the original direct
demand model was part of an effort to evaluate the ef-
fects of a third Bay crossing in San Francisco, and the
McFadden model (1974) of disaggregate travel demand has
been developed as part of the BART impact study.

Recently, the models have been shown to be useful
for the evaluation of national or regionally
ubiquitous transportation controls in response to en-
vironmental and energy related goals. CRA (1975) applied
its 1972 disaggregate demand model to evaluate air quality
control strategies in Los Angeles. Haws, Adler and Ben-
Akiva have recently attempted to determine the effects
of carpool incentives on travel using disaggregate demand
models (1974). The direct demand model has been applied by CRA
to the problems of free transit, gasoline rationing,
and fuel conservation.!

1.2.1 Selected Models

The models noted above have to some extent been
utilized in policy evaluation studies and, consequently,
it is worthwhile to describe them in more detail. 1In
reviewing them we will first consider whether the models
represent reliably travel behavior in terms of their
structure and the care taken in estimation and data
analysis. The issue of whether these models can be
easily implemented for quick policy evaluation is dis-
cussed in a separate section.

lkraft, G. and Domencich, T., Free Transit, Charles
River Associates, Cambridge, Mass., 1970; Charles River
Associates, Gasoline Rationing: The Economic Effects of Gasoline
Rationing on New England, Cambridge, Mass., 1974; Charles
River Associates, Policies for Conserving Fuel, Cambridge,
Mass., forthcoming.



Table 1-1 presents summary information about the
models. It can be seen that we have distinguished three
categories of models: (a) disaggregate work trip; (b)
disaggregate shopping trip; and (c) direct demand.

Disaggregate Work Mode Choice

Most disaggregate demand models have the general-
ized logit specification. For a model of n possible
alternatives this is formalized as:

eex't
P(i,t) = =X (1-1)
n oox,
Le Jt
g=1

where: P(i,t) = probability of mode < being taken by

individual t for a given origin and
destination

xit = vector of costs and times of mode %,
and socioeconomic characteristics, for
individual ¢ for a given origin and
destination.

8 = estimated vector of coefficients for
the cost, time and socioeconomic
variables.

The elasticity of demand for choice i with respect

to its own travel attributea% is as follows:

t

n(i,mi;t) = emxit(l-P(i;t)) (1-2)

where: n(i,mi;t) = the elasticity of demand for mode %
with respect to attribute, T for

individual t for a given destination
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and given that a trip will be made'
6. = estimated coefficient for attribute X

Ty attribute (time or cost) of travel
by mode < by individual ¢ for a
given destination.

The effect of the change in attribute mﬁt on mode
choice 7 can be determined from the cross—-elasticity

which is as follows:

n(i,xj;t) = —exxjtPj(j;t) (1-3)
where the variables were defined as before with appro-
priate changes in subscripts.

The appeal of representing system effects on demand
in terms of elasticities is that, conceptually at least,
data requirements in applying the models would appear to
be minimized. It can be seen that if there are a sub-
stantial number of variables in the estimated models
then applying formulas of the type represented by (1-2)
and (1-3) would conserve data resources compared to ap-
plying formulas of the type represented by (1-1). This
hypothesis was tested in the research reported in Section
2 with generally discouraging results.

Each of the disaggregate work mode split models is
given an abbreviated description which includes the
estimated elasticity of VMT's with respect to gasoline
price. Obviously, other elasticities and cross-elas-
ticities can be computed from the models but we con-
centrate initially on the effects of gasoline costs be-
cause this particular elasticity has been analyzed most

'Elasticity of demand is defined as:

. 3P(%,t) Tit
. = £,/ 4 2t
nft,z,;t) oz, B(i.%)

i)




commonly and is the easiest to interpret consistently
across models. Also, econometric estimates of gasoline
demand provide a benchmark for evaluating the performance
of travel demand models. VMT elasticities with respect
to gasoline prices are also calculated for each of the
procedures developed for applying the demand models in
Section 2 and 3; this is one of several tests used to
validate these procedures.

CRA [1972]-- The CRA mode split model was estimated
on a sample of 115 individuals drawn from the 1967
Household Survey in Pittsburgh. All observations are
from the same corridor which has relatively high quality
bus service. Auto and transit are the only two modes
represented in the model. A more complete description
of the model is given in Section 2 where it is applied
to Los Angeles and NPTS data.

The model was applied by CRA to estimate the effects
of various pollution control policies in Los Angeles
(see CRA [1975]). The model was adjusted to account for
changes in auto occupancy and to be applied to data ag-
gregated at the sketch plan zone level. By simulating
the effects of a gasoline tax it was concluded that the
elasticity of demand for VMT's with respect to gasoline
price was -.27 in 1974.

McFadden [1974] -- The McFadden model was estimated
on a specially surveyed sample of 213 households in
Oakland and Berkely. The sample was designed to test
the impact of Bart on commuter mode split and was ac-
cordingly stratified to overrepresent work trips to San
Francisco city center. From the means of the data
gathered in 1974, the estimated elasticity of VMT's with
respect to auto costs was -.32. Assuming that gasoline
costs are approximately two-thirds of auto commuter costs,

12



the result implies an elasticity of VMT's with respect
to gasoline price of about =-.22. This figure should
be caveated by noting that the elasticity was not
computed by simulating the model, which would probably
change the results.

Haws [1974] -- The Haws model was estimated on a
sample of 448 households drawn from the 1968 Washington,
D.C. Home Interview Survey. The mode choices included
auto, bus and carpool. The system level of service data
was of suspect quality because it was based on zonal
networks rather than being developed for each of the
individual observations. The carpool level of service
data were based on ad hoc assumptions.

The Haws model was simulated on three so-called
prototypical households in the Washington, D.C. area
in the Adler and Ben-Akiva work [1974]. The simulated
changes in VMT's with respect to a change in gasoline
price implied an elasticity of -.003. This result
indicates that the model forecasts travel behavior to
be insensitive with respect to the costs of travel. As
a planning tool, the model has limited value because its
predictions of the effects of transit fare and gasoline
price related policies are unreliable. Though the
reasons why the model achieves these results were not
presented by the authors, it can be speculated that the
relatively poor quality of the data contributed to
spurious parameter estimates.

Disaggregate Shopping Trip

The shopping trip category of disaggregate models
is considered separately because the nature of the
decision making process by individual tripmakers is
more complex than in the case of work trips and shopping
trip models are, consequently, structured somewhat

13




differently. It can be assumed that an individual's
options for work related travel are rather limited; in
the short run the frequency, destination and time of
day of work trips are presumably determined exogenously
leaving only mode choice as the response to a change

in transportation costs. For most other trip purposes,
including shopping trips, an individual not only has
considerable flexibility in choosing among modes but
also can select among a wide variety of potential des-
tinations, time of day and number of times over a given
period (say, 24 hours) a trip for that purpose can be
made.

Because of the increased complexity introduced into
the model by the expanded number of choices, there have
been relatively few complete shopping trip models estim-
ated. The two reported on below are the only dis-
aggregate demand models, of which we are currently aware,
that consider concurrently the choices of mode, des-
tination and frequency. Both models have been simulated

for a limited range of policy scenarios.

CRA [1972] -- The CRA model for shopping trips was
estimated on a sample varying in size from 73 to 140
observations drawn from the 1967 Pittsburgh Household
Interview Survey. The form of the model can be depicted
as follows:

P(d,d,f;t) = P(m;d,f,t) * P(d;f,t) * P(f;t) (1-4)

4
e mdt (1-5)
MtV
I'e idt
1=1

P(m;d,f,t)

14
edt (1-6)

D
tert

P(d;f,t) =

J=
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P(f:t) = 1 (1-7)
1+ ert

where

P(m,d,f;t) = probability of individual ¢ choosing to
make a trip to destination d by mode m.

P(m;d,f,t) <= probability of indivdual ¢ choosing mode
m given that a trip will be made to
destination d.

Pd;f, t)

probability of individual making a
trip to destination 4 by any mode given
that a trip will be made.

P(f;t)

probability of individual ¢ making a
shopping trip to any destination by any
mode over a 24 hour period.

idt

m

linear function of the costs and times
of mode 7 from individual t¢'s house to
destination d, and of the socioeconomic
characteristics of individual .

it linear function of the costs and times of
all modes from individual ¢'s house to
destination j, and of the attractiveness

of destination j (retail employment).

ft linear function of the costs and times of
all modes from t's house to all destina-
tions and attractiveness of all destinations,
The model considered two modes, auto and bus, and
varying numbers of destination choices among households
with the average being four. The frequency of travel
choice was limited to either one or no trips. There is a
specification error in the destination and frequency choice
models which, in all likelihood, does not effect the

parameter estimates of this particular model but would lead

15




to misforecasts of policy effects unless steps are taken
to change the form of the V's in equations (1-6) and
(1-7).' Also, experience in applying the frequency
choice eguation yielded unacceptably high elasticities,
in the range of -4, for a change of trip frequency

with respect to a change in trip cost.

To derive the elasticity functions analogous to
Equation (1-2) and (1-3) leads to cumbersome relation-
ships. It is simpler to simulate travel behavior in
response to varying system attributes in order to
compute elasticities.

The shopping trip model, excluding frequency
choice, was simulated on Los Angeles data to estimate
the 1974 elasticity of VMT's with respect to gasoline
price [see CRA 1975]. The estimated price elasticity
owing to mode and destination shifts was -.12. It was
assumed that the additional VMT's conserved by reduced
frequency of travel put an upper bound on the total
elasticity of -.24.

Adler/Ben-Akiva [1974] -- The Adler/Ben-Akiva
model was estimated on a sample of 1313 observations
drawn from the 1968 Washington, D.C. Home Interview
Survey. The form of the model can be depicted as

follows:
evﬁdft
P(m, d, f5 t) = 7 (1-8)
Te ijft
1jeMDt

lgee Ben-Akiva [1973] and William B. Tye and Leonard
Sherman, Disaggregate Travel Demand Models, Project 8-13: Phase I
Report prepared for National Highway Research Program
(September 1975) for a more complete discussion of this issue.
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where:

P(m,d,f;t) = probability of individual ¢ choosing

to make a trip to destination d
by mode m.

L’ijft linear function of times and costs of

i

mode ¢ from individual #'s house to
destination j, and of socioeconomic
characteristics of individual <¢.

MD, = set of all possible mode, destination
and frequency alternatives for indi-
vidual ¢t.

Though this model is somewhat less complex than
the CRA shopping trip model, it does not yield very
tractable analytical forms for the elasticities.
Again, in order to compute the implied elasticities of
system level of service variables, it is best to simu-
late the model over various scenarios.

Adler and Ben-Akiva simulated the model for three
prototypical households with increased gasoline prices.
The implied VMT elasticity was computed as -.06. This
value is somewhat lower than would be expected based
on the results of other studies of gasoline price

elasticity.

Direct Demand Model [CRA 1967]

The direct demand model uses zonal interchanges
as its basis of observation where their size corresponds
to that of sketch plan zones. The model estimates the number
of round trips by mode and purpose acs a function
of the times and costs of alternative modes and socioeconomic
characteristics of origin and destination zones. The twa
relationships of interest are the auto work trip equation
and the auto shopping trip equation. These are discussed
separately below.
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Auto Work Trip -- The auto trip was estimated on

a sample of 255 zonal interchanges drawn from a trip
table developed froma 1963 origin-destination survey
in the Boston area. The functional form for this re-

lationship is:

N..
i = oX..+ BlnX.. (1-9
vl )
1d
where:
Nij = number of auto work round trips between
zones 1 and J
Xij = yector of variables representing costs and
times of alternative modes between zones
4 and j and representing socioeconomic
characteristics in zones < and j.
yij = |employed labor employment in zone of
force in zone * work as proportion of
of residence total regional em-
ployment
a,B = estimated vectors of parameters

The functional form of the travel elasticity with
respect to some level of service variable such as auto

line-haul cost is:

nx ..)= Eﬁ&ii:;ﬁi i
etg Nij

Yig

linehaul auto cost for a round trip between

zones 7 and J.

estimated coefficient on linehaul costs for

w
11}

auto
The implied gasoline price elasticity evaluated
at the mean of the observations in the estimating sample is
-.25, assuming gasoline is fifty percent of auto line haul cost.
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Auto shopping trip -- The auto shopping trip was

estimated from a sample of 75 zonal interchanges from
the above mentioned Boston 1963 trip table. The func-
tional form for this relationship is:

Z"Nij = aZ”Xij + BXij (1-10)
where:
Nij= number of auto shopping round trips between
zones 7 and 4.
Xij = vector of variables representing costs and
times of alternative modes between zones 1
and ;.
0,8 = estimated vectors of parameters,
The functional form of the travel elasticity

with respect to auto line-haul cost is:

(Xcij) =0, * chéij
where
cij = linehaul auto cost for a round trip
between zones 7 and j.
ac,%!= estimated coefficients on linehaul costs

for auto.
The implied gasoline price elasticity evaluated at
the mean of the observations in the estimating sample
is about ~.44, assuming gasoline is fifty percent of auto
line haul cost.

1.2.2 Brief Critique of Existing Models

In order to apply the above models, analysts should
be aware of various statistical and specification problems
which will affect the reliability of policy evaluations.
Some problems also arise when the models are to be applied

to existing data sources; this subject is covered in a
separate section.
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A useful starting point for critiquing existing models
is provided by comparing their predictions in policy eval-
uation stituations. Table 1-2 summarizes the results of
the above described models when applied to policy scenarios
involving the price of gasoline.

It can be seen from Table 1-2 that there is reasonably
uniform agreement among work trip models, excluding the
Haws model. Moreover, these models compare favorably with
the short run gasoline price elasticity estimates of, by
now, many econometric estimates of gasoline demand functions;
the results of econometric studies of gasoline demand
generally indicate a short run price elasticity in the
range of -.2.'

It can also be seen from Table 1-2 that there is little
agreement among shopping trip elasticities. The lack of
consistent results among shopping trip models in their
application to policy issues makes them, at this stage of
their development, less useful than work trip models. It
also begs the question of why widely disparate elasticities
among shopping trip models are obtained.

There are four principal sources of error in the models
presented above which help to explain the variability in
estimated elasticities. It will be seen that these estima-
tion problems occur for both work and shopping trip models
but that they are more apt to bias the results of shopping
trip behavior estimates.

Cross Section and Identification Bias

Probably the major conceptual problem of the models
is that they are estimated on observations which reflect
location choice in addition to short run travel related
choices. Thus, for example, people and businesses may

have located so as to minimize travel costs or because

lgee Charles River Associates, Policies for Conserving
Fuel, forthcoming, for a review of these models.
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TABLE 1-2

ESTIMATED ELASTICITY OF VEHICLE MILES TRAVELED (VMT's)
WITH RESPECT TO GASOLINE PRICE FOR SELECTED MODELS

Model Type and Source: Elasticity

Disaggregate Work Mode Split

CRA [[1972 and 19757 -,27
McFadden [1974] -.22
Haws [1974] -.003

Disaggregate Shopping Trip
CRA [1972 and 1975] -.12, -.24

Adler/Ben-Akiva [1974] -.06
Direct Demand Work Trip

CRA [1967] -.25
Direct Demand Shopping Trip

CRA [1967] -.44
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they prefer one mode over another. To the extent this
represents a problem in the estimated relationships, its
effect will be generally to cause over-prediction of the
elasticity of travel behavior with respect to system level
of service.

Recent attempts to deal with the simultaneity between
auto ownership and mode choice, and among auto ownership,
mode choice and housing location, have had modest success. '
They are, in their current stage of development, not appro-
priate for widespread policy evaluation. Moreover, these
models use a structure which is oriented toward incor-
porating work mode choice decisions while assuming shopping,
or other, trip behvaior is not interdependent.

In fact, the robustness of work trip models indicates
that the nonwork trip model is more in need of further
development. The high travel demand elasticities estimated
by CRA in both shopping trip models (disaggregate and direct
demand) imply that, to some extent, location decisions are
being merged with tripmaking decisions. That is, there is
evidence that these models are picking up long run elasticities
in their estimates.

For example, in the disaggregate demand model, it is
appropriate to interpret the frequency choice relationship
as indicating that households who prefer to shop less fre-
quently will locate themselves so as to be further away
from the constellation of alternative shopping destinations

than those households who prefer to shop more frequently.

! see Lerman, S. and Ben-Akiva, M., 4 Behavioral Model
of Automotive Ownership and Mode of Travel, Cambridge, Ma.
1974 for a logit model which includes work trip mode and
auto ownership mode choice. See Lerman, S., A Disaggregate
Behavioral Model of Urban Mobility Decisions, Unpublished
Ph.D. Dissertation, Department of Civil Engineering, M.I.T.,
1975, for a logit model of housing location, auto ownership
and mode choice jointly determined. Both efforts represent
technical advances in application of statistical techniques
but are, at this stage, exploratory.
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The same interpretation is possible when viewing the direct
demand model with the additional feature that commercial
establishments will also tend to locate so as to minimize
distance from household markets.

There are relatively few options available to completely
purge models of cross section bias when cross section data
are being utilized. Gasoline demand models utilize pooled
time series and cross section observations to isolate short
run elasticities. Typically, time series data are not avail-
able to transportation planners.! Section 3 presents a non-
work trip model based on cross section data which is
specified in such a way so as to decrease cross section
bias.

Multicollinearity

Multicollinearity occurs in equations when one inde-
pendent variable can be expressed as a linear function of
other independent variables in the same equation. Pure
multicollinearity defined in this way is relatively uncom-
mon but near multicollinearity is typical in transportation
demand relationships. The cost of auto trips, line haul
time of auto and line haul time of bus are all roughly
proportional to distance traveled -- they are usually
highly collinear.

The extent to which near multicollinearity is a problem
depends upon sample size and the closeness of the relation-
ship between the independent variables. 1Its result is to
decrease the confidence with which parameter estimates can
be interpreted. Several techniques are used in transpor-
tation demand research to remove the problem.

!see M. Gaudry, The Demand for Public Transit in Montreal
and Its Implications for Transportation Planning, Unpublished
Ph.D. Dissertation, Princeton, Department of Economics, 1974,
for an exception.
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In the effort to estimate a direct demand model, con-
strained least squares was employed to insure that coef-
ficients exhibited proper signs. The result was that the
stronger relationships, reflecting own elasticities, were
isolated while the weaker relationships, which would have
been used for computing cross elasticities, were often
constrained to equal zero.

In disaggregate demand models, differences between costs
and times for modes are used as the independent variables.
If near multicollinearity is present, this approach will
not remove it but will reduce its impact. Nonetheless,
there has been a tendency for the stronger determinant
of mode split, relative time between modes spent on the
trip, to dominate the difference in cost between modes.
Demand models estimated by Ben-Akiva, Haws, Adler and
Lerman typically deal with this problem by dividing cost
variables by income categories. This simultaneously reduces
multicollinearity and adds an income effect into elasticity

estimates.

Aggregation and Errors in Observation

One of the important attributes of disaggregate demand
models is the gain in information which entails using house-
hold specific data. Observation errors typically arise
of data not representing the true values of the variables
used in estimation. In transportation demand modeling
the use of zonal aggregates or zonal interchange data will
cause errors in observation. 1In this connection it is
interesting to note that the disaggregate demand models
where the greatest care was taken to minimize errors in
observation (CRA [1972] and McFadden) derived higher elas-
ticities than the studies where the data were taken unchecked
from zonal O-D tapes or were known to be ad hoc assumptions
(Haws and Adler/Ben-Akiva). This accords with the general
rule that observation errors will tend to impart downward

bias to estimated coefficients.
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In both disaggregate demand and direct demand models,
the problem of using zonal interchange or aggregate data
has several dimensions which are discussed below.

a. The meaning of "Average Level of Service" in a
zone has different interpretations and different ways of
being calculated. None are particularly satisfactory.

The least appropriate definition of average level of
service is the one which is easiest to compute -- centroid
to centroid distances and times. This type of variable
becomes especially inappropriate when one tries to infer
an average access time to transit for, say, a sketch plan
zone which is generally between 16 and 50 square miles in
size,

It is obvious that the independent variables in the
demand equation should be averages over some range of obser-
vations in the zone if aggregate data are used. To the
extent that there are numerous auto trips in any zonal
interchange, and observations on the attributes of these
trips are available, the average for auto travel over trips
actually made is an adequate approximation. However, this
procedure is not appropriate when there are relatively few
trips by a mode -- such as carpooling, transit and walking --
because the average so calculated represents only the mean
attribute vector for people who actually took that mode
and is typically not the vector faced by people who did not
take that mode. This problem is most acute where it concerns
access to transit and the opportunity costs for carpooling.
In the former instance, the mean access time for the zone
may be over 30 minutes, whereas the mean time for transit
patrons is less than 10 minutes, both evaluated in the same
zonal interchange. If average access time for zonal inter-
changes is computed by taking the average observed for transit
patrons, then the estimates of elasticity and cross-elasticity
will obviously be specious. Similarly, if “he level of
service for carpooling is computed from observed level of
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service for only those who carpool, it will, analogously,
lead to zonal interchange averages which show much lower
cost to carpools than are in fact the case.

b. Typically, alternate service data on trips taken from
small zones do not exist for coded networks. Ignoring for
the moment that the coded network misrepresents actual
network times by using centroid to centroid data, there
is the problem of averaging these data for zonal interchanges
at the sketch plan size (there can be anywhere from 100 to
600 traffic analysis zone interchanges in a sketch plan
zone interchange). A simple average is inappropriate even
on the assumption that population (or land uses) are evenly
distributed among small zones. To see this consider the
estimation of mode split work trip equation. It is assumed
that a given number of trips by any mode will be made but
that there are choices to be made among modes for any given
zonal interchange. However, the level of service among modes
estimated as a simple average between a zonal interchange
will not be the level of service, on average, faced by the
individuals making the trips. Generally, the costs of travel
between two zones will be less for the people making the
trip than for the average costs over the area of the zones =--
the people who make trips in a zonal interchange typically
travel less distance than the average distance between the
zones.

In the above example of mode split relationships, it is
legitimate to weight the network data by total number of
trips. For any zonal interchange this will give a tolerable
approximation of the level of service by mode for trips
actually and potentially made. The smaller the traffic
analysis zone, the better the approximation. The larger
the sketch plan zone, the greater the necessity of making
the weighted average. However, this procedure is inappropriate
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if these level of service variables are to be applied to
destination choice relationships. The problem is easy to
see: because the level of service variables represent the
alternative costs among modes of trips actually made between
OD pairs, they misrepresent the costs of trips not made
between these same OD pairs. Thus a different grouping of
the data may have to be applied to estimation of a destina-
tion choice model, or even a direct demand model, that
wouldn't be the case if only mode split relationships

were being estimated.

c. Finally, a somewhat arcane point can be made about
the relationship between the distribution of errors and the
nature of the data. 1In the logit model, it is assumed that
the error distribution is Weibull; in the least squares
model it is assumed that the error distribution is normal.
Both assumptions are jeopardized when additional errors in
observation are introduced by using zonal interchange data.
The distribution of level of service variables over a zonal
interchange is highly truncated depending upon the distances
between boundaries of the two zones. Similarly, the distribu-
tion of households about a centroid to centroid measure is
also truncated. Moreover both distributions are likely
to be skewed. Both features of these distributions make
them unlikely to be approximated by the normal or Weibull
distribution thereby incurring further error in model
estimates.

Specification of Alternatives

A final problem involves specifying the appropriate
range of choices for household decision maklng. The problem
varies according to the type of choice being modeled.
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a. Mode choice. The number of modes available to
an individual include various forms of shared rides,
being chauffeurred, transferring modes and, of more impor-
tance than is commonly recognized, walking. Mode split
relationships in disaggregate demand have only satisfactorily
treated auto drive alone and transit. Until better data
become available, it is unlikely that more mode choices will be
successfully incorporated into disaggregate demand models.

b. Destination choice. The specification of alternative
destination choices in disaggregate demand models is an
important area for future research. The current approach
to specifying destination alternatives for shopping trip
models is to develop heuristically a number of alternative
destination zones. A household in an origin zone is assumed
to have as its alternative destinations those destinations
most often chosen by the households in its zone of residence.
This representation of the true destination choice procesg
is obviously oversimplified.1 In the direct demand model,
choice among alternative destinations is ruled out by the
model's specification.

c. Frequency choice. 1In currently estimated shopping
trip models, the frequency of trips is constrained to be
zero or one. The choice of taking more than one trip or
combining purposes on the same journey is not admitted.

One effect of specification error has been to make
shopping trip models considerably less robust than work
trip models. Clearly, alternative specifications allow for
alternative courses of action when the models are simulated

lgee Lerman, S. and Adler, T. "Workshop on Destination
and Related Choices: Summary Report," The Second Intermational
Conference on Behavioral Travel Demand, 1975.
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and this, to some extent, explains the variation in elas-
ticities among the models. A final note on this subject
which will be developed further in Section 3: it is quite
possible that the logit approach'to modeling discrete
choice behavior is less appropriate for nonmode choice
decisions than other model specifications.

1.3 APPLICATION OF DEMAND MODELS

Applying demand models to existing data bases in-
volves several problems which jeopardize the accuracy
of travel demand predictions. In addition to the
estimation related errors described above, substantial
errors in forecasting travel can occur because the
models are applied to phenomena which were not originally
modelled or the models are applied to data which is
aggregated in various ways.

The easiest method of applying the models is to
use the elasticities numerically computed in the studies
cited above and apply them to policy scenarios. 1In this
regard, it is noteworthy that the three most carefully
estimated work trip models all yielded gas price elas-
ticities between -.22 and -.27. This is a very tight
cluster of estimates, especially considering that the
cities represent a wide range of transit level of
service (Boston, San Francisco and Los Angeles). Thus
there is some merit in performing an "instant" evaluation
of policies by using the elasticities from the models
calculated at the means of the data upon which they
were estimated. This information is, for the most part,
available in the reports which present the estimation
results.

Alternatively, more refinement in policy evaluation
can be obtained if the models are applied to data which
is also relatively refined such as trip tables or house-
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hold surveys, as had been done by McFadden and CRA [1975].
Also, even though the gasoline price elasticities are
similar, there is some presumption that changes in other

transportation system attributes, or their combinations,
would not be evaluated as uniformly across models or
regions. Consequently, the disaggregate work trip mode
split model being a powerful tool for policy evaluation,
there is considerable merit in developing methods for
applying it for the various existing transportation data
bases.

Evaluating policy effects on nonwork trips presents
a different problem. Existing disaggregate models of
these trip purposes, other than shopping, virtually
do not exist. Moreover, the review of shopping trip
models presented above indicates that even these tend
to be unreliable and cumbersome to apply. In the case
of nonwork trips, therefore, the analysis of applying
travel demand models to existing data serves a somewhat
different purpose than in the case of work trips: that
is, we wish to determine which type of model is most
suitable for existing databases to help in further model
development.

The rest of this section is devoted to discussion
of two categories of problems which arise in applying
travel demand models. The first of these, called
generalizability problems, examines the issue of applying
the models to trip purposes and mode alternatives which
were not originally included in model estimates. The
second issue, which has become known as the aggregation
problem, involves the application of disaggregate demand
models to grouped data.
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1.3.1 Generalizability of Demand Models

Policy evaluation will often take place with
analytical tools which are, in some sense, underdeveloped.
A major issue which is as yet not completely resolved
is the generalizability of disaggregate demand models
across several dimensions. It will be seen by the
brief descriptions given below that this issue is
related to the previously discussed specification
problem in estimation.

Application to New Modes

Often, logit models are estimated on a smaller
choice set than the one to which they are applied.
Indeed, one feature of the multinomial logit model is
that it can be used to predict travel response to new
modes.! However, it will most often be the case that
ad hoc assumptions must be made about the most suitable
adjustments to the models when they are applied to
new modes.

This problem arises even when the model is being
applied to existing modes. As noted in the above re-
view, most estimated mode split models only consider
bus and auto driver as the mode choice alternatives.
If they are applied to only these two alternatives,
and, consequently, the options of shared rides or
walking are ignored, then computed elasticities will
be underestimated.

There are several ways of coping with the new
mode problem, though only two have actually been util-
ized in policy evaluation studies. The first of these,

!Considerable theoretical and empirical research
has been done on the problem of potential biases which
could arise when the model is used in this way. See
McFadden [1974] and CRA, Disaggregate Travel Demand...
[1975].
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developed by McFadden [1974] uses a priori information
about whether choices are made sequentially or simul-
taneously. The second, used by CRA in its study of
pollution controls [1975], adjusts the mode specific
constants based on a combination of a priori information
and tests of the predictive ability of the models. The
latter approach is pursued in Section 2 where procedures
for applying work trip mode split models are developed.

Application to Other Purposes

Travel demand models are missing for a large
number of trip purposes. In applying the models that
do exist to determine the effects of a system change
on policies, assumptions must be made about the elas-
ticities of travel demand for purposes for which
estimates are simply missing. A typical assumption
is that most nonwork trips display individual elas-
ticities with respect to times and costs similar to
shopping trip elasticities. Though it can be argued
that the choice structure of nonwork trips is gener-
ally more like shopping trips than work trips, the as-
sumption obviously leads to, possibly, substantial
forecasting errors. The most appropriate remedy for
this problem is to estimate models for other trip
purposes. In Section 3, a general nonwork travel

demand model is presented.

Transferability

A final dimension to the generalizability problem
is the question of whether a model estimated on one
set of observations can be used to predict the travel
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behavior of individuals drawn from another set. The
development of behavioral demand models was in large
part motivated by the objective of having models which
would be generalizable across regions. Models which
were transferable in this way would not have to be
recalibrated each time they were applied.

The operational experience of transfering models
has been generally encouraging. The direct demand model
estimated on Boston data was applied to San Francisco
after minimal adjustment to parameter estimates to ac-
count for differences in land use density between the
two urban areas. CRA also applied a disaggregate
demand model to Los Angeles data, though it is not
known the extent to which adjustments in the model for
aggregation and new mode problems actually applied to
the transferability problem. As a sobering note, the
results in Section 2 indicate that McFadden's model
estimated on San Francisco data is not easily trans-
ferable to Los Angeles data.!

1.3.2 Problems of Using Grouped Data

Within the planning context, virtually all avail-
able data is grouped whereas the most reliable and
versatile travel demand models have been estimated on
highly disaggregated data. Though at some future time
disaggregate databases from household surveys may be in
widespread use, the current and near term value of dis-
aggregate models is limited by the lack of techniques

'A model not presented above, estimated on San
Diego data was validated on Boston data thereby adding
to the evidence that transferability can be accomplished
with behavioral demand models.

33




to apply them to existing data. As will be shown, con-
siderable effort has gone into developing such tech-
nigues with less than complete success. Section 2 builds
on the discussion and review presented below to develop
methods, relatively easy to use, which planners can draw

on for applying work trip mode split models.

Theory of Applying Disaggregate Demand Models

In order to make our discussion of the aggregation
problem easier to follow, we will consider only binary
choice models. This also allows us to simplify the
mathematical notation. For example, consider a logit

model of the form:

P(A:t) = —1— 7 (1-11)

I1+et
where:

P(A:t) = the probability that an indivdual, ¢,
will choose option 4 (say, auto) given that
a trip will be made between a specified
origin and destination;

Yt = a function of the attributes of the two

modes facing t and socioeconomic character-
" istics of t.

If Yt is linear in the differences between auto and
transit, then the above model is the binary counterpart
to the equation (1-1). Both the CRA {1972] and McFadden
work trip model can be expressed in this form.

To find the demand for choice 4 over a population

of individuals, the probabilities of each are added over
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the entire population:

IVA = IP(A:t) (1-12)
t

Typically, the information needed to apply (1-12) is not
available to planners. An alternative is to select a
random sample of individuals for which the data for each
Yt can be obtained. It is likely that such samples could
be relatively small (about 200 households) but even such
modest data bases are virtually nonexistent.

Given that grouped data is all that is available,
other methods must be used to apply the disaggregate
demand model. These approaches build on the theory
outlined below.

Suppose that over any grouping of individuals, the
Y's are distributed according to a well defined mapping
which can be approximated by a continuous function,
f(¥). Then, if f(Y¥) is normalized to have its integral
be unity over the limits of integration, the mean proba-
bility for the group is as follows:

b
P(4,T) =f f(¥)dy (1-13)
Y
7 1+ e
where:

D(A,T) = mean probability of choosing 4 for a group,
T3
a,b
Total demand for 4 is then:

the limits of values of Y in group T.

IVA = N*B(A,T) (1-14)
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where:

N = total number of individuals in T.

Typically, f(Y) will depend on the type of grouping
involved. To demonstrate this we give an example. Sup-
pose that Y is distributed uniformly over a zonal inter-
change. The limits of the distribution are functions of
the areas of the zones. The form which f(Y) takes is:

1

f(y) = bz (1-15)

Then the solution to (1-13) is:

Y
Z”[ = y} b inL=BlA:b)
Bla.t) l+e _ 1-P(A:b) (1-16)
204 b-a - b-a
where:

P(A:b) = the probability of an individual choosing
A when Y = b,

The above solution has attributes which are expected
of a demand model representing probability choice. 1In
particular, as b approaches a -- i.e., as the size of
zones approach zero, representing one household travel-
ing to one point -- the application of 1l'Hospital's
rule to (1-10) yields:

1im P(A) = P(A:a) (1-17)

bra

More generally, f(Y) would have to be assumed using
whatever information may be available about the likely
distribution of access times, linehaul times and costs
for the alternative modes as well as the distribution
of socioeconomic characteristics across the group T'. It
is expected that there are a number of functional forms
which are candidates for f(Y).
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Among the properties of f(Y) which would make ap-
plication of equation (1-13) tractable are that its
parameters be dependent, in a well defined manner, on
the means of the level of service variables and the
size of the zones. Also, as the zone size increases to
include the whole urban area in the limit, the variance
in attributes should increase at a lower rate and ap-
proach a constant.

For data aggregated by different methods, such as
cross tabulations of trip and household characteristics
over the region as a whole, the distribution of f(Y)
would be different from its distribution across analysis,
zones. Recently, Richard B. Westin developed an approach

to applying binary choice models to such data based on
the assumption that f(Y¥) is multivariate normal.! How-
ever, his approach is not conducive to ease of analysis
and the extension to models of more than two choices has
not been derived. 1In addition, simulations by Talvitie
comparing different approaches to the aggregation
problem showed no clear cut improvement in accuracy was
achieved using Westin's approach when compared to other,
more easily applied methods which adjust the logit
model using approximative techniques. ?

Approximation Methods: Correcting for Intrazonal
. Variation
Two methods have been developed to apply the dis-
aggregate logit model to zonal data. Neither are par-
ticularly satisfactory at their current state of de-
velopment, thus they will be described quite briefly.

!Wwestin, R.B., "Predictions from Binary Choice Models,"
Journal of Econometrics 2, (1974), pp. 1-16.

2gee Talvitie, A., "Mathematical Theory of Travel
Demand Models: A Resource Paper," The Second International
Conference on Behavioral Travel Demand, forthcoming.
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Probit Approximation -- One of the first investi-
gations of the aggregation problem in travel demand as-
sumed that the probability choice function had the
probit specification.! The probit model rests on the
assumption that unobserved "errors" in individual be-
havior are normally distributed. The logit model assumes
that the unobservables are distributed according to the
Weibull distribution which is similar to the normal. The
major difference between the two specifications is that
the probit model tends to approach the limits of zero
and one probability somewhat more rapidly than the
logit model.

McFadden and Reid developed a technique for adjusting
the disaggregate probit model to zonal interchange data
using the variance - covariance matrix of terms in the
demand equation. By making another adjustment to the
logit model, to make it perform more like the probit
function, the method of applying information about vari-
ation of system attributes can be transfered from the
probit to the logit model. The method is computation-
ally cumbersome and requires extra information from
zonal data bases which is not readily available.

A more important problem with the approach is
that the distribution of variables within a zonal inter-
change is assumed to be normal about the mean of the
observations. This is surely a major inaccuracy. As
discussed before, variables such as linehaul time and
auto cost between households in the origin zone and em-
ployment centers in the destination zone are truncated
by distances between zonal boundaries. Moreover, the
distribution of individuals making trips in a zonal

! paniel McFadden and Fred Reid, "Aggregate Travel
Demand Forecasting from Disaggregated Behavioral Models,"
unpublished, Berkeley, November 1973.
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interchange with respect to level of service variables
is highly skewed -- the lower the cost, access time,
et al., the larger the number of trips. Both the pro-
perties of truncation and skewness argue against as-
suming that variables in a demand model are normally
distributed over a zonal interchange.

Taylor's series approximation -- Based on a sug-
gestion by Talvitie,! CRA recently applied their dis-

aggregate demand model to sketch plan zones in the Los
Angeles region. The method involved taking the ex-
pected value of a Taylor's series expansion of the logit
model about the mean of the data in a zonal interchange.
Truncating the series after the third term yields the

following expression:

B(A,T) = P(A)[1 + varl[Y)(1-P(A)) (1/2 - P(A)] (1-18)

where: wvar[Y] = variance of Y over the group T.
P(4)

the logit probability calculated at the
mean value of Y for the zonal inter-
change.

One problem with the approach is that if there are
n independent variables in the Y function there are,

potentially, »n? +n variance-covariance terms in com-
2
puting var[¥].? Even though many of these can be assumed

to be zero, owing to stochastic independence or con-

1 . oy . .
Antti, Talvitie, "Aggregate Travel Nemand Analysis with

Disaggregate Travel Demand Models," Proceedings...Trans-
portation Research Forum, Vol. XIII (October 1973).

2In the CRA mode split model, n equals 7.
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stancy over the zonal interchange, the resulting calcu-
lations needed for each zonal pair of data is of a large
order. It was found that most terms could be made func-
tions of the size of the zones thereby easing consider-
ably the data requirements. It was also found that
access to transit and autos per worker were, by far,
the major contributors to variation of Y.

Considering that the residual terms in the Taylor's

series could have been significant, the accuracy achieved

in applying the above approach was somewhat surprising.
Predicted auto mode split was within 10 percent of the
actual and total predicted vehicle miles traveled was
within 5 percent of the actual travel.

In Section 2 of this report, the Taylor's series
approximation is simplified further to minimize data
requirements and applied to data at varying levels of
aggregation. Though some heuristic rules are necessary
to utilize this approach, the results indicate that
significant increases in accuracy of mode split pre-
diction are achieved while the flexibility of applying
logit models is maintained.

Aggregation Error and Area

Much of the error which occurs in applying the logit
model to zonal interchange data can be related to the
area of the zones. Aggregation error occurs because of
variation in the variables of the logit model across in-
dividuals. Differences among level of service variables
occur because individuals are located differentially with
respect to transportation facilities and origin-destina-
tion points in the zonal interchange. Variation in
socioeconomic characteristics tends to increase as the
population of a zone increases which, under simplifying
assumptions, may also be related to the area of zones.

40



Given a well-specified relationship between the
area of zones and the distribution of Yt' it may be pos-
sible to apply equation (1-13) in order to predict mode
splits from zonal interchanges of varying sizes.

Though research is needed to make this approach

tractable, it does suggest the properties which

a generalizable model for grouped data should have. These
are summarized below:

a. It should replicate travel demand behavior. This
implies two attributes: (3) elasticities and cross-elas-
ticities have appropriate signs; and (2) demand is most elastic
when the mode split is nearly equal.

b. As the variation in zonal attributes increases,
the frequency with which a group chooses either mode
should approach the zero and one limits less quickly.
Stated another way, as within-group variation increases,
and the level of service variables remain constant, the
frequency with which the dominant mode is chosen should
decline.

€. As the area of zones increases, the variance
in mode level service variables should also increase but
at a decreasing rate. Also, the variance in level of service
variables should approach a constant.

d. As the variation in modal attributes declines
to zero, the model should replicate individual probability
choice behavior. 1In particular, at the zero variation
level, the model may be functionally identical to a dis-
aggregated demand model estimated on individual house-
holds.

The implication of these properties on using area
to adjust disaggregate demand models for zones of varying
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sizes can be seen from the following formula:

n Y= ¥(1+ flagay)) (1-19)
Np
where:
Nh’NB = numbers of trips by modes 4 and B in a zonal
interchange Z,J
fYai,aj)E scalar function of area
s0s = areas of zones in the zonal interchange, 4%,

The function of area should have the following proper-
ties:

f,0) = 0
0 < lim f(ai,aj) <1

a. + o

i

a.+

af(ai’aj) <0, af(ai’a,z') < 0 for all a; and a;
da.. oa . -
1 J

The results of estimating and applying a model of the
form (1-19) are given in Section 2. Though the method
works reasonably well when applied to zonal interchange
data, one drawback is that it cannot be applied to data
which is represented in the form of cross tabulations or
frequencies. The problems associated with using this

type of data are considered below.

Market Segmentation

Travel data is sometimes cross tabulated by distance,
time, and socioeconomic characteristics of tripmakers.
This format has been useful in segmenting the travel
market so the impact of policies on particular socioeconomic
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groups can be highlighted. It will be argued below
that market segmentation has the additional benefit of
reducing aggregation error when such data are analyzed
with disaggregate logit models.

The application of multinomial logit to market
segments is actually an extension of the early de-
velopment of logit analysis. Models of binary choice
were originally developed from the application of
statistical tools to contingency tables.! These models
gave the probability that a "response" would occur to
a "stimulus" within a specified range. For a simple,
univariate model, a table giving the proportions of the
sample responding at each level of stimulus will present
sufficient information to estimate a model. Similar-
ly, given a model, such as an estimated logit eguation,
the proportion of a sample responding to stimuli within
given ranges can be predicted.

This approach can be generalized to the common spe-
cification of disaggregate mode split models. If only
two modes are considered, then the response will be the
proportion of trips by a given mode, say, auto. The ap-
proach is made computationally more complex as the number
of different types of stimuli (independent variables such
as modal attributes) increases. Instead of a column of

numbers representing the sample at each level of stimulus,

it would be necessary to have a multidimensional array
representing the number of travelers which face al-

ternative levels of service among modes.

!see Box, The Analysis of Binary Data (1970: Methuen,
London).
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Such an array could be potentially massive. For
example, there are seven independent variables in the
CRA mode split model:

auto variable cost per trip;

transit fare;

auto in-vehicle time;

transit wait, linehaul and schedule delay time;

auto access time;

transit access time;

auto availability per worker.

A categorization of each of these variables into three
ranges (say, low, medium and high) would result in 37
or 2,187 potential cells for travelers. Obviously, in
order to make the approach workable, some way to de-
crease the number of cells needs to be devised.

The number of cells can be reduced dramatically
by making simplifying assumptions. These include the
assumption that auto access time is equal for all travel-
ers and that there are only two categories for autos
per worker (0 and 1). Additionally, linehaul times and
auto costs can be collapsed into the same cells by
virtue of their all being correlated with distance.
This approach to applying disaggregate mode split models
to market cells was successfully tested in Section 2
where the number of cells was reduced to 12.

Each cell represents, initially, the number of
people in the population who face the range of attributes
labeling the cell. Also for each cell there is a mean
probability that an individual would choose auto; this
probability can be calculated, for example, by using
the midpoint of the ranges of the variables and some
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appropriate mean figure for ranges which are open ended.
The mean individual probability for each cell times the
number of people included gives the number of auto

trips. Total auto travel is the sum of auto trips
throughout the array. Other values of interest, such as
vehicle miles traveled or total transit revenues can also
be computed from the array.

The reason this approach is more accurate than ap-
plying the logit model to zonal interchanges is that
the amount of variation among attributes within any cell
in the array can be presumed to be smaller than the
variation in a zonal interchange. This is particularly
true of transit access time and number of cars avail-
able: the variables which are the main contributors
to biased predictions using only the means of data from
zonal pairs.

The question arises as to whether existing urban
data bases have readily available data in this format.
In general, it can be presumed that a significant amount
of tabulation would be required in order to develop a
usable array. However, using a widely available pre-
written cross tabulation program, the NPTS household
review file was readily converted into market segments.
Thus, even if new data preparation is called for, plan-
ners should seriously consider this approach to quick
travel policy evaluation.

Linear Models

In transportation demand research, linear models
have been eschewed in favor of the logit specification.
CRA [1972] estimated a linear mode split model but
made a compelling argument on theoretical grounds
against it in favor of the logit model. No disag-
gregate linear model other than mode split has been
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estimated even though the linear specification can
easily be applied to situations where there are many
alternatives which can be ranked, such as nonwork trip
generation.

On practical grounds, linear models have con-
siderable appeal. They are easy to interpret by in-
spection. Multiequation systems of linear models are
relatively easy to simulate, either by iterative tech-
niques or by solving the equations simultaneously.
Perhaps most importantly, the aggregation of linear
models is much easier than logit models; in some situ-
ations, the model can be applied directly to means of
grouped observations even when the parameter estimates
are attained on individual household observations.

Models of binary choice have the following form:

/
= B(ZA - ZB) for 0 < B(ZA - ZB) <1
PlA:t){ = :
ﬁ =0 for B(ZA ZB) < 0
k =1 for B(ZA - ZB) > 1
where:
ZA’ZB = vector of attributes

™
Hl

estimated vector of coefficients,

Within the probability choice framework, an implicit
assumption of the disaggregate linear model is that the
errors in utility are distributed uniformly.

The arguments against using linear models of binary
choice tend to be theoretically convincing. 1Its speci-
fication is less attractive than the ogive shaped curves
which result from either logit or probit analysis.
Estimation of linear probability models leads to biased

coefficients if specification error is minimized.



Practical experience with applying linear probability
models has yielded a mixed record of success. 1In a
recent study of cable television demand, it was found
that the linear model was perferable to the logit
specification.! The approach to determining specifi-
cation error was to compute the percentage of indi-
viduals in a market whose estimated "probability" fell
outside the unit interval. The result showed that less
than two percent of the sample needed to be truncated.
When aggregated over the market, this small error was
decreased because individual errors tended to cancel.

For this study, the binary choices between auto
and transit were predicted on zonal interchange data
from Los Angeles with a linear model. The model performed better
than binary choice logit models which were adjusted for ag-
gregation error. However, the linear model performed
poorly on higher levels of aggregation; in particular,
using the means of the Los Angeles data produced a
forecast of a greater than 100 percent mode split in
favor of auto.

Perhaps the major drawback of the linear proba-
bility model, in its current state of development, is
the binary choice limitation. Unlike the logit speci-
fication, there is no natural way of introducing new
modes. Alternative modes can be nested in a binary
decision tree approach, but this represents a theory of
choice which, in many situations, would be highly arti-
ficial. 1In general, more development is needed to make
linear models of more than two unranked alternatives
into useful planning tools.

lcra, Analysis of the Demand for Cable Television (1973).
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If alternatives can be ranked, and are relatively
large in number, then linear models offer distinct ad-
vantages over logit models. 1In Section 2, disaggregate
linear models of nonwork travel behavior are estimated
which predict travel frequency and average distance of trip
by mode over a four day travel period for a household. The
specification of this model is directed toward including
as causal variables those travel attributes which can be
translated into policy instruments; this allows ease of
application. It can be argued that it is preferable to have
continuous variable models in cases where the number of

alternatives is large and ease of application has a high value.
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2. WORK TRAVEL

2.1 INTRODUCTION

Recently developed disaggregate logit demand models
have been successful in replicating the mode choice decision
of commuters. Potentially, it is a powerful analytical
device for evaluating the effects of transportation policy
on work trip behavior. However, as discussed in Section 1,
the available data bases on urban travel have yet to be
constructed in such a way that disaggregate models can be
applied with ease and accuracy. Moreover, it is unlikely
that such data bases will be available on a national scale
in the very near future.

This situation argues for developing techniques for
capturing the policy evaluation benefits of logit models
with existing data bases. 1In this Section, several methods
are developed and tested for applying existing disaggregate

demand models to, first, nationwide market segment data from
the Nationwide Personal Transportation Survey and, second,

to sketch plan zone data from Los Angeles. The techniques
are used to evaluate the effects of a variety of transporta-
tion policy scenarios including parking restrictions, transit
improvements and gasoline taxes.

2.2 NATIONWIDE POLICY EVALUATION WITH MARKET SEGMENTS

As described in the previous Section, the most useful
national database on recent urban travel behavior appears
to be the 1969 Nationwide Personal Transportation Study
(NPTS). Applying existing disaggregate demand models to
tabulations of NPTS data would be a valuable device for quick
policy evaluation at the national level. The method described
below gives reasonable predictions of travel behavior under
a variety of policy contingencies. The effects of a policy
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scenario can be computed with minimal resources; calculations
would be within the range of most programmable calculators,
or could be performed by hand in several hours.

The approach presented below rests on tabulating the
data so as to minimize the variation of mode attributes
within each data grouping. As explained in our discussion
of the aggregation problem, this will have the effect of
mitigating the aggregation bias which occurs when logit
models are applied to grouped data. A second part of the
approach makes heuristic assumptions about the level of
service of modes not originally included in model estima-
tion. That is, because the model was estimated only on
the alternatives of driving alone or taking transit,
several adjustments in the basic model are necessary in
order to predict auto passenger travel. The approach is
validated by applying existing mode split models to the
data and checking for consistency in predicting actual
travel behavior. The CRA model (1972) is then applied to
the NPTS tabulation in a variety of policy evaluation

exercises.

2.2.1 Data and Model Preparation
The NPTS database is not currently stored nor tabulated

in forms which allow direct application of disaggregate mode
choice models.! 1In particular, much of the information

about the modes not chosen by an individual was not collected
in the original survey. Moreover, the cross tabulations per-
formed by the authors of survey reports are not appropriate
for application of existing logit models. In this section,
we describe how the original home interview tape from the
survey was cross tabulated into market segments suitable

for application of the CRA work trip mode split model.

This effort is essentially a three stage process: (a) the
relevant variables are identified from the demand model;

IThe NPTS survey is described in Appendix A to this
report.
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(b) the market segments are formed from the household inter-

view tape; and (c) the variables representing market segments
are constructed for application of the demand model. Each

of these stages is discussed in separate sections below.

Mode Split Model and Variables

The general form of the logit mode split model was
presented in Section 1. Here we rewrite it somewhat for
the ease of presentation and model application:

Pla) =
) n > (2-1)
1 + X e-a(m -‘ri) - By
i=1
i#a
~a(x -x.) - By
: e a A
P(1) = ” (2-2)
1+ Z e-a(xa-x‘) - By
j=1
J#a
P(a) ]
Zn(P(i)) = a(xa—xi) + By for all <i#a (2-3)

where: P(a) probability of auto-drive-alone being the

chosen mode;

P(i) = probability of alternative 7 being the
chosen mode;

z, = vector of costs and times for making the
trip by the auto drive alone mode;

z = vector of costs and times for making the
trip by mode <;

Y = vector of socioeconomic variables and
mode specific constants;

o, B = estimated vectors of coefficients for the

time, cost and socioeconomic variables and
for the mode specific constants.
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Each of the above relationships is derived from the
general logit formulation given by Equation (1-1) in the
previous chapter. For the purposes of presenting the models
used in this report, we will prefer to work with Equation (2-3).

Several models were tested on the NPTS data with the
result that the CRA (1972) mode split model gave the best

results.! Using the form of Equation (2-3) the estimated
model is as follows:

P(a)
Zn(P(b))

= -4.77-2.24(C_-C,)-.0411(T -T;)
(3.88)(4.53) (1.96) ¢

-.114(S_-5,)+3.79Y (2-4)
(2.69) @ (4.06)

where: Pf(a)

probability of auto-drive-alonebeing the
chosen mode;

P(b) = probability of transit being the chosen
mode;

C. = costs of making the round trip by auto (a)
or transit (b»), in dollars;

T. = 1invehicle and wait time for the round trip

by auto (a) or transit (b), in minutes;

1ps a result of the review of existing models in Section 1, it
was decided that the models to be tested included the CRA (1972)
model and the battery of models estimated by McFadden (1974).

The Haws and Ben-Akiva model was rejected because of unaccept-
ably low sensitivity of travel behavior to mode costs. The
CRA linear model of mode choice (1972) was rejected because
new modes could be introduced only in an extremely ad hoc
fashion. Tests with the McFadden models indicated the
following problems: (a) for areas outside of San Francisco
(where the model was estimated) the model tends to substan-
tially overpredict transit patronage; and (b) the coefficients
on transit access were so small that policies oriented toward

increasing transit availability are predicted to have extremely
small impacts.
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S. = access walk time for the round trip by

auto (a) or transit (p), in minutes

(usually assumed to be zero for auto trips);
Y. = autos per worker in the household.

Because the model and its estimation is described in
detail in other publications, we will not evaluate it here except
to note some of the parametric test statistics.! For the sample
size used to estimate equation (2-4), which was 115 observa-
tions, t-statistics of 1.96 and 2.33 indicate the parameter
is significantly different from zero at, respectively, the
2.5 percent and 1 percent levels of significance for a one-
tailed test. The t-statistics in equation (2-4) are given
in parentheses under the parameter estimates and it can be
seen that the estimated parameters are all highly significant.
Another test of the model is whether the predicted probability
of the selected mode for individuals is greater than 0.5,
Equation (2-4) performed well in this respect; the model pre-
dicted the correct choice of mode for 107 of the 115 observa-
tions used in estimating the model for an accuracy level of
93 percent.

Construction of NPTS Market Segments

To construct the NPTS market segments, the work trip
records from the home interview survey of urban areas was
cross-tabulated across three variables: trip distance,
access distance to transit, and automobile availability.?

!See either CRA, A Disaggregated Behavioral Model of Urban i
Travel Demand (1972) or Domencich, Thomas A. and McFadden,
Daniel, Urban Travel Demand: A Behavioral Approach (Amsterdam:
North-Holland Publishing Company, 1975).

2ro apply the McFadden model, another cross-tabulation across
household income was also performed. However, because the
McFadden model was not used for scenario evaulation, for reasons
given above, this data tabulation is not used.
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The market segment categories are presented below.

Distance -- Trip distance was divided into two categories
with the following ranges:

short trips -- zero to 9.1 miles;

long trips -- 9.1 and greater miles.
Several different methods could have been applied to deter-
mine ranges for the short and long trip category. For
example, the median trip distance could have been used for
the dividing line or that distance for which total VMT's in
each category are equal. In the ranges actually used, the
mean trip distance, equal to 9.1 miles on a round trip basis,
was decided upon as the best dividing line; this figure
falls between those which result from using the other two
rules.

Transit accessibility -- The transit accessibility

categories were determined by the distance from home to
the nearest public transportation line that could be used
for the journey to work. The data were originally coded in
blocks and were later transformed to miles as per the instruc-
tions on the survey instrument (roughly, one block equals
one-twelfth of a mile). The transit accessability categories
and their ranges in distance are as follows:

high transit accessibility -- zero to two blocks;

middle transit accessibility -- three to six blocks;

low transit accessibility -- over six blocks.
These ranges, selected after an examination of the more
refined breakdowns, showed which groupings would tend
most to equalize the number of trips among categories.

Auto availability ~- Household auto availability was

was divided into two categories corresponding to the

following:
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® autos per worker less than or equal to .5:

® autos per worker greater than 0.5.

These categories arise naturally from the data which displays
a bimodal distribution with most work tripmakers either
having zero or one car per worker in the household.

The basic unit of information used to perform these
cross-tabulations is the trip record for an individual's
usual trip to work. For the urban areas identified in the
NPTS data base, there were 1,774 such trips recorded.! Of
these, 221 were eliminated on error checks; usually because
there was insufficient data on the record. Another 101
trips were purged because they involved more than one mode
of travel. The remaining 1,452 trip records form the basis
of the market segments used for analysis. Note that some
bias in the policy evaluation is incurred because multi-
modal and walk trips are not included. This issue will be
discussed along with the policy evaluation results.

Table 2-1 presents the average travel characteristics
for each category of the variables used in constructing the
market segments. For the distance categories, the average
time and distance for each mode are given. From the survey
instrument, each mode category has the following definition:

® Auto-drive- alone -- automobile - alone, truck,

motorcycle;

e Transit -- bus, streetcar, commuter train, subway,

elevated, etc.;

e Carpool =-- automobile - with other persons.

'Appendix A contains a description of the NPTS survey
and our procedures for selecting households in urban areas.
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TABLE 2-1

AVERAGE ROUND TRIP CHARACTERISTICS
FOR NPTS MARKET SEGMENTS

Distance and Time

Short Trips Long Trips
Auto-Drive-Alone:
Distance (miles) 8.63 33.26
Time (minutes) 29.04 64.53
Transit:
Distance (miles) 8.73 36.73
Time (minutes) 50.95 109.83
Carpool :
Distance (miles) 7.96 36.50
Time (minutes) 31.33 73.85
Percent of Trips 62.2 37.8
Transit Accessibility
High Middle Low
Transit Transit Transit
Access Access Access
Distance to Transit (miles) .068 .375 l.325
Percent of Trips 37.7 16.3 46. |
Auto Availability
Less then .5 Greater than .
Autos/Worker Autos/Worker
Autos per Worker .020 1.753
Percent of Trips 89.7 10.3

56




Table 2-2 presents the mode splits, number of trips
and vehicle miles traveled (VMT's) for each of the twelve
market segments. Mode split and total trips were computed
directly from the data but some assumptions were necessary
in order to compute the VMT's. That part of the VMT's
which can be attributed to the auto-drive-alone mode is
simply the sum of round trip distances for each trip made
by this mode. However, the information in the data base
does not allow a direct computation of VMT's incurred by
carpools because, without knowing the distribution of car-
pool sizes, one does not know the number of passengers per
vehicle and, hence, one does not know the number of vehicles
used for this mode. To derive an estimate of the VMT's
attributable to carpools a distribution of one-, two- and
three-passenger carpools was created and each person in the
carpool was credited with an equal share of the carpool's
VMT's. The distribution of carpool sizes is derived from
the predictions of the mode split model.! This distribution,
of course, varies from cell to cell, but its aggregate ratio
is 0.78:0.17:0.04 for one-passenger: two-passenger: three-~
passenger carpools respectively. The NPTS distribution,
tabulated from a different part of the survey, is that, for
all travel, the ratio of carpool sizes is 0.72:0.17:0.11
for one-passenger:two-passenger:three-passenger carpools
respectively. Thus, the two independent estimates of passen-
gers per auto are in reasonablv close acreement.

To summarize the discussion of the construction of
market segments, it should be noted that there is a large
amount of flexibility in deciding the number of variables
to be cross-tabulated, the number of categories to be used,

!see the following section to determine how the mode
split model is used to predict carpool trips.
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and the ranges to be applied. The decisions made about

each of these issues reflected a desire to minimize the
number of market segment cells and, at the same time, capture
the essential information for application of the mode

split model in data points with small associated variances.
New variables and more refined breakdowns of chosen variables
increase the number of cells multiplicatively rather than
additively; for example, if in addition to the variables
already chosen it was decided to perform a cross-tabulation
using two categories of trip time, the number of market
segment cells would have increased from 12 to 24. Unless

one is somewhat ruthless about creating broad ranges for
categories and selecting relatively few variables, the data
base can easily become overly cumbersome thereby loosing

the advantages of using market segments.

Though the choice of ranges and variables is, at base,
rather arbitrary, there were some rules and reasons behind
the decisions actually made. In addition to those already
presented some of the more important of these are listed
below.

® Variables were selected to conform to the independent
variables in the logit model. Both autos per worker and
access time to transit are direct inputs to the model. Line-
haul costs and times are treated as functions of trip dis-
tance, making this variable an obvious choice on which to
make a cross-tabulation.

® Though trip time data is available, and is an input
into the model, it is so closely proportional to trip dis-
tance that it was deemed unnecessary to create an extra
variable for the purpose of cross—tabulating by time or
trip.
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® Those variables which contribute most to the aggrega-
tion problem require more refined categories. Earlier
research indicated that autos per worker and access to
transit cause more variation in logit model log odds func-

tions than other variables.'!

For this reason, access to
transit was divided into three categories rather than two.
Autos per worker naturally divides into two categories, as
was mentioned above. To test whether extra accuracy would
be obtained with further disaggregation, long trips were
further subdivided into two distance categories thereby
creating three distance categories altogether and eighteen
market segments in total. It was discovered that this did
not substantially increase the accuracy of model predictions.
It is apparent that the market segments created are
dictated by the requirements of the model and the empirical
testing of the model performance. 1In this sense, the
market segments presented here are meant to be suggestive
of what can be done for application of nonlinear disaggregate
models. Because models and data bases vary, the cross-
tabulations performed by other researchers for policy evalua-
tion purposes will also vary.

Construction of Mode Specific Variables

The independent variables required for application of
the mode split model need to be constructed from the variables
used for creating the market segments data. The model's
variables, in the two mode case of auto-drive-alone and
transit, are given in equation (2-4). The variables available

Icharles River Associates, Policies for Controlling
Automotive Air Pollution in Los Angeles (Cambridge, Mass.:
forthcoming).
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from the data are given in Table 2-1. In addition to

the two modes represented in equation (2-4), it is useful
to construct data representing auto-with-passenger modes.
In describing how we have transformed the data to accept

the logit model, each mode will be discussed separately.

Auto-drive-alone =-- Construction of the auto specific

data points is relatively straightforward. Each of the
relevant variables and associated assumptions is presented
below.

Ca (round trip cost) -- for each distance category,
short and long trips, the cost of a trip is computed as
$0.035 times the average distance (presented in Table 2-1).
The cost of a trip includes gasoline, o0il, tires and main-
tenance; the national average of these costs per mile was
computed from data presented in the Statistical Abstract
of the United States: 1971 (United States Bureau of the
Census; 1971), table number 854.!

Ta (round trip in-vehicle time) -- the data used to
represent this variable is the average auto-drive-alone
round trip time for each distance category presented in
Table 2-1.

Sa (walk access time) -- This variable is always zero
for the auto-drive-alone mode.

Transit -- Because of the limited data collected by
the NPTS survey, several assumptions were made in order to

'It should be noted that it is common in transporation
demand modeling to include as part of the trip costs some
figures which represent cost of car purchase and insurance.
However, these costs are only partially incurred by any given
trip and are more appropriately costs common to all travel
and a fixed cost of automobile ownership rather than trip-
making. Their allocation to individual trips is, at best,
arbitrary and most likely inappropriate. In the original
CRA model as well as in this study, they are excluded.
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construct variables consistent with the mode split model.
These are described below for each of the variables.

¢, (round trip cost) -- The fare for a round trip by
transit was set at the national average of $0.4928 for
1969.! Though it is likely that some long trip alternatives
incur higher fares than short trips, there is not data
which is easily available to distinguish transit trip costs
between the two cost categories. It is also probable that
potential transit fares are higher for individuals who took
other modes but, again, this datum is missing. _The assump-
tion of a flat fare for trips of all distances and for
transit trips not taken biases, somewhat, the predictions in
favor of transit, all other things equal.

Tb (round trip wait plus in-vehicle time) =-- the
value for this variable is assumed to be the average times
for long and short trips presented in Table 2-1. The average
time was constructed by deducting from reported trip times
an estimate of access time (presented below). By
assuming that the transit time that typically occurs for
transit patrons also occurs for auto drivers and passengers,
the estimates of mode split will be somewhat biased in favor
of transit.

Sb (walk access time) -- the access distance to
transit for each trip by each mode was asked in the survey.
Where responses indicated that transit was not available,

an access distance of one mile was assigned.® Walking speed

lamerican Public Transit Association, Transit Faet Book:
1974-1975 Edition (Washington, D.C.: March 1975), p. 20.

20he sensitivity of mode split estimates to this assump-
tion is relatively low because transit access distances in
this range would entail a mode split prediction near zero
for transit.
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was assumed to be 19 minutes per mile. This speed was
multiplied with the average access distances for each of
the access categories, given in Table 2-1, to derive access
time.

Carpool -- As discussed in Section 1, if mode choices
are constrained to be auto-drive-alone and transit, the
model will not typically predict the full range of responses
caused by a policy. Unfortunately, the only suitable mode
split models from the standpoint of accurately representing
auto-drive-alone and transit choices do not include carpool
as an alternative mode. However, the form of the logit
model allows one to forecast the effects of a new mode if
appropriate data on the times and costs of trips by the
new mode is available. It was found that reasonable results
could be obtained if the time and cost for carpool trips
was substituted into equation (2-3) for the transit variables
thereby yielding a log-odds equation for auto-drive-alone
versus carpool. It is necessary to distinguish between car-
pools of differing sizes and treat each of these as a
separate mode. In the approach used below, one-passenger,
two-passenger and three-passenger carpools are considered
to be three separate modes, each having a different configura-
tion of times and costs.

The major problem with including carpool as a separate
set of mode choices is the lack of appropriate data. From
the NPTS we have information about the distances and time
associated with carpools which have actually formed. However,
we have no information about the performance of carpools
which would be an alternative for the individuals who take
transit or drive alone. It can be presumed that people
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will ride in a carpool mainly if they can find tripmakers
with roughly the same origin, destination and work hours.
Because the origins and destinations of the passengers of
existing carpools are tightly clustered, the reported
trip times and distances of these carpools in the NPTS
data are not representative of the average tripmaker who
would probably be much farther outside of the established
routes to work of potential carpool members.

The approach presented to account for carpool trips is
largely heuristic. In the absence of data, assumptions and
judgements must be made and those presented below reflect
the subjective opinions of the project staff. 1In another
section, with a different data base for analysis, carpooling
variables are constructed with a different set of assumptions.
Perhaps the main value of this exercise is the experience
gained to take account of new modes when the available
information about these modes is meager at best. Other
researchers can use alternative judgments or better data,
but the general approach to applying the model to new modes
will remain unchanged.

Each of the relevant variables for application of the
mode split model to carpool modes is discussed separately
below.

Cck (round trip costs) -- The round trip cost to a
potential member of a k-passenger carpool depends on the
distance traveled by the vehicle and the number of people
in the carpool. For each distance category, it is assumed
that the average auto-drive-alone trip distance increases
by a third for picking up and dropping off any passenger.
This is an ad hoc judgement of the difficulty the average

driver experiences in finding passengers for a carpool. To
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determine the cost for each potential tripmaker by carpool,
the trip distance is multiplied by the average auto operat-
ing cost per mile, $0.035,! and divided by the number of
carpool members. It is assumed that, over the long run,
carpool members share costs equally.

T % (round trip wait plus in-vehicle time) -- The time
associated with a carpool is divided into three components:
the time attributable to picking up and dropping off passen-
gers; the time associated with the linehaul journey from
home to work; the schedule delay which occurs because of
waiting and potential mismatches of work hours. The first
step in constructing these time components is to determine
average carpool speed from the data presented in Table 2-1:
for short trips, the average speed is 15.25 mph; for long
trips, the average speed is 29.65 mph. It was assumed that
the speed of travel for picking up and dropping off passengers
would be the average speed for short trips regardless of
the length of the linehaul portion. As before, the distance
for this portion of the trip is one-third the average dis-
tance for auto-drive-alone short or long trips, whichever
is relevant, times the number of passengers in the carpool.
This distance is divided by the average speed for short
trips to calculate the time for picking up and dropping off
passengers. The linehaul time is calculated by dividing
the auto-drive-alone trip distance, for each of the short
and long trip categories, by the average carpool speed for
short or long trips as appropriate. Schedule delay was
assumed to be twenty minutes times the number of passengers.
The separate components were added together to compute the
total time associated with carpool modes.

The section of the costs of the auto-drive-alone mode
discusses how the average auto operating cost per mile is
derived.
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Sck (round trip walk access time) -- As in the case of
auto-drive-alone, the access time for carpools was assumed

to be zero.

Driver serve passenger -- An additional mode choice

includes the option of a passenger being driven to work by

another individual, usually from the same household, where
the driver returns to origin after dropping off the worker
(or, alternatively, uses the vehicle for another purpose
before returning to the origin). Though this mode is usually
not well delineated in data sources, it can be presumed
that passengers reporting this trip type would have cate-
gorized it "automobile -- with other persons" in the NPTS
survey. Thus this classification merges trips made by carpools
with those which were chauffeured. Because the attributes
of this trip are different from those of other modes, and
because the response to this mode is sensitive to transporta-
tion policy, it was considered important to treat it as a
separate mode.! The level of service variables created to
represent this mode are presented below.

Cd (round trip costs) -- It was assumed that the
driver serve passenger alternative entails a household member
driving the tripmaker to work and then returning home for
the first leg of the round trip and then driving from home to

lPor a discussion of the effects of various policies
on this mode choice, particularly parking taxes, see Frederick
C. Dunbar, "Evaluation of the Effectiveness of Pollution
Control Strategies on Travel: An Application of Disaggregated
Behavioral Demand Models," in Proceedings of the Transportation
Research Forum, Vol. XVI, (1975).
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the workplace and back home with the passenger for the
second leg. Because the distance associated with this mode
choice is double that of driving alone (neglecting employee
parking distances from place of work) the driver serve
passenger mode can be calculated as twice the cost of the
auto-drive-alone mode.

Td (round trip in-vehicle time) ~-- The construction of
the driver serve passenger mode entails triple the person
time of an auto drive alone trip. A driver makes two round
trips for every passenger round trip. To account for this,
the dirver serve passenger time was calculated as three
times the auto-drive-alone time, reported in Table 2-1, for
each of the distance categories. This assumes that the extra
time incurred by the driver is weighted equivalently with
the time of the passenger. This assumption was modified in
applications of the model to Los Angeles data, presented
later in this section.

Sd (round trip walk access time) -- As with other auto
oriented modes, this variable was assumed to equal zero
for the driver serve passenger mode.

Autos per wofker == This variable was included in only the

log odds functions comparing auto-drive-alone to transit (equation
2-3). Whenever this variable is not used, the constant term in

the log odds function is set to zero. The average values are given
in Table 2-1. 1In application of the model it was set to zero or
one depending on whether the relevant category was less than or
greater than 0.5 autos per worker. This construction was suggested
by the data. By truncating the value this way, the coefficient on
autos per worker needed to be changed. The value selected, dis-
cussed at more length later in this section, was 4.60.!

IThere is reason to believe that adjustments in this coefficient
and the constant term overcome pro-transit biases in the data and
deal with the problem of transferrability.
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This completes the description of the construction of
independent variables for the logit model used on NPTS
market segments. For quick reference, Table 2-3 is provided
with summaries of the formulas representing the variables.
The terms in brackets refer to data elements which appear
in Table 2-1. Using these two tables, the independent
variables for each market segment can be constructed.

2.2.2 Model Application

This section describes the performance of the model
when applied to the NPTS market segments. To apply the model
in order to predict mode splits and VMT's, the following
steps are taken:

e Each of the mode specific variables for each of the
twelve market segments is constructed using the formulas
presented in Table 2-3 and the data presented in Table 2-1.

e For each market segment, a log odds function for
auto-drive-alone verses each of the other modes is calculated
using equation (2-4) with the variables constructed in the
previous step and with 4.60 substituted for the coefficient on y.

® For each market segment, the probability of an
individual choosing each mode, other than auto-drive-alone,
is computed using equation (2-2). The auto-drive-alone
probability is computed from equation (2-1).

e Mode splits for each market segment are computed as
follows:

- auto-drive-alone mode split = auto-drive alone mode
choice probability;
- transit mode split = transit mode choice probability;

- carpool mode split = sum of one-passenger, two-
passenger, three-passenger carpool mode choice
probabilities plus driver serve passenger mode
choice probability.
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TABLE 2-3
FORMULAS FOR CONSTRUCTION OF MODE SPECIFIC VARIABLES

Auto Drive Alone

Cﬁ = .035 x [Auto-Drive-Alone Distance]]
P [Auto-Drive-Alone Time]
S =0
a
Transit
C'b = ,4928
Tb = Transit Time
Sb = 2 x 19 x [Distance to Transit]

Carpool (with k passengers)
(1+k/3)xC
c,=—2
ck k+1

% [Auto-Drive-Alone Distance]

T =
ck [Carpool Distance:Short Tripsl/[Carpool Time:Short Trips]
. [Auto-Drive-Alone Distance] + 20xk
LCarpool Distancel/[Carpool Time] '
?ck =0
Driver Serve Passenger

Cd =2 x Ca

Td=3xTa

Sd=0

Autos per Worker

{ 0 Less than .5 Autos/Worker
y=

1 Greater than .5 Autos/Worker
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® VMT's for each market segment is the sum of the
following VMT calculations for each mode:!

- auto drive alone VMT = (auto-drive-alone mode
choice probability) x (auto-drive-alone distance) x
(total trips)

- k-passenger carpool VMT = (k-passenger carpool
mode choice probability) x (1 + %) x (auto-drive-
alone distance) x (total trips)

- driver serve passenger VMT = (driver serve passenger
mode choice probability) x 2 x (auto-drive-alone
distance) x (total trips).

e Aggregate mode split is computed as the weighted
average of predicted mode splits for each market segment
where the weights are the proportion of the total trips in
the market segment to the total trips for all market segments.

e Aggregate VMT's are computed as the sum of VMT's
for each of the market segments.

With these procedures, the model was used to predict
mode splits and VMT's for each of the cells in the NPTS
market segment database. The aggregate predictions are
given in Table 2-4. It can be seen that the predicted mode
splits conform closely to the actual mode splits. Actual
aggregate mode splits were calculated using the data in
Table 2-2; the mode split for each market segment was weighted
by the proportion of total trips in the market segment
to the aggregate total and the weighted market mode splits
were then summed.

Perhaps the most important single dependent variable to
to the policy makers is the VMT's. The model is used to predict
two VMT figures in Table 2-4. The first of these (VMT wo/DSP)

'In all model applications, only VMT's by private auto
are computed. VMT's attributable to public transit vehicles
are not estimated.
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TABLE 2-4

PREDICTED BASE CASE VS. ACTUAL AGGREGATE MODE SPLITS
AND VMT'S FOR NPTS MARKET SEGMENTS

Actual Predicted
Mode Split:
Auto-Drive-Alone .637 .635
Transit . 160 . 159
Carpool .202 .206
VMT wo/DSP 19794 19475
VMT 19913

corresponds to the VMT's which can be calculated from the data;
it does not include the VMT's attributable to one-half the

driver serve passenger trips (that half which is traveled

by the driver without a passenger is not captured by the
NPTS data). The second figure (VMT) includes all of the
predicted VMT's associated with driver serve passenger trips
as well as with other auto oriented trips. Using the first
figure as a basis for comparing the predicted to the actual,
the model predicts VMT's within 1.6 percent.! For most
applications of the model, this error is well within pre-
dicted effects and within errors which would be associated
with other causes such as data errors or parameter estimation
errors. In general, the model performs well in replicating
the aggregate figures from the data.

!Some of this accuracy is attributable to other effects
besides the performance of the basic model. By adjusting the
coefficient on autos per workers to achieve desirable results,
the effect is similar to adjusting the mode specific constant
so that the predictions of aggregate effects are more accurate.

A complete evaluation of the model and procedures rests on its
ability to predict several dependent wariables owing to
this single adjustment and the reasonableness of the elasticities.
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To provide more information on the performance of the
model, the mode split and VMT estimates for each market seg-
ment are presented in Table 2-5 in a format comparable to the
actual tabulations presented in Table 2-2. A comparison of
Table 2-5 with Table 2-2 indicates potential biases and the
areas of greatest error. As expected, the error associated
with any given market segment is greater than the aggregate
error. The highest errors are associated with those market
segments which have the fewest total trips (basically, the
six market segments where autos per worker is less than .5).
The other major item to note is that there appears to be
some tendency for the model to overpredict driver serve
passenger trips for short distance trips and underpredict

carpool trips for long distance trips. The effects of these
biases on VMT estimates under various policy scenarios

will be discussed in the next section. In general, the

errors associated with individual market segments tend to
cancel when aggregated.

2.2.3 Predicted Policy Effects

The procedures developed above were applied to a variety
of transportation policy scenarios to predict the effects of
these policies on tripmaking behavior. The approach to
investigating a particular policy is relatively straightfor-
ward. A policy is examined from the standpoint of how it
would effect the independent variables in the logit model.
This effect is quantified by changing the value of the
independent variables from what they were in the base case.
With the new values of the variables, the logit model is
applied to the NPTS market segments data and mode splits
and VMT's are predicted. The predicted mode splits and VMT's
with the policy effects are then compared to the base case
predictions in order to determine the impact of the policy.
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The policies to be examined include increased gasoline
taxes, increased transit linehaul speeds, a variety of
transit access improvements, and the introduction of a new
mode (dial-a-ride).

In some cases, the aggregate effects of a policy can be
summarized with a computation of the elasticity of the
effect with respect to the variable which the policy changed.
In calculating elasticities the following formula is applied:

Percentage Change in X
Percentage Change in Y

Elasticity of X with Respect to Y =

Most often, we will be interested in the elasticity of VMT's
with respect to some other variable such as gasoline costs
or transit accessibility. Sometimes the elasticity measure
is not well defined because the policy control variable
cannot be easily quantified; for example, improving transit
access may entail making transit more available to a certain
segment of the population and the aggregate effects of this
policy are not well summarized by an elasticity measure.

As this example demonstrates, a complete evaluation of
a policy entails more information than simply the aggregate
effects. For this reason, each time a policy scenario is
presented, we also give the predicted effects of the policy
on each of the market segments. It is most often the case
that a particular scenario has widely varying effects across
different market segments.

Finally, it should be noted that analyzing the demand
effects only presents one half of a policy evaluation. The
cost-effectiveness of a policy option also, rather obviously,
depends upon the costs involved. It will be shown, for
example, that the elasticity of transit ridership with respect
to changes in linehaul plus wait time is higher than the
elasticity of transit ridership with respect to changes in
access time. This result does not in and of itself consti-
tute a complete policy evaluation of these two options. As
will be discussed when these results are presented, the system
changes implied by the two scenarios are quite different
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and more needs to be known about the costs associated with
each policy before the implications for transit investment
policy are determined.

Gasoline Tax

The model was used to predict the effects of a 100
percent gasoline tax in addition to the existing gas taxes
(an assumed 7 percent state tax and 4 percent Federal tax).
One of the purposes of this exercise is to compute the implied
price elasticity of gasoline which the model applied to
NPTS market segments would estimate. This provides a test
of the approach because the result can be compared to other,
independent, gasoline price elasticity estimates.

The effect of a 100 percent gasoline tax will be to
increase the operating cost per mile of an auto by 50 percent.
The pretax cost of gasoline was half the cost of auto
operating costs in the 1969 base case. The pump price of
gasoline is increased by 69 percent when a 100 percent tax
rate is applied to the pretax cost of gasoline. In terms
of applying the model, the new operating cost of $0.0525 is
substituted for the base case figure of $0.035 per mile.

The procedures for applying the model which wefe presented
in the previous section are then followed.

The predictions of aggregate mode split and VMT's under
the assumption of a 100 percent gas tax are presented in
Table 2-6. In addition, the elasticity of VMT's with respect
to the pump price of gas is -.184, which is somewhat lower
than the results of other studies presented in the previous
chapter but is within the range of statistical error.

The predicted effect of the policy on VMT's is a 12.8
percent decline; transit trips are predicted to increase by
a third; auto drive alone trips are predicted to decrease by
11.2 percent, and carpools are predicted to increase by

8.7 percent.

More detail on the predicted effects is given in Table
2-7 where the mode split and VMT's for each of the NPTS
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TABLE 2-6

PREDICTED AGGREGATE EFFECTS
OF A 100 PERCENT GASOLINE TAX

Base Case 100 Percent Gas Tax
Mode Split:
Auto-Drive-Alone .635 .564
Transit .159 212
Carpool .206 .224
VMT 19913 17365

VMT Elasticity with respect to:
Auto Operating Costs = - .256;
Pump Price of Gas = - .184;

- .128.

Pre-Tax Cost of Gas

market segments is presented. In order to make a comparison
with the base case predictions it is necessary to refer to
Table 2-5. From such a comparison it can be seen that the
gasoline tax has most impact on long trips with good

to fair transit access. This is to be expected because,

on a per trip basis, the gasoline tax has the highest dollar
impact on long trips. At the same time, transit trips are
assumed by the model to cost the same amount regardless of
the length. The result is that the model predicts a higher
incentive for mode switching on long trips for this scenario.
It should also be remembered that there is some pro-transit
bias built into the model so the predicted effects may be
biased; what the model does not consider is that even if
there is relatively good access to transit, those individuals
who now use cars may tend to do so because the transit
alternative involves long, circuitous routes or multiple
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TABLE 2-8

PREDICTED AGGREGATE EFFECTS OF A
10 PERCENT TRANSIT SPEED INCREASE

10 Percent
Base Case Transit Speed Increase
Mode Split
Auto~Drive-Alone .635 .619
Transit . 159 179
Carpool .206 . 209
VMT 19913 19273
VMT Elasticity with Respect to Transit Speed = -.322.
Transit Ridership Elasticity with Respect to Transit Speed = |.26.

transfers. The result of this bias is to overpredict, some-
what, the effects of the policy on mode switching and, conse-~
quently, on VMT's reduced when there is a major level of
service change.'

Transit Speed

In this scenario, it is assumed that the combination of
shorter headways and faster transit cause a uniform decrease
in transit linehaul plus wait time per trip of ten percent.
Access time to transit was assumed to be unchanged. This
scenario was modeled by multiplying transit linehaul plus
wait time by 10/11 and then applying the logit model to the
NPTS market segments according to the procedures presented
before.

The predicted aggregate effects of this policy are
presented in Table 2-8. The predicted decline in VMT's was

!This effect was reduced by adjusting the coefficient
on autos per worker. Policies which have small impacts on
auto level of service will entail no bias in the predicted
elasticities from protransit bias in the data.
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3.22 percent and the predicted increase in transit trips
was 12.6 percent. One of the interesting results from this
exercise is the relatively high elasticity of transit mode
split with respect to transit speed (1.26).

The disaggregated result of the model forecast is pre-
sented in Table 2-9. By comparing this with Table 2-5
(the base case predictions by market segment) it can be seen
that the biggest impacts occur on trips with good to medium
transit access and which are relatively long. As in the
case of a gas tax, the effect of a uniform percentage decline
in transit time will have the biggest impact in absolute
terms on long trips. Consequently, those tripmakers which
face the longer journeys have the most incentive to switch
modes. As the figures from Table 2-1 indicate, the 10
percent decline in transit time implies a savings of about
10 minutes for long trips compared to 5 minutes for short
trips. Also, as would be expected, the transit speed policy
has little predicted effect on tripmakers with poor access
to public transit.

Transit Access: Uniform Improvement

Because the weights that tripmakers place on access time
to transit are higher than the weights placed on linehaul
time, it is natural to assume that the effect of decreasing
access time would be greater than the effect of decreasing
linehaul plus wait time. The results of various transit
access scenarios indicates that this hypothesis deserves more
consideration.

The first of a series of transit access improvement
scenarios involved decreasing transit access time by a uniform
10 percent for all market segments. In the base case projec-
tions, the access times to transit for high, middle and low
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TABLE 2-10

PREDICTED AGGREGATE EFFECTS OF A
10 PERCENT TRANSIT ACCESS TIME DECREASE

10 Percent Transit

Base Case Access Time Decrease
Mode Split:
Auto-Drive-Alone .635 .63
Transit . 159 . 163
Carpool .206 .205
VMT 19913 19780

VMT Elasticity with Respect to Transit Access Time = .067.

Transit Ridership Elasticity with Respect to Transit
Access Time = -.252.

access categories were 2.58, 14.25 and 50.35 minutes
respectively. Thus, only in the case of short transit trips
with poor aceess would equivalent time savings occur for
equal percentage declines in access time compared to linehaul
plus wait time. In all other cases, the time savings from
a 10 percent reduction in linehaul plus wait time would be
much greater than the time savings from a 10 percent reduction
in access time. This fact helps to explain some of the
results presented below.

The aggregate effects of this policy are described in
Table 2-10. The decline in VMT's incurred by this policy
is predicted to be 0.7 percent; the predicted increase in
transit trips is 2.5 percent. Both the VMT and transit
ridership elasticities are much lower for access times than
for the linehaul plus wait times presented in the previous
scenario.
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The predicted effects of the policy for each market seg-
ment is presented in Table 2-11. There it can be seen that
the market segments with the greatest impact (again, com-
paring these with the base case predictions in Table 2-5)
are those where access to transit is in the "middle" category:
those with good transit access are relatively insensitive
to further improvements and those with poor access would,
according to the model, not find a 10 percent improvement
enough of an inducement to switch modes.

This is perhaps an excellent example of a situation
where a comparison between two scenario forecasts is not
sufficient information to warrant making a policy decision.
Before it can be said that transit speed and headway improve-
ments are more effective for inducing new transit patrons

and reducing VMT's, the implied cost of each of these
scenarios should be computed. It may well be that simple

extensions of route miles to increase transit access by,

on average, 10 percent, are significantly less expensive

than the amount of investments which would be entailed to
increase linehaul speeds and reduce wait times by 10 percent.
Nonetheless, the results are quite suggestive that more
research on this issue may be necessary.

Transit Access: Low Availability Improvement

Based on the results of the previous section, a natural
policy question to arise is whether making transit available
to everybody would induce significant amounts of transit
ridership. To give a rough answer, we took the low transit
access market segment and assigned to it the same access
time which currently obtains for the middle access group.

All other variables remained unchanged although it is unlikely

that any real transit service design which provided such

a large change would not also affect accessibility in other
market segments and linehaul and wait times in all market
segments.
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TABLE 2-12

PREDICTED AGGREGATE EFFECTS OF
LOW TRANSIT ACCESS IMPROVEMENT

- Low Transit

Base Case Access Improvement
Mode Split:
Auto-Drive-Alone .635 .600
Transit . 159 .202
Carpool . 206 .198
VMT 19913 18518

VMT Elasticity with Respect to Transit Access Time = .11,

Transit Ridership Elasticity with Respect to
Transit Access Time = -.429.

The aggregate results are presented in Table 2-12.
The change in average access for the whole population is
62.9 percent; the access time decline for the market segment
which previously had low transit availability was 71.7 per-
cent. This rather dramatic change entailed a decline in
VMT's of only 7 percent for an elasticity of .111. Transit
patronage increases by 27 percent for an elasticity of -.429.
These elasticities are higher than in the previous access
time scenario because the policy is directed toward those
market segments where there is greater sensitivity to access

time.
Table 2-13 indicates the changes that occurred in

the low access category (when compared to Table 2-5). For
households where the autos per worker are greater than

0.5, the predicted change in VMT's is 10.2 percent. The

effect of the policy on households with low auto ownership
rates is quite dramatic but because these contribute relatively
little to VMT's they have a small impact on the aggregate
effects.
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TABLE 2-14

PREDICTED AGGREGATE EFFECTS OF LOW AND
MIDDLE TRANSIT ACCESS IMPROVEMENTS

Low and Middle Transit

Base Case Access Improvement
Mode Split:
Auto-Drive-Alone .635 .583
Transit . 159 .225
Carpool .206 .193
VMT 19913 17859
VMT Elasticity with Respect to Transit Access Time = ,147

Transit Ridership Elasticity with Respect to Transit
Access Time = -.593.

Transit Access: Low and Middle Availability

Improvements

Given the above change in policy, it is interesting to
determine the incremental effect of improving transit
for those in the middle access category. To evaluate this
effect, the low access category is again assigned the access
value for walk time of the middle access group and the middle
access tripmakers were assigned the value walk time of the
high access group. No other variables are changed.

The aggregate results of this policy can be seen in
Table 2-14. The percentage change in VMT's is 10.3 as com-
pared to 7.0 for the previous scenario. The implied elas-
ticities are somewhat higher for both VMT's and transit rider-
ship. The conclusion which may be drawn from this series
of scenarios is that improvements in transit access seem
to have the most effect when moderate service is made better
rather than when poor service is made only adeguate. The
effects of the policy on individual market segments is pre-
sented in Table 2-15.
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Introduction of a New Mode: Dial-a-Ride

One of the features of the multinomial logit model
is that it allows the prediction of the probability of
choosing a new mode. This attribute of the logit speci-
fication was used above in the estimation of mode splits
for auto passengers; it was also used by McFadden to
forecast the patronage for a new rapid transit system.!

To demonstrate the ability of the model applied to
NPTS market segments to accept a new mode, travel behavior
was simulated with an assumed widely available paratransit
service. One method of modeling new service has already
been demonstrated in the scenarios involving changes in
transit levels of service applied to the existing mode.
By embodying changes in level of service in a new mode,
as is done below, the model will give somewhat different
predictions of mode split effects.?

The new mode chosen for analysis is dial-a-ride.
Relatively little suitable data on a national basis
exists which can be used to give precise estimates of
the expected level of service of implementation of dial-
a-ride on a national scale. Indeed, the notion of national

lpaniel McFadden, "The Measurements of Urban Travel Demand,"
Journal of Publie Economics, 1974.

270 understand the reasons why different methods of applying
the model yields different predictions of the effects of equi-
valent system changes requires a technical discussion of the
behavioral assumptions underlying the logit specification. The
key assumption is known as the independence of irrelevant alter-
natives. There are several discussions of this assumption,
its validity and methods for forecasting when the assumption
is violated. For examples see McFadden, "The Measurements of
Urban Travel Demand," op. eit., and Tye and Sherman, Disaggregate
Travel Demand Models, National Cooperative Highway Research
Program Project 8-13: Phase I Report (CRA, Cambridge, Mass.:
1975).
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implementation is rather ill-defined. Nonetheless, some

rough estimates of the national potential for dial-a-ride
service are developed below, using information from com-

pendia on existing paratransit operations.

To estimate the effects of dial-a-ride requires
creating a new log odds function, as represented by equa-
tion (2-3), and recomputing the mode shares for all existing
modes and the new mode with equations (2-1 and 2-2). The
parameters on level of service variables and autos per
worker are the same in the new log odds function as they
were in the others; the values for these parameters are
given in equation (2-4).

Two dial-a-ride scenarios are simulated corresponding
to low and high level of service. The low performance
dial-a-ride scenario is based on the information provided
about the characteristics of existing paratransit opera-
tions in a recent study.! It was concluded that the average
dial-a-ride service entailed about four times more travel
time (including wait time) than equivalent auto trips. The
high performance scenario is based on the assumption that
dial-a-ride service can be instituted which provides door
to door trip times (including wait time) equivalent to exist-
ing transit, on average. In both scenarios, it is assumed
that dial-a-ride is only used for short trips, as appears to
be the case with actual operations.?

Given the above considerations, the dial-a-ride level
of service variables for application of the mode split
model were defined as follows:

lRonald F. Kirby, et. al. Working Paper: Paratransit
Experience and Potential, (The Urban Institute, Washington,
D.C.: 1973).

2see Lea Transit Compendium: Para-transit, Vol. I, No. 8
(N.D. Lea Transportation Research Corporation, Huntsville,
Alabama: 1974).
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Cp(round trip cost) =-- for each trip it was assumed
that the dial-a-ride charged a fifty cent flat fare. This
fare is relatively common among existing operations. The
round trip cost of a dial-a-ride journey would consequently
be $1.00.

Tp (round trip wait plus in-svehicle time) -- For low
performance dial-a-ride, this variable is assumed to equal
four times the in-vehicle time of the auto-drive-alone mode
(Ta). For the high performance scenario, this variable jis
set equal to the total trip time of the existing transit
mode (Tb + 5,).

b
a-ride service is door to door and access time is, conse-

(walk access time) -- It is assumed that the dial-

quently, equal to zero.

The results of the model simulations are presented in
Tables 2-16 through 2-19. As can be seen, the estimated
response to a low performance dial-a-ride is negligible.

For a high performance dial-a-ride the response is still
small, but transit (including dial-a-ride patrons) rider-
ship increases by 11.3 percent. The effect of dial-a-ride
on VMT's is estimated to be 1.0 percent; it must be noted
that this is an overestimate because it does not include

the increased VMT's attributable to the dial-a-ride vehicles.
This low effect of dial-a-ride on VMT's is the result of no
trip diversion by motorists who travel long distances.

As expected, dial-a-ride compares most favorably with
existing transit when the access times to fixed route systems
are large. When access times are small, the effect of higher
dial-a-ride fares discourages travelers even though the time
penalties on conventional service are more severe owing to
the disincentives of walking to transit stops. Also as ex~
pected, the predicted share of dial-a-ride passengers from
the transit captive population is relatively small.
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TABLE 2-16

PREDICTED AGGREGATE EFFECTS OF LOW
PERFORMANCE DIAL-A-RIDE

Low Performance

Base Case Dial-A-Ride
Mode Split
Auto-Drive-Alone .635 .631
Transit . 159 . 156
Carpool .206 .205
Dial-A-Ride - .008
VMT 19913 19857

2.2.4 Summary

The preceding results indicate that the applications
of logit models to NPTS {or other) market segments holds
some promise for quick, national transportation policy
evaluation. It must be admitted that the examples provided
are rather simple compared to some of the more complex policy
issues, but the translation of a policy option into quanti-
fiable variables in terms consistent with the logit model
can yield rough estimates of demand effects in a timely
fashion with few computational resources.
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TABLE 2-18

PREDICTED AGGREGATE EFFECTS OF
HIGH PERFORMANCE DIAL-A-RIDE

High Performance

Base Case Dial-A-Ride
Mode Split
Auto-Drive-Alone .635 .622
Transit .159 . 148
Carpool .206 . 201
Dial-a-Ride - .029
VMT 19913 19718

2.3 POLICY EVALUATION WITH ZONAL DATA

The prevailing method among urban transportation planners
for grouping data is to compile it into zonal formats. Most
commonly, travel and level of service information is kept in
the form of trip tables and networks coded on a grid system
which divides an urban area into a number of zones. The
relevant observation for the application of a demand model
is the number of trips and level of service between two such
traffic analysis zones. Because there are often more than
one thousand zones in a planning region, the number of zone
pairs can exceed one million. Dealing with such a database
for the purpose of broad gauge policy evaluation is a time
and resource consuming affair. To make urban data bases
more manageable, they are often condensed into sketch plan
zones or districts. The number of such zones generally
number anywhere from 50 to 100. Again, the number of zonal
interchanges in such a system, though much smaller than the
number of traffic analysis zonal interchanges, is really too
large for ease of analysis and manipulation.
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The purpose of this section is to develop methods for
conditioning urban data bases and for adjusting disaggre-
gate demand models so they can be applied for quick policy
evaluation. In the sections presented below, we describe
a zonal data base of manageable proportions for application
of disaggregate demand models. Because the zonal interchange
data presents a serious aggregation problem, methods are
developed to correct for aggregation bias. The models are
applied to data which has been summarized in different ways
including: sketch plan zone data; the regional average of
system performance; and averages of system performance among
categories of trip length.

Two basic methods of adjusting the logit model to cope
with aggregation bias are proposed. The first is a truncated
and simplified Taylor's series approximation which was intro-
duced in Section 1. The approach is based on the work of
Antti Talvitie and CRA.! A second method uses the area of
the zone as a substitute for the variance of the arguments
of the logit function. This method was developed for this
report; the area adjustment was estimated by a simple tech-
nique which is outlined later in this section.

The methods are tested on a policy scenario -- an assumed
gasoline tax -- from which implied gasoline price elasticities
can be estimated. From this test, only models applied to
sketch plan zone data are deemed accurate enough for policy
evaluation purposes. As examples of how the methods can be
applied to other policy scenarios, a series of parking policy
options are evaluated.

'!Antti Talvitie, "Aggregate Travel Demand Analysis with
Disaggregate Travel Demand Models"™ Proceedings -- Transporta-
tion Research Forum Vol. XIII (October, 1973). Charles River
Associates, Policies for Controlling Automotive Air Pollution
in Los Angeles (Cambridge, Mass: forthcoming) or Frederick C.
Dunbar, "Quick Policy Evaluation with Behavioral Demand Models,"
presented at the Transportation Research Board Meeting, January
1976.
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2.3.1 Zonal Data and Model Variables

The two methods for applying disaggregate demand models
to zonal interchange data were validated on a set of sketch
plan zone observations for work trips from Los Angeles. 1In
the work reported below, only the CRA (1972) work trip model
is used; the McFadden (1974) model was tested against the
data but because of the problems with transit patronage
overpredictions and the insensitivity of choices to transit

access times, this model was not used for further analysisf
As was the case in the application of the CRA model to

NPTS data, it was found useful to make constructions to deal
with additional modes to those on which the model was esti-
mated. These new modes include carpooling, driver serve

passenger and walking.

The Los Angeles Database

The basic unit of data for application of the disaggregate
demand model is the zonal interchange. The data consist,
primarily, of three types of variables: (a) number of work
trips by mode as reported in the 1967 Household Survey;
(b} average level of service either as reported in the 1967
Household Survey or as derived from engineering estimates
for peak hour travel; and (c) relevant socioeconomic data for
each of the zones tabulated from the 1970 Census of Population.
The trip related data are basically the result of the 1967
Household Survey which was a 1 in 100 sample interview per-
formed by the Los Angeles Regional Transportation Study
(LARTS) .2

It should be noted, however, that the McFadden model was
extremely accurate in predicting BART impacts.

2Dhis body was recently merged with the California Department
of Transportation and is now District 8 of that organization.
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The- sketch plan zones, which number 108, were delineated
by LARTS in 1970. In a previous study, CRA selected those
zones which were in Los Angeles and Orange counties for further
data analysis. The exact details of the data management
effort are described in that report and will only be briefly
mentioned here.!

To construct an appropriate database, the Home Interview
Survey tape of trip records was transformed into trip tables
on the sketch plan level of zonal interchange. A separate
time and distance file which was in the form of a traffic
analysis zonal interchange matrix was also transformed to the
sketch plan zone level of aggregation to get weighted averages
of auto times and distances at peak hour travel. There are
approximately twelve traffic analysis zones in each sketch
plan zone. Finally, 1970 Census tract data was processed to
derive the area and socioeconomic characteristics of each
sketch plan zone. From the standpoint of aggregation error,
it is worth noting that the average area of sketch plan zones
is about 25 square miles and, in the sample used for analysis,
the zones varied in size from 16 to 40 square miles.

Even after selecting only those zones which occurred in
Los Angeles and Orange counties, there were over 4000 zonal
interchanges representing separate data elements for each
of the trip related variables. To bring the database down to
manageable proportions, a 1 in 25 random sample of zonal
interchanges was extracted for model application and policy
evaluation. This yielded 172 zonal interchanges of which 89
contain a non-zero number of work trips. The descriptive
statistics from these zonal interchanges corresponded to the
control totals for the region indicating that the sample was

representative.

Tcharles River Associates, Policies for Controlling Auto-
motive Air Pollution in Los Angeles (Cambridge, Mass.: forth-

coming).
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Work Trip Model with New Modes

The model to be used in application to the Los Angeles
data is similar in many respects to the model presented for
application to the NPTS market segments. There are, however,
several significant changes in assumptions regarding the
construction of new mode variables. These adjustments
reflect the basically ad hoc nature of dealing with new modes
in the absence of adequate data. It is also appropriate to
use the model somewhat differently in treating new modes

when the form of the database to be used is different.
Table 2-20 presents the form of the mpdel with new modes

and the construction of new mode variables. The key assump-
tions embodied in this model are briefly stated as follows:
Autos per worker and constant term: the autos per worker

and constant term were suppressed in the logs odd functions
for auto-drive-alone versus other auto oriented modes. The
reason for this is that it is not clear whether the effects
of a preference constant estimated on only transit and autor
drive-alone data has relevance in other auto oriented mode
decisions.! Suppressing this constant necessitated also
suppressing the autos per worker variable because the two
estimated parameters are linked.?

'In the work of Haws and Ben-Akiva, op. cit., the mode specific
constant was found to vary depending upon mode choices among
auto-drive-alone, transit and carpool.

2A more complete discussion of the relationships between
mode specific variables and constants, and their effects on
logit estimated relationships is contained in McFadden, D.
"On Independence, Structure, and Simultaneity in Transportation
Demand Analysis," Travel Demand Forecasting Project, Institute
of Transportation and Traffic Engineering, University of
California, Berkeley, Working Paper No. 7511 (1975). See also Tye,
William and Sherman, Leonard, Disaggregate Travel Demand Models,
National Cooperative Highway Research Program Project 8-13:
Phase I Report (Charles River Associates, Cambridge, Mass.:
1975). It should be pointed out that neither the mode specific
constant nor autos per worker were suppressed when the model
was applied to shared rides with NPTS data. However, alternative
assumptions about time and distance were also used and these
may have achieved the same results as omitting the constant
term and the autos per worker available.
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TABLE 2-20

Summary of Work Trip Model with New Modes
for Application to Los Angeles Data

I. Auto-transit log odds:

Pla), _
Zn(P(b)) = -4,77 ~2.24 (C'a C'b)- 0.0411 (Ta - Tb)
-0.114(8 - S,) + 3.79Y
a b
2. Auto-carpool (with k passengers) log odds:
(a), _
Zn(i(ckj = - 2.2¢ (C, - C) - 0.0411 (T - T_)
3. Auto-driver serve passenger log odds:
mE@) _ 504 ¢ -, - 0.0a11 (C - )
p(d) a d ’ a d
4. Constructed cost and times variables:
(C_ + k(.03% 2x (5/12) x (/Ed +va.)))
c,= % o
ek K+1
kx 2x (5/12) x (Va. + va.)
Ta=T,* ( E d) + 20 (k+1)
S (15/60)
_ ,8.24 + 2% 4,11
Ca= ¢ 2. 24 ) x C,
_ ,0.0411 + 2 x_.0654
Tg= ¢ L0411 ) x T,
where: ai,aj = area, in square miles, of origin and destination zones;

other variables are defined as before.
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Carpool cost sharing: As was the case in the previous
application of the model, to NPTS data, the costs of carpool

travel are assumed to be shared equally among carpool members.
Carpool distance: To form a carpool where none existed

previously requires extra distance traveled to pick up and
drop off passengers. For data grouped into zonal formats,

it is natural to assume that the distances traveled to form
a carpool are related to the size of the zones because zones

of larger sizes have lower densities of households. Given cer-

tain assumptions about the distribution of origins and destinations
within zones, the mean distance traveled to pick up or drop

off each passenger can be computed as (5/12) z Va, where a

is the area (in square miles) of the reference zone.! This
extra distance is traveled at both the origin and destination,
and is doubled to represent round trips. It is multiplied by
the relevant operating cost per mile ($0.03 in the case of 1967)
to determine the extra cost of a vehicle used for carpooling.
This cost is added to the cost of a linehaul journey between

the two zones for the vehicle, which is equal to the cost

of an auto~-drive-alone trip (Ca), to obtain the total vehicle
costs to the carpool members.

Carpool time: The extra distance traveled to pick up

and drop off passengers is assumed to take time for each
member of the carpool; the assumed speed for this portion

of the journey is 15 miles per hour. Additionally, there is

a time penalty associated with mismatched schedules and other
waiting times. This time penalty was placed at 20 minutes
per round trip (five minutes at the origin and destination

of each link).

Driver serve passenqger cost and time: As in the previous

definition of driver serve passenger, it is presumed that
the driver chauffeurs the passenger to work and then returns
home for the first link of the trip; for the second link,
the driver goes to the work place from home, picks up the

1pn discussion of this distribution is presented in
Frederick C. Dunbar "Quick Policy Evaluation with Behavioral
Demand Models," presented at the 55th Annual Meeting of the
Transportation Research Board, January 1976. See also, CRA,
Policies for Controlling Automotive Air Pollution..., op.cit.
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passenger and then returns home. Because the driver may have
different values to place on the times and costs associated
with this trip, their time and cost was weighted differently

from those of the passenger. The weights were taken from
the parameter estimates on cost and time of the CRA shopping

trip mode split model.! It was thought that these parameters
would be most reflective of the determinants of behavior

of the chauffeur. They are equal to 4.11 for cost and .0654
for linehaul time.

For the variables not discussed above, the data provided
adequate measures. Reported times and costs for auto and
transit modes were checked against engineering estimates and
were found to be consistent between the two sources. Transit
access times for trips were derived from transit route maps;
the reported access times were biased downward by the fact
that these only reflect the access times of tripmakers who
chose transit because, among other things, of its superior
access. For zones where no transit trips were reported,
linehaul and wait times were derived from system maps and
route schedules. The cost of auto use was computed as the
average distance in a zonal interchange times operating cost
per mile of a car, $0.03, which has been defined above.

Autos per workers for each origin zone was calculated from
1970 Census data as was the area for all zones.

2.3.2 Methods for Model Application
The aggregation problem is especially severe for the zone
size used in the Los Angeles database. The zones are large in

the sense of exhibiting substantial variation in level of

service and in socioeconomic characteristics, yet they are
relatively constrained in size so that methods are inappropriate

!For a presentation of this model see Domencich, Thomas A.
and McFadden, Daniel, Urban Travel Demand: A Behavioral
Analyeis, (Amsterdam: North-Holland, 1975). Alternatively,
see Charles River Associates, A Disaggregated Behavioral
Model of Urban Travel Demand, (Cambridge, Mass.: 1972).
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which depend upon assumptions that these variables are distri-
buted normally.! To cope with the aggregation problem in
applying models to urban data bases, a series of studies have
developed heuristics and approximation techniques.? The
approaches described below are in this tradition.

Direct Application

To put the aggregation problem into some perspective,
and to judge the merits of various procedures for treating
the aggregation problem, the work trip model described above
was applied to various groupings of the Los Angeles data

without any adjustments. The means of the level of service
variables from the data groupings were used in the model as
it appears in Table 2-20. The data groupings are described
below:

Zonal Interchange: 1In this format, the basic unit
of observation is the sketch plan zonal interchange as has
been described.

Distance Segments: To provide a different, and easily
manageable form of data for potential model application,
the trips in the sample of zonal interchanges were grouped
into three distance categories: (a8) short trips where
the length of the trip is less than the mean trip distance;
{b) intermediate trips which fall in the range between the
mean trip distance and the third quartile; and (c) long trips
which are longer than the third quartile. This grouping
suggests itself because the VMT elasticities with respect

!section 1 briefly mentioned approaches which assume that
the arguments in the logs odds function of a logit model are
distributed normally.

2see, for examples, Frank S. Koppelman, Travel Prediction with
Models of Individual Choice Behavior, unpublished Ph.D. Disserta-
tion, Department of Civil Engineering, Massachusetts Institute
of Technology (1975), and Uzi Landau, Sketeh Planning Models
in Transportation Systems Analysis, unpublished Ph.D. Disserta-
tion, Department of Civil Engineering, Massachusetts Institute
of Technology (1976).
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to level of service variables tend to be different within
each group. Also, the contribution of VMT's in each group
is comparable (4071, 6023 and 5188 miles for short, inter-
mediate and long trips, respectively).

Regional Means: As a final exercise, the means of the
relevant variables across the sample were taken and treated
as a single observation.

Owing to the way the Los Angeles data were recorded, the
mode definitions are somewhat different from the mode choices
offered by the model and different from the modes recorded
for the NPTS data. In particular, auto drivers include the
drivers in carpools (but not the drivers in the driver serve
passenger mode which were ignored by the data altogether).
Auto passengers include the passengers in carpools and the
passengers in driver serve passenger trips. In the results
reported below, the members of carpools and driver serve
passenger trips were distributed according to these definitions
into the relevant mode category.

The performance of the unadjusted model with the various
data groupings is presented in Table 2-21. 1In all cases it
can be seen that transit trips are underpredicted, as would
be expected, and that the bias in overpredicting the dominant
mode increases as the level of aggregation increases.

Predicted vehicle miles traveled are calculated from
the following formula:

VMT = (auto driver mode split) X (distance) X (total trips)

+ (auto passenger mode split) x (2 x (5/12)) x
(/Ei x /Ej) x (total trips)
In the case of applying the model to zonal interchanges, the
VMT's for each zonal interchange are calculated and then
summed over all zonal interchanges to yield the aggregate
VMT's. When distance segments are the level of observation,
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TABLE 2-21

PERFORMANCE OF DIRECT APPLICATION

OF WORK TRIP MODEL ON LOS ANGELES DATA

Actual Predicted
Zonal Distance Regional
Interchange Segments Means
Mode Split:
Auto Driver .863 . 886 912 .927
Transit .038 .027 .004 .001
Auto Passenger .099 .088 .084 072
VMT 15618 14896 15283 15979

the average distance and predicted mode split for each segment
is used to compute the VMT's in each segment and the results
are again summed to get the aggregate VMT's. For the

regional means, there is only one observation and the above
formula is applied directly to the regional means or totals

of the relevant variables.

The first term in the above formula accounts for the
linehaul portion of trips by auto; the second term is the
assumed distance necessary to pick up and deliver auto
passengers.

From Table 2-21, it can be seen that as the various
applications of the model tend toward predicting the correct
mode split, total VMT's become underpredicted. In the case of
using zonal interchanges, the prediction error is 4.6 percent.
The reason for this is that the model has some tendency to
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overpredict transit trips for long distance journeys relative
to the actual observations. Because the long distance trips
contribute proportionately more to VMT's, even if aggregate
mode split estimates are accurate, the VMT estimates will be
low.

From the results obtained by applying the model directly
to data tabulations, there appears to be a tradeoff between
ease of data handling and the degree of error in travel demand
estimates owing to the aggregation problem. The error is
associated with the fact that the variety of potential re-
sponses to differing level of service characteristics are
suppressed as the data become merged into higher levels of
aggregation. This indicates that there is some merit to
investigating simplified methods for adjusting the model to
account for aggregation error.

Simplified Taylor's Series

As described in section 1, one approach to correcting for
the aggregation problem is to use a truncated Taylor's series
approximation. If the analyst has data from which the variances
and covariances of the arguments in the logit model can be
calculated, then equation (1-18) can be applied. The approach
was originally developed by Talvitie! and applied by CRA in
a study where the variance-covariance terms were estimated as
functions of sketch plan zone areas.? However, as an examina-
tion of the CRA study will show, the calculation of the nﬁmerous
variance-covariance terms can be a burdensome task.

One of the results of the CRA work was that the variance
of the log odds function (var(Y) in equation (1-18)) must
be constrained to be between zero and unity in order to meet
the condition that the estimated mode split for a mode would
increase as the level of service for that mode improves or

!Antti Talvitie, "Aggregate Travel Demand Analysis..."(1973)

2CRA, Policies for Controlling Automotive Air Pollution...,
and Frederick C. Dunbar, "Quick Policy Evaluation..." (1976).
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the level of service for other modes declines. Under this
constraint, it was found that the variance of log odds func-
tions for many zonal interchanges and mode choices in the
Los Angeles database was eqgual to unity. In a significant
number of other cases, the variance of the log odds function
was relatively close to unity. This result suggests that
only a limited amount of accuracy in model application would
be lost if all the var(Y) terms in equation (1-18) were set
equal to one.'” The purpose of this assumption is to relieve
the model application task of the necessity of computing a
large number of variance-covariance figures and thereby simplify
considerably the Taylor's series approximation.

The formula for application which this assumption
implies is:

m

F(i) = P(2)(1 + L (P(k) - 8)(P(k) - %)) (2-5)
k=1

where: F(z) predicted mode share for mode <;

P(i) = probability of mode 7 as computed by
direct application of the model described
in the previous section;

m = number of modes

8 =1if k = <

0 if k # <.

To predict the mode shares using the simplified Taylor's
series, the logit model is applied directly to the means of
the data (as described in the above section on the direct
application of the logit model) and the resulting probabilities
for each mode are used in equation (2-5) for each observation
(zonal interchanges, distance segments or regional means) to
compute mode splits.

lcgg, Policies for Controlling Automotive Air Pollution...,
op. cit.
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TABLE 2-22

PERFORMANCE OF TAYLOR'S SERIES
APPROXIMATION TO WORK TRIP MODEL
ON LOS ANGELES DATA

Actual Predicted
Zonal Distance Regional
Interchange Segments Means
Mode Split
Auto Driver .863 .851 .884 .902
Transit .038 .035 .006 .00
Auto Passenger .099 114 110 .097
VMT 15618 14599 15107 15803

The results of applying the Taylor's series adjustment are
presented in Table 2-22, 1In comparison with the results of
direct application of the logit model (Table 2-21), it can be
seen that the aggregation error has been mitigated somewhat.
However, the performance of the Taylor's series approach to
data grouped by distance segments and regional means is unsatis-
factory. Moreover, the underprediction of VMT's is still a
problem in that the error from using zonal interchange data is
increased to 6.5 percent. This can be attributed to the fact
that, by simplifying the Taylor's series it is presumed that
the aggregation bias is distributed more uniformly across
long and short trips than is really the case. As a result,
transit predictions for long trips are overpredicted and this
leads to low estimates of VMT's.
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Area Adjustment

A separate approach to treating the aggregation problem was
discussed in Section 1 which led to equation (1-19); this technique
is based on the premise that the area of zones can be used to
adjust log odds functions because of the relationship between the
area of zones and the extent of aggregation error. A specific
formula for making this adjustment is as follows:

F(a) _ P(a) £ -
In (—pegy) = (In (5@@5=)) (v + (1 =y) (Y3, + /@) (2-6)

where for modal alternatives 5 and p, the parameters Yy and £ are
estimated constants and the other terms in equation (2-6) have been
defined before. .

Depending upon the values of the estimated parameters,
this functional form for the adjustment of the model has the
desirable attributes listed in Section 1.! It should be
emphasized, however, that this is an ad hoc method for adjusting
the logit model for the aggregation problem. It relies on
intuitive and observed relationships between the area of a
zonal interchange and the level of variation in the log odds
function. It is not rigorously derived from a well conceived
theory about the relationships between area, within group
variation and the logit model specification. 1In this sense,
the area adjustment approach proposed here is more in the
tradition of curve fitting rather than uncovering structural
relationships. Other functional forms, consistent with the
conditions imposed on adjustments to the log odds functions,
were also tried but they performed less well than that repre-
sented in equation (2-6).

Because equation (2-6) is intrinsically nonlinear in
parameters y and £, normal linear regression methods are
unsuited for parameter estimation. The approach used to

estimate y and £ was to compare actual versus predicted

!The parameter values should satisfy the following con-
ditions: 0<y<I
£<0

108



auto trips in a sample of Los Angeles zonal interchanges with
various assumed values of vy and £. The initial sample included
only auto-drive-alone and bus trips. The values of £ which were
used included either -1 or -.5; for each of these, y was varied
from .15 to .95 using increments of .05.

The best combination of values was y equal to .6 and £ equal
to -.5. Using the predicted mode splits, a residual analysis of
actual versus predicted auto trips was performed. The resulting
Rz was .997, wncorrected for degrees of freedom. Though this is
a very high RZ, the residual analysis is not in itself a very
robust test because simply using a weighted average of the probability
across zones and using this as the mode split for every zone yielded
an Rz of .987. The inference that comes from this exercise is that
the area adjusted model explains about 77 percent of the variance
not attributable to simply taking the average probability.

To predict mode shares with the area adjustment approach,
the logit model is directly applied to the means of the
data, as described above, and these probability estimates are
used in equation (2-6). When the formula is applied to zonal
interchange data, the area of the origin and destination zones
are used for a; and a;. When the formula is applied to distance
segments and regional means, the values of a. and a_., are assumed
to be infinity so that the term (/E; + /Z})"S is set equal to
zero.

The results of applying the approach to the full sample of
zonal interchanges and the full complement of modal choices
are presented in Table 2-23. The performance of the model
applied to distance segments and the regional means is also
given in Table 2-23., As in the case of using the Taylor's
series approximation, there is a tendency for the predicted
share of the dominant mode to increase as the level of aggre-
gation increases. Unlike the Taylor's series expansion, the
model applied to the distance segments gives tolerably accurate
results. The performance of the model applied to regional
means is unsatisfactory.
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TABLE 2-23

PERFORMANCE OF AREA ADJUSTED
WORK TRIP MODEL TO LOS ANGELES DATA

Actual Predicted _
Zon2T Distance Regional
Interchange Segments Means
Mode Split
] Auto Driver .863 .865 .888 915
Transit .038 .049 .030 014
Auto
Passenger  .099 .086 .082 .072
VMT 15,618 14,748 15,109 15,775

When applied to zonal interchanges, the approach under-
predicts total VMT's by 5.6 percent; when applied to distance
segments, the predicted VMT's are more accurate, with a 3.3
percent underestimate, but the mode split predictions are, on
the whole, more in error. The performance of the model
indicates that the approach may hold some promise, but further
validation is necessary. The next section provides further

tests of this and the other methods for applying the logit
model.

Validation of Methods on a Gas Tax Policy Scenario

To provide an example of applying the models presented
above, and to check the approaches against other results,
each method was used to simulate the effects of a 70 percent
increase in the pump price of gasoline in 1975. An increase
in gasoline price of this magnitude represents an additional
tax of about 100 percent on the pretax cost of gasoline.
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The first step in the analysis is to make base case 1975
mode split and VMT predictions based on the transportation
level of service obtained in 1975. It was determined that
there have been only minor changes in the Los Angeles transpor-
tation environment since 1967 except for the secular increase
in gasoline prices and a change in the transit fare policy.

To take account of these effects in the base case forecasts,
auto operating costs were changed to $0.06 per mile to
reflect 1975 circumstances and transit fares between zones
were set at §$.25 per one way trip to represent the new flat
rate fare policy. The three approaches -- direct application,
Taylor's series approximation, and area adjustment approxima-~
tion -- were then applied to the three data groupings =--

zonal interchange, distance segments, and regional means --
to estimate a 1975 base case set of mode splits and VMT's.

The next step entailed simulating mode splits and VMT's
with the assumed increase in auto operating costs caused
by the change in gasoline prices. The auto operating cost
under the scenario of an increase in gas price of 70 percent
is $0.09 per mile. (Gasoline costs are 71 percent of auto
operating costs per mile in the base case.)

The results of the two sets of simulations applied to
the data indicated that the level of disaggregation of the data

was the most important determinant of whether the model performed

reasonably. That is to say, the method of applying the models
had relatively little impact on the estimated elasticities.
The estimated elasticities of VMT's with respect to the pump
price of gasoline can be summarized as follows:

Zonal Interchange Data: all elasticities computed

from the three approaches fall within =-_157 + .005;

Distance Segments: all elasticities computed from the

three approaches fall within .105 + .01;

Regional Means: all elasticities computed from the

three approaches fall within .029 + .01.
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Predicted mode splits also systematically varied with
the level of aggregation of the data, though there was more
variation in these estimates. As would be expected, the
dominant mode, auto driver, had higher mode split estimates than
the more aggregated the data.

Table 2-24 presents the results of applying the different
methods to zonal interchange data. As can be seen, there is
little to choose among the three methods without further
validation. One point that does merit consideration, however,
is that the direct application of the logit model tends to
underrepresent transit ridership given current estimates by
the Southern California Rapid Transit. In the examples of
policy scenarios which follow, the two approximation methods
are used instead of direct application of the logit model.

The major conclusion from this analysis seems to be
that methods of disaggregating the data are much more important
in dealing with the aggregation problem than the methods
tried for adjusting the logit model. The elasticities
derived from both the relatively aggregate data groupings,
distance segments and regional means, are unacceptable given
other evidence on the elasticity of gasoline demand (see
Section 1). Even the application of the model to zonal inter-
change data yields low elasticity estimates compared to other
results which are typically in the -.2 range.

Predicted Effects of Parking Restraints
The Taylor's series approximation and area adjustment
approach were used on zonal interchange data to predict mode
splits and VMT's under a series of parking policy scenarios.
The approach and associated scenarios are as follows:
e Taylor's Series: a $1.00 parking tax in the
Central Business District (CBD) only; and a $1.00
parking tax throughout the region.
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TABLE 2-24
PREDICTED 1975 EFFECTS OF 70 PERCENT
GASOLINE PRICE INCREASE USING WORK TRIP MODELS
APPLIED TO LOS ANGELES ZONAL INTERCHANGE DATA

Direct Application
Mode Split
Auto Driver
Transit
Auto Passenger
VMT
VMT Elasticity W.R.T. Gas Price

Taylor's Series
Mode Split
Auto Driver
Transit
Auto Passenger
VMT
VMT Elasticity W.R.T. Gas Price

Area Adjustment
Mode Split
Auto Driver
Transit
Auto Passenger
VMT
VMT Elasticity W.R.T. Gas Price

70 Percent Increase

Base Case In Gas Price
.842 .795
.053 .085
. 105 .120

13,340 11,819

-.162
.807 .764
.065 .096
127 . 139
13,057 11,638
-.154
.816 JA71
.080 .10
.103 .120
13,123 b1,714
-.153
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e Area Adjustment: Decreased parking avail-
ability in the CBD; and decreased parking avail-
ability and associated increase in parking cost
by $0.50 per trip.

To evaluate each scenario, the 1975 Los Angeles base
case is first presented. Each scenario is then represented
by an appropriate change in the relevant level of service
variables. Elasticities, per se, were not estimated because
they were not definable in these particular scenarios.'

Taylor's Series Applied to Parking Taxes

The two tax scenarios are represented by increasing the
auto cost variable by $1.00 per auto trip when the tax
applies. It is to be noted that one of the advantages of
using zonal interchange data is that origins and destinations
of trips can be precisely defined. Thus, only CBD oriented
trips from the sample would have their auto costs changed in
the CBD parking tax scenario. When the model simulates
the effect of a tax policy, it is assumed that carpool mem-
bers share the tax equally. The results of this simulation
are presented in Table 2-25.

It can be seen from Table 2-25 that the predicted impact
of a regionwide tax is much greater than that of a CBD only
tax., This is to be expected, especially in a city such as
Los Angeles which exhibits spread development and a diffuse
pattern of employment centers.

l1fn the base case, both parking costs and auto access

time are zero. To compare an elasticity for these scenarios
entails dividing by zero.
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TABLE 2-25
PREDICTION OF WORK TRIP MODE SPLITS AND VMT's
USING TAYLOR'S SERIES APPROACH TO LOS ANGELES ZONAL INTERCHANGES
WITH PARKING TAX SCENARIOS

$1.00 Parking Tax

Base CBD
Case Only Regionwide
Mode Split
Auto Driver .807 .792 .582
Transit .065 .079 .194
Auto Passenger 127 .129 224
VMT 13,057 12,566 1,213
Percent Change in VMT -3.8 . -14,1

Area Adjustment Applied to Parking Availability

It is reasonable to expect that a policy of decreased
parking availability in the CBD will increase the walk access
time of trips with a destination in the CBD. The extra walk
time from parking spot to place of work was assumed, for
the purpose of this policy simulation, to be 7.5 minutes, or

15 minutes for a round trip. For non-CBD trips the auto access

variable remains zero. It is further assumed that carpool
trips entail dropping off passengers at the place of work,
involving no access time, whereas the driver must bear the

burden of the 15 minute access walk. The average access time for

carpool members is represented by 15 minutes divided by the
number of carpool members; the access time penalty is shared
equally by increased payments or carpool driving rotation.
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It may also be the case that a policy which rations parking
availability will cause parking costs to increase. In the
1975 base case, these costs are negligible and are consequently
assumed to be zero. It may also be the case that parking
restrictions include both decreased availability and a tax.
In either event, two scenarios were represented; the first
involves increased access time in the CBD for auto trips
without an auto cost increase; the second involves both an
increase in access time and an assumed $.50 per trip auto
cost increase for work journeys to the CBD. The results
of these policy simulations are given in Table 2-26.

TABLE 2-26
PREDICTION OF WORK TRIP MODE SPLITS
AND VMT's USING AREA ADJUSTMENT APPROACH TO
LOS ANGELES ZONAL INTERCHANGES WITH PARKING AVAILABILITY SCENARIOS

15 Minute Auto Access

Time in CBD
Base No Parking $.50 Parking
Case Cost Increase Cost Increase
Mode Split
Auto Driver .816 .806 .800
Transit .080 .087 .092
Auto Passenger .103 .107 . 108
yMT 13,123 12,812 12,630
Percent Change in VMT -2.4 -3.8
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It is to be noted that evaluation of the parking restric-
tions without accounting for potential parking charge increases
would underrepresent the impacts of the policy. In general,
the predicted effects of this type of parking restriction are
quite similar to the predicted effects of a parking tax.

2.3.3 Summary

In summarizing the application of disaggregate models
to zonal interchange data it is helpful to compare the above
results to those obtained from applying the models to NPTS
data. Using market segments is computationally less cumbersome
than using zonal data because there appears to be no need to
adjust the model for aggregation error if market segments are
created to minimize variation; also, the eventual number of
observations to be used with market segments is much smaller
than the number used with zonal data and this can mean the
difference between having to use a calculator or a computer.
In terms of predictive accuracy, there is little evidence
offered that one data source is preferable to the other. Zonal
data has two advantages: first, for any particular urban area
it may already be available in a form suitable for model ap-
plication; second, if policies are to be differentiated by
corridors or other parts of the region (such as CBD vs. non
CBD) then zonal data is more appropriate because it is geograph-
ically specific. For both types of data formats, the problems
of aggregation, transferrability and new modes can be solved
with a reasonable degree of success to estimate quickly the
aggregate effects of alternative transportation policies.
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3. NONWORK TRAVEL

3.1 INTRODUCTION

For trips other than the journey to work or shopping,
there is little in the way of available models and evidence
which can be used for transportation policy evaluation.
Even shopping trip models, as described in the review of
existing models in Section 1, are cumbersome to apply and,
at present, not robust in terms of the implied elasticities
of travel demand with respect to level of service variables.
Current attempts at modeling shopping trip behavior are
focusing on the application of the generalized logit speci-
fication and there is some question as to whether this is
an appropriate structure for representing nonwork travel
decisions.

Given these considerations, there appears to be some
basis for using alternative modeling strategies to estimate
nonwork travel demand. If the purpose of the development
of such models is to provide relatively simple and
workable tools for policy analysts, linear specifications
should be tested. The linear structure minimizes

aggregation bias when applied to data grouped at levels
different than that used for the estimation sample. It is

also, typically, easier to work with than nonlinear forms.
The major drawback to linear models is that they may intro-
duce specification error into the representation of travel
behavior. 1In this sence, the development and application of
linear models is dictated by determining through empirical
exercises the relevant tradeoffs between specification

error and the additional complexities which arise from

using more accurate functional forms. 1In either case, for
nonwork tripmaking there is little a priori to choose from

in comparing linear versus logit specifications. The former
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assumes that decisions are made among a continuum of alterna-
tives whereas the latter assumes that decision makers must
decide among a relatively small number of discrete options.
Though neither assumption is probably entirely correct,

the development of a model explicitly for the purposes of
quick planning applications indicates that a relatively
simple linear specification may be suitable.

This section presents the estimates of several linear
relationships which can be combined in various ways to form
models of nonwork trip behavior. The purpose of the model
is to find the effects of certain key variables on nonwork
travel. As such, the models represent substantial simplifi-
cation of the process of nonwork travel behavior. However, to
the extent that policy instruments can be translated into
effects on the exogenous variables in the models, they can
be used for policy and planning analysis. Each model is a
simultaneous system of equations representing the aemana for auto
and transit services. The relationships were estimated on dis-
aggregate household data from the Nationwide Personal Trans-
portation Survey. In a final part of the section, the
models are used to analyze policy scenarios involving auto

trip costs, transit service improvements and parking restric-
tions.

3.2 DISAGGREGATE LINEAR MODEL OF NONWORK
TRIP BEHAVIOR

To develop a model of nonwork travel behavior, trip-
making was conceptualized from the standpoint of consumer
theory in order to isolate the key variables and to correctly
specify the relevant equations. It was also necessary to
work within rather severe data constraints which ultimately
had strong impacts on the model specification and statistical
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techniques used. The estimated equations reflect, in large
degree, the unique qualities of the NPTS household data and
the attempt to concentrate on those variables which are of
current interest in national transportation policy and
planning. A rather severe validation of the model was
attempted on independent Los Angeles data with mixed results.
Each of the above issues is discussed in more detail in the
following sections.

3.2.1 Modeling Issues

The underlying theory of behavior implied by a model
determines the model specification and the estimation tech-
niques which are to be employed. Thus, theorizing about
nonwork travel behavior suggests that care should be used
to construct the relevant independent variables in order to
avoid simultaneous equations bias as well as to develop
a model consistent with our assumptions about the
underlying structure of travel decisions.

Moreover, the extent of simultaneity in the phenomena repre-
sented by the model requires consideration be given to esti-
mation methods which remove simultaneous equations bias.

A final issue, partially dictated by the nature of the data,
is the existence of unobserved variables in the equations and
the estimation procedures necessary to deal with this problem.

Cpnceptualization of Nonwork Tripmaking Behavior
Transportation services are an intermediate good
to households. They are typically not consumed
for their own pleasure but rather they are the means to an
end. One result of viewing transportation in this manner is
to conclude that a household is ultimately interested in a
set of origins and destinations rather than trips per se.



The origins and destinations, for most trips, are not fixed
but rather tend to be substitutable. In most urban areas
there are many alternative destinations for shopping,
recreation etc., and even home based trips can be minimized
by linking several trip purposes into a single journey or
by the simple expedient of making fewer trips.

With regard to auto trips, and overview or simplifica--
tion of the system condenses the representation of the origin/
destination/frequency choice decision making process to rela-
tively few variables explaining miles traveled. There are as
a consequence two ways of viewing the household's travel behcvior:

VMT decisions -- the most simplified approach is to
consider that the household consumes a number of VMT's over
an appropriate time period to satisfy its demand for trans-
portation services. How it distributes these VMT's over the
urban area is of little concern in the model. Neither do we
consider the frequency with which auto trips are made. Obvi-
ously, these factors affect the number of VMT's, but the
orientation of the model is to abstract from the more detailed
consicerations of destination and frequency choice. The vari-
ables which affect destination and frequency choice are used to
model the demand for VMT's directly.

Joint frequency and average trip distance decisions --
at a somewhat more disaggregated level of decision making, it
can be presumed that the household consumes a certain number
of trips with a codetermined average length. In this model
form, the frequency of travel is predicted but the exact
origins and destinations are not specified. It is expected
that, all other things equal, the larger the number of
trips, the shorter the average distance traveled (becance
the two are substitutes). Again, the variables which affect
destination choice are included in the model but they are
used to influence trip frequency and distance directly.
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With respect to transit trips, there are fewer options
available to tripmakers because of the fixed route constraint
on transit trips. Distance traveled is of secondary impor-
tance in the consumption of transit trips; that is, it
affects the transit choice decision but, unlike the case of
autos where there is a nearly ubiquitous road network, the
trip itself tends to be tantamount to the origin/destination
decision. Viewed from this perspective, the number of transit
trips made is the relevant item consumed by households.

To specify each of the relationships discussed above
requires three types of variables which determine the travel
decision. These include: i

Cost and Time -- Each mile traveled or trip made incurs
a penalty in terms of cost and time. 1In the cases of VMT's
and average auto distance, these penalties include the mar-
ginal cost per mile of operating the vehicle and the time
per mile of the journey. For transit and auto trips, the
relevant variables are the cost and time of the entire
trip. To the extent possible, it is useful to separate cost
and time into components such as out of pocket charges vs.
gasoline costs or walk access time vs. wait and linehaul
time. It should also be noted that in the data available
it is often the case that the reported cost and time related
variables are simultaneously determined with the dependent
variables of trips and distance; the problems introduced
by this simultaneity will be discussed in sections on model
specification and estimation technique.

Urban Form -- The nature and size of the urban area and
of the place of residence will present various opportunities
and constraints to travel. Large agglomerations of activity
may cause less distance to be traveled than would otherwise
be expected; households in low density locations will tend
to travel farther, all other things equal; large urban areas
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offer more opportunities for trip destinations than small
areas. The effects of the various urban variables are often
difficult to judge a priori but it is likely they have a
significant impact on travel behavior. To the extent data
is available which describes the salient features of urban
areas, appropriate variables should be included in the
models of travel demand because they contain the information
about alternative destinations that would be used in more
disaggregated models of decision making. If the model is

estimated on a sample of households drawn from a large number

of urban areas, excluding variables describing urban form
can bias the estimates of travel demand parameters. This
issue is considered further in the discussion of estimation
technique.

Socioeconemic Characteristics -- There are also a large
number of household specific factors which will affect travel
decisions. Among the most important of these is income and
household size. Income effects also interact with time and
cost effects because it can be presumed that the value of
time and cost elasticities are sensitive to income budget
constraints and income related opportunity costs. Other
important socioeconomic factors include the number of em-
ployed perscns and the age distribution of household members.
It can be expected that households with greater numbers of
employed members will have higher opportunity costs associ-
ated with nonwork travel. The age distribution of a house-
hold affects the nature of transportation demands.

Model Specification

Model specification is determined primarily by the
underlying theory of behavior which is assumed for the
travel decision making process. The simplifications de-
scribed above do not, in and of themselves, necessarily
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imply that the estimated relationships will be less cum-
bersome for planning purposes than models based on a

more complex or detailed set of assumptions about travel
behavior. In order to realize the advantage of abstracting
from specific origin/destination choices, it is necessary
to introduce further simplifications in terms of the
functional forms used to describe the particular relation-
ships. In addition, there are a number of other specifi-
cation problems which must be considered in order to esti-
mate valid relationships. The most important of these
involves the simultaneous determination of travel choices
and reported level of service. For the purposes of dis-
cussion, the specification issues can be grouped into three
categories presented below.

Linear Forms -- As mentioned previously, the purpose of
developing the nonwork travel model is to have a versatile
yet easy to use tool for policy analysis. The linear speci-
fication adds flexibility to model application because it
can be applied to data of widely varying groupings with
minimal loss of accuracy owing to aggregation error. It is
also easy to interpret through examining the parameters.

In some circumstances this can lead to a nearly

instant evaluation of policy options. However, these
advantages of the linear specification are not without their
costs in terms of the specification error involved in repre-
senting nonwork travel behavior and options.

The important elements of specification error intro-
duced by the linear form are listed below:

--The implicit assumptions about the utility of travel as
a function of trips and distance by mode are dubious. In par-
ticular, the utility of travel is presumed to be linear with
respect to trips and distance if the demand for trips and dis-
tance is specified as a linear function of level of service varizbl
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-—-Some dependent variables are assumed to be continuous
rather than divisible into discrete alternatives. With
respect to number of auto trips or length of auto trips,
this is probably a reasonable approximation, especially if
the time period being represented is a week or longer.
However, because relatively few transit trips are taken,
the use of a continuous variable to approximate a discrete
number of transit trips leads to some bias in the esti-
mated effects of level of service variables on transit
demand.

~-The implicit assumptions about the distribution of
travel opportunities and system constraints are also very
approximate. The linear specification simplifies some of the
complexities of urban form and its interactions with travel
demand. The result is that policies which affect land use
to a significant extent w;ll be evaluated with less accuracy
than policies which affect transportation level of service.

--Finally, many of the interactions among independent
variables which affect travel decisions can only be modeled
in the linear specification in a way which is vulnerable to
aggregation error. For example, the relationship between in-
come and travel time is multiplicative rather than additive.
Unless income and time spent traveling are stochastically
independent, which is unlikely, the estimated parameters of
value of time from disaggregated data cannot be applied
easily and accurately to aggregate data.

Understanding these limitations on the linear models
enables analysts to make judgements about the confidence
with which policy evaluations are made. At the very
least, the model can be used to test hypotheses about
travel behavior and the effects of various policy instruments.'!
However, we can expect that linear models can do more than this
in that, within the constraints discussed above, policy contin-
gent forecasts with the linear specification are possible.

!An example of this type of analysis is given in Joel
Horowitz, "Effects of Travel Time and Cost on the Frequency
and Structure of Automobile Travel" unpublished (Environ-
mental Protection Agency, Washington, D.C.: May, 1975).
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Disaggregate Level of Observations =-- The benefits to
estimating models with disaggregate data were described
briefly in Section 1. The main advantage to using dis-
aggregate data is that there is minimal information loss
of the sort which occurs when data is grouped. Some of
the extra information gained is more detail on the range
of options available to tripmakers; this helps mitigate the
effects of cross section bias which were a problem with the
direct demand model and led, potentially, to overestimates
of level of service elasticities.

Simultaneous Determination of Variables -- There are
two types of simultaneity problems which arise in the
models developed for this study. We discuss these in
turn:

--In order to determine the cross elasticities among
modes, it was necessary to include the trips made by transit
among the arguments of the auto travel demand equations.
However, it is likely that auto and transit travel are
simultaneously determined.

--Some of the level of service variables, particularly
time spent for the trip, were only reported when the mode
was chosen. This means that alternate mode data, to the
extent it exists, does not include the true level of service
confronting the household for all trips but only for the
trips actually made. For example, trips made by transit
were selected to be the ones with most favorable level of
service when compared to auto options. Thus transit time
and transit availability for trips actually made are jointly
determined with mode choice.

To deal with these problems, statistical methods were
employed to remove simultaneous equations bias from the
estimated relationships. The result of not using these
techniques is that the elasticities and cross elasticities
would have been substantially underestimated.
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Estimation Techniques
In the event that a relationship includes jointly depen-

dent variables as arguments in the function, ordinary least
squares is inappropriate as an estimation technique.

Estimating coefficients for endogenous variables violates
the assumption that the variables are exogenous. There are
several methods available for dealing with this problem.!
The method employed in this study is two stage least squares.
The essence of this approach is to use exogenous variables
to create expected values of the endogenous variables which
are used as arguments of estimated relationships. This
removes the stochastic dependence with occurs when two or
more endogenous variables are used in the same equation.
Another problem which occurs with the data base
employed for estimating the demand models is the existence of
unobserved variables which are city specific. It can be
expected that the observations of household trip records
from different cities will be affected by system charac-
teristics and urban area characteristics for which the
available data in the trip record provide no information.
At a minimum, this implies that the error terms associated
with household observations have distributions which vary
from city to city. This problem was similar to earlier
econometric studies which had to use similar types of data
and for which an estimation technique called error components
was developed.? Estimation with error components is used in
this study to test the sensitivity of the parameter estimates
to this potential source of error.

!Most standard econometric textbooks have relatively com-
plete discussions of these methods and they are not repeated
here. See, for examples, Henri Theil, Principles of Econo-
metrice (John Wiley & Sons, New York City: 1971), Franklyn M.
Fisher, The Identification Problem in Econometrics (McGraw-
Hill, New York: 1966), and Carl F. Christ, Econometric Models
and Methods (John Wiley & Sons, New York: 1966).

2See 2vi Griliches, "Errors in Variables and Other Unobserv-
ables," Econometrica, 42 (1974) and Marc Nerlove, "A Note of
Error Component Models," Econometrica, 40 (1972).
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The estimation results for the travel demand models
are presented in the section after the
following discussion of the data and variables used in

model development.

3.2.2 Data Used for Model Estimation

The basic data source for estimation of the nonwork
travel behavior models is the Nationwide Personal Transporta-
tion Survey (NPTS). Individual travel records from the
trip day reports over a fourday period were processed to
give observations on travel by households.! Table 3-1
presents the variables taken from the trip records that
appear in the estimated models. Other socioeconomic and
geographic data were also processed and were used as
instrumental variables in the two stage least squares
estimates of the models.

Though Table 3-1 and the associated footnotes give a
relatively complete description of the data elements,
certain features are worthy of further elaboration.

These are discussed below.

—--Level of service data is only reported for trips
actually made. The consequence of this shortcoming on
estimation techniques was discussed above. It has the additional
sonsequence that only separate (though overlapping) samples are
available to estimate auto and transit tripmaking behavior. Out
of a total sample of 765 urban households for which complete
records were available, 638 took one or more auto trips
and 108 took one or more transit trips.?! The effect of this
is to introduce some bias, especially in the transit trip
demand equation, in the estimated results. The bias arises

lgee Appendix A for a discussion of the NPTS database.

’In both the auto and transit samples some additional
observations were lost when consistency checks were made on
survey responses. Thus, trips which were unlikely distances,
families with no members over the age of four, etc., were
purged from the sample.
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Variable
Name

YMT

#D.TRP
D.DIST
#T.TRP

D.CO/MI.V.HH

D.CO/TRP.V.HH

D. TIME

D.TM/MI

D.V.HH.TIME

D.V.HH.TM/MI

T.TIME

T.V.HH.TIME

D.PKAV

TAVL.D.T.TRIP

TABLE 3-1

VARIABLE DEFINITIONS
FOR NONWORK TRAVEL MODELS

Variable Definition

Vehicle miles traveled by a household for nonwork
trips over a four day period’

Number of nonwork aufomoblle trips by a household
over a four day period!

Average distance of each nonwork automobile Trie
by a household over a four day period, in miles

Number of nonwork fransuT trips by a household
over a four day period?

Average gasoline price per mile of a nonwork auto
trip for a household divided by The household
wage per minute in minutes/miles?’

Average gasoline cost per nonwork auto trip for a
household divided by the household wage per
minute, in minutes?

Average travel time for an auto nonwork trip by
a household. in minutes"

Average travel time per mile for an auto nonwork
trip by a household, in minutes/mile"

Average travel time for an auto nonwork Trip by
a household mulTnplled by the household wage per
minute, in cents®

Average travel time per mile for an auto nonwork
trip by a household multiplied bx the household
wage per minute, in cents/mile?

Average travel time for a Tran5|+ nonwork trip
by a household, in minutes/mite"

Average travel time for a transit nonwork trip
by a household mulflplled bx the household
wage per minute, in cents?®’

Fraction of household's nonwork auTo trips for
which free parking was available.®

Fraction of household's nonwork auto and transit
trips for which fransit was available within
6 blocks
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TABLE 3-1 (CONTINUED)

Variable
Name Variable Definition
H.H.$ Household income, in dollars/year®
#CARS Total number of cars owned by the household
#LIC.D Total number of licensed drivers in the household
HH.SZE Tota! number of househoid members
#PPL>4 Number of household members aged 5 or older
#EMPLY Number of employed persons in household
F.H>HH Dummy variable equal to one if a female head of
househoid and zero otherwise
URBAN Coded variable indicating population of urban
area ranging from |, for largest area, to 8, for
smallest area’
SM.SZE Coded variable indicating population of SMSA
ranging from 2, for smallest area, to 7, for largest
8
area
PLCSZE Coded variable indicating population of household

residence place ranging from 0, for smallest,
to 15, for largest?

!Nonwork trips exclude trips to school and church for those indi-
viduals less than 26 years old.

2Fach automobile in a household was given a code corresponding to
the size of car if domestic (three size classes) and a separate code
if foreign. A dictionary of auto makes and models for each code was
obtalned from the Bureau of Census. This was used to compute the
average miles per gallon for cars in each code category. The data on
miles per gallon were obtained from back issues of Consumer Reports.
The automobile used for each trip in the survey was given by the res-
pondent. The amount of gasoline consumed for nonwork trips was esti-
mated based on the size category of car and the associated miles per
gailon. The cost of gasoline to each urban area's households for each
interview month was obtained from 1969 data on gasoline price by city
from the Oil and Gas Journat, Vol 67 (Petroleum Publishing Co., Tulsa,
weekly); this data was used to compute the gasoline cost per mile of
nonwork auto frips.
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TABLE 3-1 (CONTINUED)

*Househo I d wage per minute is equal to household annual income in
dollars divided by 120000 minutes and transformed to cents.

“Time for a trip has the following codes:
I5 min. or less
[6~30 min.
31-45 min.
46 min.-I| hr.
Bet. | and 2 hrs,
2 hrs. or more
This variable was decoded by using the midpoints of intervals and
150 minutes for trips over 2 hours.

*For each trip, a variable was assigned a value of | if free parking
was available; it was assigned a value of 0 if parking was not free, if
the tripmaker did not park or if the respondent did not know. D.PKAV is
the average value of this variable over all trips. Because parking at
home is typicaily free, this variable will take on values between 0.5
and |.0.

®Income was coded into Il categories in the NPTS data tape. The
household income associated with each code is the midpoint of the
range of incomes in the relevant category. No incomes in the highest,
open ended, category were recorded in the sample used for estimation.

"The code urban population correspondence is as follows:
urban in urbanized area:
] 3,000,000 or more

2 |,000,000 - 2,999,999
3 250,000 - 999,999
4 under 250,000

urban not in urbanized area:
5 25,000 or more

6 10,000 - 24,999

7 2,500 - 9,999

8 rural

®The code SMSA population correspondence is as follows:

2 100,000 - 249,999

3 250,000 - 499,999

4 500,000 - 999,999

5 1,000,000 - 1,999,999
6 2,000,000 - 2,999,999
7 3,000,000 and over
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TABLE 3-1 (CONTINUED)

®The code place population correspondence is as follows:
under 200

200 - 499

500 - 999

|,000 - 1,499
1,500 - 1,999
2,000 - 2,499
2,500 - 4,999
5,000 - 9,999
10,000 - 19,999
20,000 - 24,999
25,000 - 49,999
I 50,000 - 99,999
12 100,000 - 249,999
3 250,000 - 499,999
14 500,000 - 999,999
15 |,000,000 or more

OWVWOJOUDMWKWN-—O

because there are no values of the dependent variable equal to
zero. For dependent variables which typically deviate from
zero, such as VMT's, this is not a major source of error.
However, because so few transit trips are actually made,

there is significant potential for misforecasts with- the
transit equation in policy evaluation contexts. This issue
will be discussed in more detail in the model validation
section.

--Many of the important variables are available only as
internal categories. For example, time spent for the trip is
divided into six time intervals. Income data is also coded
into classes, as are urban descriptors. In the cases of trip
time and income, variables were decoded by selecting the mid-
point of the intervals for the corresponding codes. The
result of data represented this way is to increase consider-
ably the error of the estimated parameters and the equations.
It does not, however, lead to biased estimates unless
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the decoding results in values for the variables

which are different from the mean of the actual

values in the interval. Assuming the mean value of each
interval was actually selected, there is a probability that
the actual time or income is a different value than the mean
though it falls into a range within the interval. This is a
random error associated with the variable which has the con-
sequence of increasing the standard error of the estimated
equation. Thus, R2 measures of goodness of fit and t-tests
of statistical significance lose some of their explanatory
value. In particular we would expect to see low R2 measures
associated with the equations because of the randomness
associated with using coded variables.!

--Automobile operating costs were constructed from other
sources. In order to get the necessary variation in auto
costs per mile among households, the information on the size
class of cars from the survey was translated into miles per
gallon for each trip. Because the urban location of each
household had been identified, it was possible to use a
gasoline price, quoted in the trade press, for each urban
area and date of travel. Thus the auto costs per mile
variable reflects city and date specific gasoline prices as
well as the individual gas consumption rates of the car used.

7o see how this effect works, consider a simple linear
stochastic model:

y = a+ bx + u,
where y is the dependent variable, x is the true value of the
independent variable, u is the stochastic component of the
equation, and a and b are parameters to be estimated. Now
suppose that instead of observing z directly, we observe the
mean of an interval in which z appears. The relationship
between x and its observed value is:

x=m+ e,
where m is the observed value and e is the random and unob-
served component. If m is used, the estimating equation is
as follows:

y =a+ bm+ (u + bel.

(Footnote continued on following nage.)
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Table 3-2 presents the salient statistics for the sam-
ples used in estimation and for the complete data base before
consistency checks. It can be seen that the auto and transit
samples have substantial differences. Additionally, it
should be noted that the average auto distance, ten miles,
is rather long compared to results which typically obtain in
urban planning data. Because the NPTS observations are per-
ceived data rather than engineering estimates, there is some
reason to suspect that the reported distances were longer
than actual trip distances.’?

! (Continued from previous page.)

The term in brackets is the new stochastic error attributable
to both the error of the original model and the randomness
associated with the unobserved component of the independent
variable. Unless e is identically equal to zero, the stan-
dard error of the latter estimated equation will obviously

be larger than the standard eryor of the first estimated
equation. Consequently, the R™ will be lower for the latter
equation and the t-statistic for b will be lower when m
instead of x is used for the independent variable. It will
not necessarily be the case, however, that the two estimates
of b will differ systematically. The latter equation can still
yield unbiased parameter estimates.

?g. Pat Burnett has reported systematic variations between
perceived and engineering estimates of level of service.
(Second International Conference on Behavioral Demand,
Asheville, 1975). Estimated elasticities from perceived
data of VMT's with respect to other variables correlated
with distance, such as time and auto cost, tend to cancel
the differences between perceived and engineering data,
thereby making such elasticities estimated with either type
of data more comparable. However, elasticities of VMT's
with respect to variables not related to distance, such as
parking charges or transit fares, may be biased upward as a
result of using perceived data.
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3.2.3 Estimation Results
Four separate equations, each with alternative specifi-

cations, were estimated using two stage least sgquares. These
relationships can be combined into two distinct simultaneous
equation models: the first determines VMT's and transit
trips; the second determines number of auto trips, average
distance of an auto trip and number of transit trips. All
equations represent travel behavior over a four day period
for an entire household. Each of the estimated equations

and models is discussed below.

Vehicle Miles Traveled

Table 3-3 presents two estimated equations for VMT
demand. The first specification, equation (3-1) is preferred.
Most variables have appropriate signs with adequate tests
of confidence except for cases noted below. Though computed
elasticities are in a separate table, some effects should be
described here. 1In particular, each transit trip substitutes
for about 24 VMT's, indicating that transit trips serve
more purposes than auto trips,which average about 10 miles.
Also, each incremental licensed driver contributes about
15 miles over a four day period. (There are nearly two
licensed drivers on average in the auto trip sample.)

The geographic variables indicate that as the size of
the SMSA (SM.SZE) and the place where the household lives
(PLCSZE) both increase, the total distance traveled tends to
decline. However, as the size of the urban center (URBAN)
increases, more miles are traveled. This effect can be
explained because urban centers. attract auto trips from sur-
rounding areas and such trips tend to be longer than neigh-
borhood journeys. Increased size in the SMSA and place of
residence indicate more opportunities closer to home for
travel destinations.
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TABLE 3-3

ESTIMATED VMT EQUATIONS
(Two Stage Least Squares)

Coefficients (t-statistics)

Variable Equation (3-1) Equation (3-2)
VMT e Dependent Dependent
Constant 162.5 151.3
( 4.842) ( 3.830)
#T.TRP -24.24%* -23.83%*
( 2.209) ( 2.114)
D.TM/MI -7.838 -6.616
( 2.609) ( 1.769)
D.V.HH. TM/MI - 4751 - .6158
( 1.572) ( 1.547)
D.CO/MI.V.HH -51.01 -44.,9|
( 2.244) ( 1.753)
#PPL>4 4.966 4,948
( 1.855) ( 1.838)
URBAN - 3,394 - 3.364
( 2.042) ( 2.018)
SM.SZE - 2.897 - 3,004
( 1.0468) ( 1.0828)
PLCSZE - 1.979 - 1.956
( 1.671) ( 1.650)
#LIC.D 15.14 15.52
( 2.738) ( 2.439)
D.PKAV -20.04 -17.65
( 0.921) ( 0.795)
HH eeeee .0008462
‘ ( 0.5642)
#CARS mee—- -1.699
( 0.252)
R® (corrected) .1059 .1052

*¥*indicates jointly dependent variable

Number of observations = 638
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The estimates also indicate that as free parking
becomes more available, the number of VMT's decline. Though
the t-test on this coefficient is not significant at the
90 percent level of confidence, it was included in the equation
because the parameter value persisted through many alternative
specifications indicating a higher degree of robustness than
the t-test would signify. The result suggests that driving
more is an alternative to paid parking, or lack of parking.
Extra VMT's are added to journeys when people search for
free parking; drivers serving passengers to avoid parking
tariffs use the car more than would be the case if it were
parked. In any event, small declines in the availability
of free parking do not seem to decrease journeys. If free
parking availability, other than at home, decreased by 10
percent then the number of VMT's would increase by about 0.8
miles.

Equation (3-2) was included in Table 3-3 to demonstrate
the effects of household income and automobile availability.
Changes in income have little direct impact on the number of
VMT's. Besides being statistically insignificant, the estimated
coefficient indicates that as income for the household increases
by $1000, then miles traveled increases by 0.8. The effects
of income in the demand equation are more important through
interaction with the time and price variables than when it is
included as a separate variable. The number of cars was
included in one specification because some policy instruments
may affect auto ownership and thereby affect auto travel.

As can be seen in equation (3-2) the inclusion of an auto
ownership variable gave counterintuitive and statistically
insignificant results. Alternative models of auto travel
demand, presented below, achieved different results.
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Number of Auto Trips

Table 3-4 presents the estimated demand equations for
number of driver trips. With exceptions noted below,
parameters are reasonably significant and have the proper
signs. Equations (3-3) and (3-4) have the same specification
but differ in that the latter used instrumental variables
to estimate the cost and time parameters. The reason instru-
mental variables were used in equation (3-4) on cost and time
is that these variables are both directly related to distance
which is simultaneously determined with auto trip frequency.
Consequently, there is some reason to believe that the
interdependence between cost, time and number of auto trips
would cause biased estimates if ordinary least squares were
used. As can be seen from the estimated equations, the effect
on cost and time coefficients of using instrumental variables
was significant. The time coefficient was doubled and the
cost coefficient was decreased by one-third. Though equation
(3-4) is preferred on theoretical grounds, in order to choose
between these two equations requires additional information
about the elasticities which can only be computed in conjunc-
tion with the average auto distance relationship presented
later.

The other variables have the expected effects. Larger
household income increases the average number of trips directly
and by decreasing the cost elasticity. An additional licensed
driver in the household contributes nearly two auto trips
over a four day period. Additional employed members of the
household decrease the number of trips suggesting that the
opportunity cost of travel is higher if more people work. Also,
the addition of a car increments the number of trips by
1.3 over a four day period. The result of having fewer desti-
nations with free parking is consistent with the evidence
presented in the VMT equation -- this would increase the number

of auto trips.
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TABLE 3-4

ESTIMATED AUTO TRIP

EQUATIONS

(Two Stage Least Squares)

Coefficients (t-statistics)

Variable Equation (3-3) Equation (3-4) (Equation (3-5)
#D.TRP Dependent Dependent Dependent
Constant o112 11.44 11.63
(5.612) (5.702) (4.672)
#T.TRP -1.622%% -1.589%% -] ., 457%*
(4.003) (3.894) (3.609)
D.DIST  mmee— mmeem -0.8258%%
(3.584)
D.TIME -.02476 -.05269%% eeee-
(0.993) (1.063)
D.TM/MI ———— ————— -.02386
(0.221)
D.CO/TRP.V.HH -0.1546 -0.1085** ————
(1.893) (G.7509)
D.CO/MI.V.HH  ==eeem eeee- -1.352
(0.728)
H.H.$ .00008514 .00009403 .00008279
(1.360) (1.380) (1.004)
SM.SZE -.4137 -.4051 -.4398
(2.184) (2.136) (2.322)
#PPL>4 .8279 .8122 .8254
(4.500) (4.385) (4.477)
#LIC.D 1.725 1.711 1.716
(3.552) (3.514) (3.526)
#EMPLY -.7852 -.7778 -.7953
(2.012) (1.992) (2.014)
#CARS 1.308 1.313 }.330
(2.715) (2.713) (2.764)
D.PKAV -5.671 -5.695 -5.667
(3.586) (3.597) (3.580)
R2 (corrected) LA716 L1710 . 1729

** jndicates jointly dependent variable

Number of observations = 638
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It is to be noted that the t-statistics for cost
and time terms are not significant. The estimated parameter
values remain relatively unchanged through alternative speci-
fications, however, and the results presented in equation (3-3)
appear to be robust though possibly biased through simultaneous
equation error. .

Equation (3-5) is presented because it is easier to use
for policy analysis than the other equations. By separating
the cost and time terms form the distance variable, the
amount of intefdependence with distance is lowered for purposes
of exercising a simultaneous equation system. As expected,
there is a negative relationship between distance per trip
and the number of trips.

Average Auto Distance

Two equations for predicting the average distance in
miles for a one-way auto trip are presented in Table 3-5.
Instrumental variables were used for estimation of the
coefficient on the number of driver trips. Cost and time
variables are represented on a per mile basis which minimizes
the interdependence between these variables and the dependent
variable. Though other variables which appear in the demand
equation for number of auto trips could have been included
in the average distance equation, it would have been inappro-
priate to include them in addition to number of driver trips.

Equation (3-6) is preferred. All signs are as expected

and the t-tests are significant with the exception of coefficient

for household income. Equation (3-7) demonstrates the
effects of not including income as a separate variable; that
is, the elasticity of distance Qith respect to auto operating
costs per mile declines in value and significance. Because
of this effect, and because the coefficient value on income
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TABLE 3-5

ESTIMATED AVERAGE AUTO TRIP DISTANCE EQUATIONS
(Two Stage Least Squares)

Coefficients (t-statistics)

variable Equation (3-6) Equation (3-7)
D.DIST . Dependent Dependent
Constant 28.65 26.37
(7.703) (9.436)
#D.TRP - .5890%* - L6077**
(5.323) (5.576)
D.TM/M| -1.582 -1.583
(8.0192 (8.010)
D.CO/MI.V. . HH -6.116 -3.704
(1.718) (1.516)
H.H.$ - .0001472  ===m-
(0.9301)
URBAN - 3713 - .3630
(1.650) (.61
PLCSZE - .3136 - .3085
(1.932) (1.898)
R2 (corrected) .0928 .0896

¥*indicates jointly dependent variable

Number of observations = 638
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was robust under alternative specifications, it was deemed
advisable to include income in the final equation.

As can be seen from equation (3-6) , extra auto trips
substitute for longer journeys; the average distance per
trip decreases by about half a mile for each extra auto trip.
The urban center size and place of residence size variables
have effects which are consistent with the result of the
VMT demand equations. That is, as the size of the urban core
increases, the average distance traveled per auto trip also
increases but as the place size increases the average distance
declines.

Number of Transit Trips

Table 3-6 presents three alternative specifications of
the estimated transit trip demand equations. For reasons
described before, coefficients on transit time and transit
availability were estimated with instrumental variables.

It should be noted that transit time is the entire time of the
trip and is not disaggregated into access, wait and linehaul
components. Owing in large part to the poor quality of the

data, the test statistics for the transit demand equation indicate
substantial randomness in estimates of individual parameters.
However, coefficients generally have reasonable values.

The affects of household size and number of people over
four must be considered in unison. The parameter estimates
on these variables suggest that additional household members
will contribute to additional transit trips if they are over
the age of four but will cause fewer transit trips if they
are aged four or younger. This reflects the burden of making
transit trips with young children. Another socioeconomic
variable, whether there is a female head of household, is
more difficult to interpret. Equation (3-10) included this
variable but the apparent strengthening of the estimation
results which occurs may simply be a statistical anomaly.
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Variable

#T.TRP

Constant
T.TIME
T.V.HH.TIME
TAVL.D.T.TRP
H.H. &

HH.SZE
#PPL>4

F.H>HH

R2 (Corrected)

TABLE 3-6

ESTIMATED TRANSIT TRIP EQUATIONS
(Two Stage Least Squares)

Coefficients (t-statistics)

Equation (3-8) Equation (3-9) (Equation (340)
Dependent Dependent Dependent
}.444 .9555 1.495
(1.158) (0.910) (1.217)
-0.009959%% e-——- -.01170**%
(0.711) (0.846)
————— -.0022( 2%* ————
(1.526)
| .707%% |.872%* 2,39
(1.666) (1.898) (2.258)
-.00006254 ———— -.00008049
(1.365) (1.753)
-.3722 -.3706 -.4544
(1.377) (1.371) (1.688)
.7877 L7757 .8450
(2.357) (2.324) (2.558)
---------- -1.144
(2.138)
.0942 .0963 . 1206

** indicates jointly dependent variable

Number of observations = 108
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The time spent in making transit trips was specified
in two different ways in equations (3-8 and 3-9). 1In
the first specification, income was separated from the time
variable with the result that the statistical significance
of time was practically nil. 1In the second specification,
income was combined with time by multiplying the trip time
with the household wage per minute. The resulting coefficient
appears to be stronger but it is probably picking up the
negative influence of income more than the time penalty
associated with transit trips.

Given these considerations, equation (3-8) is the
preferred estimate, though there is little basis for rejecting
the others. Alternative specifications which included the
effects of auto trips, auto travel level of service, and
geographic variables were attempted but with poor results.
These estimates indicated that there is negligible cross
elasticity of transit trips with respect to auto trip level
of service variables in the ranges represented by the data.

Model I Elasticities

Model I is a two equation system using relationships
which represent the demand for VMT's and the demand for
transit trips. Though several combinations of equations from
Tables 3-4 and 3-5 are possible to form Model I, the preferred
relationships are equations (3-1) and (3-8). These were
used to compute the elasticities represented in Table 3-7.

Computation of own elasticities using the linear Model I
is relatively straightforward. To see this consider the
general linear equation:

Y=0.0+0.1X1 + ... +C!an

Then the elasticity of Y with respect to Xi is:

> ISV SH
o, |l~<| ><I'~<:
.
R
D
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TABLE 3-7

Model 1
LEVEL OF SERVICE ELASTICITIES

Own Elasticity of VMT's

With respect to:

Auto travel time per mile -.4944
Gasoline cost per mile -.2102
Free parking availability -.1006

Own Elasticity of Transit Trips
With respect to:
Transit trip time -.0989
Transit availability .4628

Cross Elasticity of VMI's*
With respect to:
Transit trip time .0068
Transit availability =-.0317

*percentage change in VMT's divided by percentage change in
transit trips = -.0685.
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Each of the elasticities presented in Table 3-7 were \
computed at the means of dependent and independent variables
used in the estimation sample, given in Table 3-2, except for |
parking availability, which is discussed further below. The |
elasticity of VMT's with respect to auto time per mile is v
the sum of the elasticity of VMT with respect to D.TM/MI and
D.V.HH.TM/MI. The elasticity of VMT's with respect to auto n
gasoline cost per mile is the elasticity of VMT with respect ‘
to D.CO/MI.V.HH.

To compute the elasticity of VMT's with respect to free
parking availability it was necessary to adjust the mean
for residential parking. On the assumption that half of all

S —

trips ended at home, .5 was subtracted from the mean of this
variable to yield .3983.

The cross elasticity of VMT's with respect to transit
trip level of service variables is equal to the product
of VMT elasticity with respect to transit trips times the
transit trip elasticity with respect to transit level of
service.

The VMT elasticities with respect to time and cost are
within the ranges validated by the other studies reviewed
in Section 1. The free parking availability elasticity
does not have supporting evidence from other studies because
no research has been done on the overall effects of parking
restrictions.!

The transit trip time elasticity is low compared to
the results presented in Section 2 on the work trip. This
may be a reflection on the average quality of transit
service, and preferences against transit, for nonwork trips.

For a review of the existing research in this area
see CRA, Policies for Controlling Air Pollution... (forthcoming).
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Over a four day period only .224 transit trips were made

by households which also made auto trips. This also

accounts for the low cross elasticity of VMT's with respect to
transit level of service; a large percentage change in
transit trips has a small effect on VMT's.

Model II Elasticities

To form Model II, three equations are used to represent
the demand for auto trips, average auto trip distance and
the demand for transit trips. The equations for these
relationships are given in Tables 3-4, 3-5 and 3-6. There
are potentially a large number of combinations of equations
from these tables to create Model II and the selection of
a preferred set is somewhat subjective. For the purposes
of computing Model II elasticities, equations (3-4, 3-6, and
3-8) were used. The elasticities are given in Table 3-8.

Model II is more complicated to use than Model I. One
problem which arises is that average trip length per household
times average trip distance per household is not equal to
average VMT's per household. Thus, simply multiplying the
predictions of equations (3-4 and 3-6) will not yield
suitable predictions for VMT's. Fortunately, a simple method
is available to make an approximate adjustment.’

To demonstrate the problem we note the following statistical
identity:

VMT = (¥D.TRP)(D.DIST) + COVARIANCE (#D.TRP, D.DIST)

where variables with bars over them indicate means over the

IThe most accurate method for computing elasticities
or other policy effects would be to simulate the model over
all the household observations in the sample. Though this
approach would not be difficult if the requisite software
and data base are available, it is not pursued here.
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TABLE 3-8

Model II
LEVEL OF SERVICE ELASTICITIES

Own Elasticity of VMT's

With respect to:

Auto travel time per mile -.4968
Gasoline cost per mile -.2189
Free parking availability -.0854
Auto ownership .0745

Own Elasticity of Transit Trips
With respect to:
Transit trip time -.0989
Transit availability .4628

Cross Elasticity of VMT's*

With respect to:
Transit trip time .0013
Transit availability -.0062

*Percentage change in VMT's divided by percentage change in
transit trips = -.0134.
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sample of households. It can be seen that the mean ot

VMT's differs from the product of mean auto trips and distance
by the covariance between auto trips and distance. This
covariance is negative and can be computed for the auto

sample from statistics presented in Table 3-2:

COVARIANCE(#D.TRP, D.DIST) = VMT - (#D.TRP)(D.DIST) = - 15.25

To compute elasticities, it will be necessary to take account
of this covariance term. The elasticity of VMT with respect

to some variable X will be:

d vMT d{(#D.TRP)(D.DIST)] - d[COVARIANCE(#D.TRP, D.DIST)]
ax dax ax
VMT vMT
X X
(3-11)

Concentrating only on the numerator, on the right hand side
of the equation, the derivative of the covariance term is not
tractible unless simplifying assumptions are made. One
reasonable assumption is that this derivative is proportional
to the other derivative in (3-11) where the constant of pro-

portionality equals the following:

COVARIANCE (#D.TRP, D. DIST)
(#D.TRP) (D.DIST)

= -.1712

Thus, as an approximation, the change in VMT caused by a
unit change in X can be computed as follows:
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dvMr _  g3gs |

ax

d#D.TRP d D.DIST

) D.DIST + #D.TRP ( )

Further complications are introduced because #D.TRP
D. DIST are simultaneously determined. One method of dealing
with this is to solve the two equations simultaneously at the
old and changed values of X and compute the resultant change
in VMT's. Another method, which is applied below, is to
use the chain rule in computing the appropriate derivatives.
This will allow us to calculate the change in VMT's which
result from the change in X by using the partial derivatives
in the following equation:

d VMT 3#D.TRP + B#D.TRP)(SD.TRP

= L8388 D.DIST
dx 39X 2D.DIST 5
+ #0.TRP 3D.§§ST + (aD.DIST) (a#g.XTRP) (3=12)

o# D. TRP

Equation (3-11) 4is the formula used to compute the
derivatives for elasticities presented in Table 3-8. To
give an example of its application, we will show how the
change in VMT with respect to a change in time per mile (D.TM/MI)
is calculated. All the parameters and data necessary for
computation of the derivatives are given in eqguations (34,
3-64 and 3-8), and Table 3-2.

First we note that the partial derivative of number of
auto trips with respect to time per mile is equal to the
coefficient on trip time in equation (3-4) times the average
distance of the trip: l

d#D.TRP
9D.TM/MI

-.05269 (D.DIST) = ~.4978
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Next we compute the partial derivative of trip
frequency with respect to average trip distance as follows:

3#D.TRP  _ (a#D.TRP)(BD.TIME) + (B#D.TRP )(BD.CO/TRP.V.
aD. DIST oD.TIME 9D.DIST oD.CO/TRF.V.HH 9D.DIST
= -.05269 (D.TM/MI) - .1085 (D.CO/MI.V.HH)
= -.2059

The partial derivatives of average distance with respect
to time per mile and number of auto trips can be calculated
directly from the relevant coefficients in equation (3-6):

9D.DIST

= -1.582
8D. TH/MI
9D.DIST  _ _ 40
9#D. TRP

This completes the computation of partial derivatives
which appear in equation (3-12). Using the values for #D.TRP
and D.DIST given in Table 3-2, the change in average household
VMT's over a four day period caused by a unit change in time
per mile can be calculated using formula (3-12):

Q—ZEZ———— = -12.1864

d D.TM/MT

The elasticity of VMT's with respect to time per mile is
then computed as follows:

d VKT

d D.TM/MI
vMT
D.TM/MI

= -.4968

152



which is the value given in Table 3-8.

The other elasticities are computed similarly using
formula (3-12). For variables which do not appear in
equation (3-6), the partial of D.DIST is identically zero.
This eases, for example, the computation of auto ownership
and free parking availability elasticities.

It can be seen from Tables 3-7 and 3-8 that there is
little difference between VMT own elasticities for Model I
and Model II. However, the VMT cross-elasticities with
respect to transit service are much smaller for Model II
than for Model I. This can be attributed to some misspecification
in Model II where number of transit trips was not included in
the average auto distance equation. In comparing the results
of Model II with Model I, it is apparent that transit trips
substitute for longer driver trips.

3.2.4 Model Validation
Two exercises were performed with Model I

(equations (3-1 and 3-8)) to determine the problems involved
with transferring the equation to alternative sources of data.
The results indicate that the model is not instantly generalizable
except, possibly, for the elasticities.

The first attempt at validation was simply to apply the
model to the aggregate sample of 765 households which includes
115 households not taking auto trips. As mentioned before,
the estimation of the model on a truncated sample excluding
observations with zero VMT's could bias the parameter estimates.
By applying the model to the aggregate sample, some indication
of the extent of this bias can be determined. The results
are as follows:

-- actual nonwork VMT per household over a four day

period = 68.66: predicted nonwork VMT per household
over a four day period = 70.63;
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-- actual nonwork transit trips per household over a

four day period = .4601: predicted nonwork transit
trips per household over a four day period = 2.260.

As can be seen from the above results, the use of aggre-
gate data which includes households who did not take transit
trips, especially when level of service data is missing, over-
predicts the number of trips taken. This implies that the
preferred method for using the transit equation is to use the
elasticities which are purged, to a large extent, of the
scale effects which would cause overprediction if the egquation
were applied directly. If a data base can be reconstituted
into overlapping auto samples and transit samples, as was done
for estimation, then the edquations mav he annlied Ajirantl-r,

As a further test of the model, it was applied to an
aggregated sample of 992 households from a Los Angeles sketch
plan zone. This area is a low income region south of Los Angeles
city center with better than average bus service for the Los
Angeles region. Level of service data are engineering estimates
based on time and distance matrices for traffic analysis zones.
The results of applying Model I to this data are as follows:

-- actual nonwork VMT per household over a four day

period = 17.95: predicted nonwork VMT per household
over a four day period = 45.00;

-- actual nonwork transit trips per household over a

four day period = .4609: predicted nonwork transit
trips per household over a four day period = 2.301.

Again the effect of not having separate samples for
auto and transit users produces the result that travel by each
mode is overpredicted. In the case of transit, the percentage
error is of the same proportion obtained when Model I is applied
to national data. When used to predict VMT's, the model is
less accurate when applied to Los Angeles data than when
applied to the national sample, though the direction of change
is correctly predicted.
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This result created the suspicion that the reportea
distances in the NPTS were grossly out of line with actual
distances. Yet when the results of the NPTS sample are
expanded to a full year of travel, the VMT's per auto attri-
butable to nonwork travel are equal to 4,630 miles per year.
Given the rule of thumb that about half of all VMT's occur
on nonwork trips, the reported distances are consistent
with the accepted datum that the average car accumulates
10,000 miles per year. This throws some doubt on the validity
of the Los Angeles data.

One reason for the difference in estimates could be
the presence of unobserved variables, the effects of which could
not be estimated. To test for this problem, several equations
of various specifications were estimated using error components
regressions. The parameters obtained from these estimates
typically did not vary significantly from the parameters
presented in Tables 3-3 through 3-6. The regressions did
indicate that the constant terms for auto related equations
should be somewhat smaller than those given by standard
two stage least squares estimates if the equations were to
be applied to Los Angeles; however, when the error components
estimates were applied to the Los Angeles data, they also
significantly overpredicted VMT's and transit trips. It was
concluded from these results that the absence of city specific
unobserved variables in and of themselves did not significantly
bias the results.

Given the conflicting evidence, there are relatively
few claims which can be made about direct application of
the models until procedures are developed to deal with the
problem of separate samples uséd for estimation. It is
likely that such procedures can be developed routinely. 1In
the meantime, it is more appropriate to apply the estimated
elasticities.
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3.3 POLICY EVALUATION WITH NONWORK TRAVEL MODEL ELASTICITIES

The specification of the nonwork travel model makes
it somewhat less cumbersome to use in policy evaluation
applications than the work travel models presented in Section 2.
However, in applying the nonwork model, it is important to
translate the policy instruments in such a way that they effect
the independent variables accurately. This poses some problems
in model application which are discussed by example below.
Four types of policy scenarios are considered dealing with
gasoline taxes, parking restrictions, fuel economy measures
and transit level of service improvements.

Each of the policy scenarios represent broad gauge
options available for national urban transportation policy.
The exercise of the model under various policy contingencies
points up the strengths and weaknesses of performing instant
policy evaluation with known elasticities. Often the policy
instruments are not represented directly by the variables
in the model and assumptions must be made about the appropriate
correspondence. FOr some scenarios, supply effects need to be
known for a complete evaluation and, in the absence of knowledge
about such effects, further assumptions must be made. A
consequence of this situation is that separate analysts
using the same model can arrive at different conclusion about
the results of a particular policy because of the differences
in judgement on key assumptions. The examples of model appli-
cation presented below indicate how judgements and assumptions

affect the outcome of policy evaluation.

3.3.1 Gasoline Tax

One of the more routine applications of the model is to

changes in gasoline price. This would occur if an additional
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tax was inposed on the sale of gasoline to motorists.

As in the case of the work trip gasoline tax scenario, it
is assumed that a nationwide tax of 100 percent is placed
on the pretax cost of gasoline. The result of such a tax
on the pump price of gas is to increase its value by, on
average, 70 percent. Using either Model I or Model II, the
predicted effect of this action would be to decrease nonwork
trip VMT's by about 15 percent or about 12 miles per four
day period for the average household. This is computed by
multiplying the relevant elasticity presented in either
Table 3-7 or Table 3-8 by the percentage change in the pump
price of gasoline.

3.3.2 Parking Restrictions

Because the nonwork trip models do not have well defined
parking cost elasticities, it is only possible to make
very approximate estimates of the effects of various parking
policy options. 1In order to evaluate the effects of parking
restrictions they must be translated into the resultant change
in free parking availability (D.PXAV). Even then, not all of
the impacts may be predicted because of the absence of
parking price effects in the models.

In the work trip section of this report, the policies
analyzed included parking taxes and the rationing of parking
places through government regulations. Even if such policies
were applied locally to those areas where paid parking is
typically the rule, the regionwide effect would be a reduction
in the availability of free parking. The extent to which free
parking availability would decline cannot be known with
accuracy until the supply respénse of parking sites with
respect to cost changes is analyzed. Nonetheless, some
inferences about the impacts of such policies on nonwork VMT's

can be determined from the line of reasoning pursued below.
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In the absence of parking restrictive policies, 1t
can be presumed that the pattern of parking charges over
an urban area is related to the demand for parking and the
cost of land for alternative uses. Parking rates charged
by entrepreneurs represent, in large part, a pure rent to
the urban land. If such land is inelastic in supply, then
parking taxes would cause little increase in the price charged
to motorists but would, instead, be passed backwards to
decrease rents. In the longer run, parking sites would be
converted to uses which offer higher rents decreasing the
supply of parking around premium locations. This would increase
the demand for parking in other locations where, perhaps,
parking was free before the imposition of the policy.

Consequently, the result of a parking restriction policy
has two effects on free parking availability: the first is
to create parking charges where none previously existed by
the imposition of a direct tax; the second, and more difficult
to model, is to increase the proportion of paid parking sites
and the proportion of travel destinations where parking is
not convenient by artificially restricting supply or by using
taxes to create such a supply response. In either case, the
areas where free parking would change is on the fringes of
activity centers where paid parking already obtains or in
activity centers where free parking obtains but the parking
restrictions and taxes could be easily monitored. Many
potential trip destinations for nonwork travel, such as
private homes or small semiurban commercial establishments,
would not be effected nor could any parking restriction policy
be inexpensively enforced.

To determine the implications of parking restrictions con-
sistent with those imposed in work trip scenarios, it was assumed
that a broad based parking control plan would change free
parking availability at potential trip destinations on the order
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of 50 percent. Using the elasticity on free parking
availability from Model I, given in Table 3-7, the result
of such an action would be to increase the nonwork VMT's by
5 percent to about 4 miles per four day period per household.
Given that the increased restrictions on parking tend
to increase nonwork VMT's, there is some doubt about the
efficacy of such a policy to curb emissions or to reduce
energy consumption. All effects of such a policy need to be
considered and these include the induced changes in work trip
VMT's and the impact of higher parking prices on nonwork
travel, before such a policy could be realistically proposed
as a solution to environmental and energy problems. Even if
this is done, there is reason to suspect that parking
rationing by itself will not have the desired result in a

number of urban contexts.

3.3.3 Fuel Economy of Automobiles
It has been asked whether mandated fuel economy regulations

on new cars might be counterproductive in efforts to conserve
energy. The issue arises as a result of lower fuel consuming
automobiles being cheaper to operate and thereby inducing
more travel. The nonwork travel model can be used to give
reasonably precise estimates of fuel saved with miles per
gallon regulations including the effects of induced travel.

To apply the model, the average miles per gallon for
travel in the 1969 sample needs to be known. Using the
Consumer Reports figures for new cars, the average gasoline
consumption rate was 16 miles per gallon. This is somewhat
higher than rates typically given for 1969 (around 13.5
miles per gallon in the Statistical Abstract) and the difference
can probably be attributed to the decay in fuel efficiency
as cars are used over time and to the differences in data
reporting. However, the Consumer Reports data are well suited
to regulations which apply to cars as they come off the
assembly line.
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For the purposes of illustration, suppose that the
effects of a federal restriction on the fuel economy of
new cars is such that the average miles per gallon increases
by 50 percent to 24 miles per gallon. The result of this
regulation would be to decrease auto gas costs per mile by
50 percent. Application of either the Model I or the Model II
elasticity to this change in auto costs indicates that the
resulting increase in VMT's is on the order of 10.5 percent
or about 8 miles per household per four day period. The net
fuel consumption decline would be about 40 percent.

The implications from the elasticity of VMT's with respect
to automobile gas costs per mile are that net percentage
fuel reductions owing to increased fuel economy by automobiles

are .8 times the percentage change in miles per gallon.

3.3.4 Transit Availability
The effects of various transit policy options on VMT's

and transit policy options on VMT's and transit trips cannot

be very refined using the nonwork travel models because

transit variables are highly aggregated. Also transit costs
were excluded from the model because of the lack of data on
this in the NPTS survey.! Moreover, trip time by transit was
not divided into access, wait and linehaul components. Finally,
the model does not readily accept new modes as a separate
travel choice from either auto or transit. The result of

these shortcomings is that the analysis of any particular

!Conceptually it would have been possible to include the
affects of the transit fares on transit ridership by adding
data from other sources to the household data set used for
estimation. Other information on levels of transit service
which were city and even place specific also could have been
merged with the data base. This effort would be similar to
the approach used in computing auto travel costs which used
city specific data on gasoline prices from sources other than
the NPTS. It is suggested that if further model estimation
is pursued using the NPTS data base that these adjustments be
made.
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policy scenario involving transit must be judgemental
in translating policy instruments into model inputs.

Some implications about transit policy are readily
apparent from simple inspection of model parameters and
elasticities. For example, it is unlikely that anything
except for the most major of auto disincentives will have
any significant impact on diverting motorists to transit
for nonwork travel. Moreover, because the cross elasticity
between transit trip time and VMT's is quite small, it is
improbable that simple adjustments in linehaul and wait
times for transit will divert motorists to transit. For
example, a 10 percent increase in transit speeds, a scenario
analyzed in the work trip section, would reduce VMT's by at
most 0.068 percent.

With regard to transit fare policy, it is interesting
to use external estimates of the transit fare elasticities
in association with the estimated VMT elasticities from Model I.
Assume, for example, that the transit fare own elasticity is
-.33 as is the usually accepted figure. If this is multiplied
times the VMT elasticity with respect to transit trips from
equation (3-1), given in Tables 3-7, the resulting estimate
of VMT cross elasticity with respect to transit fares is .022.
Thus if transit fares were uniformly lowered by 50 percent,
the consequent decline in nonwork VMT's would be only 1 percent
or about .8 VMT's per household per four day period.

To analyze the effects of increased transit availability,
the models can be applied more directly. The definition
of transit availability, consistent with the definition of
the variable in the transit demand equation, is the proportion
of trips for which a transit mode was available within one
half mile (six blocks). A scenario consistent with the ones
applied to the work trip model is to consider the effects of
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making transit available, within six blocks, for all nonwork
trips. One method for achieving this would be to institute

a regionwide door to door dial-a-ride service. Another
approach may be simply to extend conventional bus service

by the necessary route miles to cover all the relevant origins
and destinations with some ill-defined but minimal number of
transfers.

The result of such a policy on nonwork trips is to
increase the availability of transit, as defined above, by
327 percent. Applying the relevant cross elasticity on
VMT's given in Table 3-7 to this scenario yields the result
that such a policy would decrease VMT's by about 10 percent
or by about 8 miles per household per four day period. This
is obviously a rather rough estimate because different methods
of changing transit access will have different effects: for
example, dial-a-ride clearly minimizes the walk time to
transit while conventional bus systems still may entail
substantial walk access, yet both changes are predicted to
have the same effects. In order to predict the differential
impact of various types of transit improvements the transit
demand equation should be refined with more information
specific to the service characteristics of particular urban
systems.

Beyond the short run effects of transit service
improvements, proponents of transit system investments often
make the claim that the long-run changes in urban form caused
by transit offer substantial efficiencies in transportation
when compared to spread development in auto dominated urban
forms. To our knowledge, this argument has never been validated
by an examination of the data on comparative travel patterns
among cities of alternative development patterns. As shown
below, the results of the estimated VMT equations cast some
doubt on the effects of increased density on reducing nonwork
VMT's.
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To analyze this issue, we use equation (3-1) and consider
the assumed impacts of a new system on the urban area specific
variables of SMSA population, urban center population and
place size population. Of these, it can be presumed that
SMSA population would remain unchanged because the effect
of the new system would be to redistribute population within
the region rather than to change the level of population.

The effects of the system may be considered to be on the order
of changing the average place size and urban center size

from that which obtains in the auto trip sample to the
averages in the transit trip sample. Not surprisingly, the

average of both place size and urban center size would increase.

By increasing the size of place of residence, on average,
there is a consequent decline in VMT's per household per four
day period equal to 3.9 miles. However, the increase in

the attractiveness of the urban center causes an increase

in average VMT's of about 4.2 miles. Thus the net effect on
nonwork VMT's of increasing densities and the importance cf
the downtown through major transit systems may well be
negligible.

3.3.5 Summary

Even though the specification of the nonwork trip models
were somewhat restrictive in terms of the number of variables
available to test policy options, the estimated elasticities
were applied to a relatively diverse set of policy scenarios.
These scenarios and the predicted effects are summarized in
Table 3-9.

The results of estimating the nonwork travel demand
changes caused by various policy instruments can be sum-

marized as follows:
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TABLE 3-9
SUMMARY OF POLICY SCENARIO

Predictions Using Nonwork Travel
Model Elasticities

Percentage Change

Policy Scenario in WMT's
|00% Gaso!line Tax -15%

50% Decline in Free Parking 5%

50% Increase in Auto Fuel Economy 10%

10% Increase in Transit Speed 0%

50% Decline in Transit Fare - 1%
Transit Avalilable for All Trips -10%
Higher Density Urban Form 0%

Auto Travel Controls

To achieve objectives related to reducing VMT's, emissions
or energy consumed, policy instruments should correspond as
closely as possible to these objectives. Thus, for examples,
taxes on VMT's through a gas tax or regulations on energy
efficiency have more impact than parking regulations. 1In
fact, if parking regulations are applied to off-peak travel,

they may well have counterproductive effects.

Transit Improvements

The response of travelers to transit for nonwork trips
appear to be significantly different from their response for
work trips. It can be presumed that mode switching for nonwork
trips is more sensitive to transit access than to transit fares
and linehaul times. Consequently, transit innovations for non-
work trips should probably be oriented toward serving a dis-

persed set of origins and destinations with relatively low
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level of service compared to peak transit level of service
which serves work trips. This strategy will not reduce auto
travel by a large amount but it appears to have a larger
impact than more inflexible transit systems, such as transit
facilities with their own guideways, on off-peak trips in both
the short and long run. '

The inadequacies with the nonwork travel demand estimates
given in this chapter are largely the result of gaps in the
NPTS data base.” The lack of information on alternate mode
level of service and, perhaps, city specific variables certainly
reduces somewhat the confidence with which model predictions
can be made. This problem was most severe in the estimation
of transit demand and, possibly, caused the low values for
transit direct elasticities. However, even higher values for
transit own direct elasticities would not have had much effect
on increasing the VMT cross elasticities with respect to
transit level of service because so few transit trips are
made for nonwork purposes. Future attempts to estimate
disaggregate travel demand models with national databases
would do well to merge the household trip data with publicly
available external data on the level of service for transit
in specific urban areas.

The other major shortcomings of the model are the result
of a conscious tradeoff in model specification to make it
easy to use. The linear form of the equations and the rela-
tively high degree of aggregation of the relevant variables

undoubtedly misrepresents to some degree the actual behavioral
process in something as complex as nonwork travel demand.
However, by representing the range of travel choices with
continuous variables rather than a relatively small number

of discrete options, the linear specification may be an
improvement over some probability choice specifications.
Future work in estimation of nonwork travel demand may
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productively consider model forms which wed the strengths
of both specifications such as probability choice models
which apply to a continuous range of options.

Finally, the direct application of the linear model
is now limited by the use of two separate samples for
model application. This was'done because of the lack of
data on modes not chosen. Insofar as alternate mode data
are among the missing elements from many disaggregate data

sets, some research into how to apply models estimated on

separate (though overlapping) samples would potentially

have a high payoff. As mentioned before, from such an

effort it is likely that routine methods could be developed
for direct application of the models to widely available data.
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APPENDIX A
THE NPTS SURVEY

The Nationwide Personal Transportation Survey (NPTS)
is a collection of household interviews which were con-
ducted between April 1969 and January 1970. Approximately
6000 households were surveyed (half of them four times)
and every state and the District of Columbia is represented.
Each individual in a given household is interviewed; three
types of information are obtained: (1) general socioeconomic
information about the individual and the household (income,
auto ownership, etc.); (2) a categorization of the usual
work-trip, shopping-trip, and travel-to-school patterns;
and (3) a record of each trip taken by each individual in
the household on a designated day. The FHWA Office of
Highway Planning (Division of Program Management) has pub-
lished a series of pamphlets based on the survey, reporting
tabulations of the aggregated survey data projected to
nationwide or annual estimates.

To conduct the NPTS survey, the country was divided
into approximately 1900 primary sampling units (PSU's).
These PSU's were grouped into 235 strata of one or more
and are roughly homogeneous according to some socioeconomic
criteria. One PSU was selected from each of the 235 strata.
From each chosen PSU, a sample of households was randomly
selected. 1In total approximately 6000 households were
selected, and they were divided into two groups of approx-
imately 3000 households each. One group was first inter-
viewed in April 1969, and then three subsequent times:

July 1969, October 1969, and January 1970. It appears there
is a slight variation in the number of households inter-
viewed in each of the four months; this is probably due to
the difficulty of finding people at home, etc. 1In the
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first interview the three types of information outlined
above are obtained: (1) general socioeconomic, (2) usual
travel patterns, and (3) specific trip records. The followup
interviews were concerned only with trip records. The
second group of households was interviewed only once, in
August 1969; all three types of information were obtained
in this interview.
The questionnaire used in the survey consists of seven
parts: '
e control card, aimed at obtaining basic geographic
and socioeconomic information about the household;
e Section I, Automobile Record, with an entry for
each car owned/used by the household, asking
ownership, miles traveled, parking and passengers
for the work trip;
e Section II, Shopping, asking about shopping trips
to the CBD;

® Section III, Travel to Work, asking about the usual
trip to work;
e Section IV, Driver Information, asking the miles
an individual has driven in the past veer;
e Section V, Travel to School, asking about the usual
trip to school;
® Section VI, Travel Day Report, recording all trips
taken by an individual on a designated day; and
@ Section VII, Overnight Travel, recording all over-
night trips taken during the week before the desig-
nated travel day.
A copy of the gquestionnaire begins on the following page.
The top section is a transcribed portion of the control card.
On the first visit to each householc, the control card was
filled out, and each individual in the household completed
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available
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Not code
available

1. Noninterview
reason

s. Date of interview

1+ [TJNOH
20]7A

3 [JRef.

4[] Other Type A
(Fiile, ke, g ko1 q.)

8] Other type — Specily7

Section 1 - AUTOMOBILE RECORD

Now | hove some questions obout your « —
(first, second, etc., automobile)

1. Is it owned by somebody living here?

Auto No.

Auto Nn.o—@

Auto No.

1) Yes
2] No (Go 10 0. 3}

1] Yes
2 JNo(Go @ 3)

1] Yes
2[JNo(Go100.3)

. Was it purchosed new or used?

2

In what month and year was it bought?
(Examples 10767, 04/68)

.

1 [ 7] New
2 [ JUsed

1 ) New

1 [T] New
2 ) Used

3. About how many thousand miles was it
driven during the post 12 months?

Miles (T housonds )

)

Miles (Thousands)

Miles ( Thousands)

1 T ] Yes — Entrre tep

2 No (Go 1o next
= outo or Sec. i)

2 T No (Go to next
o

to or See 1)

4. s i1 used o1 leost once o weeh in 1 ] Yes — Enure trip [+ [ Yes ~ Entire teip
going from home to work? 20 ]Yes — Port-way |2 [C] Yes — Parteway |2 CJYes - Part-way
3 [[)No (Go to next 3 ] No (Go 1o next 3 (7] No (Go to next
aufo ar auto ot outo or
Sec. 1) Sec. i) Sec. !l)
5. How mony people are usuolly in the automebile Number Number Number
going to work, including the driver?
CODE KEY ————g- | | = Commercial parking garage or lot 5 — On the street
2 —- Employer provided space 6 = No all day parking used
3 - Fringe parking 7 = Other
4 — Other ot or garage
6a. Whot type of porking facility is usvolly used
far the trip 10 work — the employer's lot, o
commerciol lot, on the street, or what?
i code 6 go 1o next auto or Sec 1
b. Is there o cost for porking? t [ Yes 1 Yes 1 7] Yes

2 [} No tGo 1o nex*
aufo or Sec. 11)

w (1) murle he g}
1. During the post 3 months has . .

business district of principally 1o shep?

. gone to the main

2[" INo

. 2] week
3 [JMonth

1) Yes

2 | No

Section 1l - SHOPPING
ASK for SMSA residents only = 1 6r2 os second digit of identilication code
Now we ore interested in where people shop -~ .
(Ask 1 ami, fow (1) wile or (2] fnmalte head 1 L) Yes —o How many times? (Go e C 3)

2. Whot were the recsons for not shopping there?

{Mari all boxes that oppiy!

locally
2 [C]) Too far away

3 [] Otfficulty of
parking

1 | | Goods svailable

4[] Dificutty of driving
in congested area
s "] No automobile

6 [ ] Other = Specify ]

3. How far is it from home to the nearest
public tronspertation line 1o ge to the

2 [} 1-2 blocks

' {71 Less than one block

4 T 10ver 6 blocks (over % mile)

s ] No public transportation

main business district of (less than % mile) available
» ] 36 dlocks . Lives in main business
(% ~ % mile) Ll distoict
Nete Fill ing poges for keusehold members S peors old or aver, .
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Section IH{ - TRAVEL TO WORK

1. Lme No? [2. CHECK ITEM
v [C] This person s |16 years old or alder and has an entry in Control Card question 16b
{Fill in Sac 1l IV ond V as applirobir)
x [ All others (Fiil in Sec. IV and V as onolicable)
We are interested in where people work 1 ] Yes —== What city?
and how they get to work, 2[JNo
3. ls the place where . . . works located in @ city? 13 Don't know Seare?
4. How for is it iom home to the place where B 1x (] No fixed place
... works? (Actual travel distance} 2x ] At home (Go to Sec 1V)
Toll mile) ax [ Less than % mile (S blocks)
5. How much time is usuolly required for . . . to get to Minutes
work from the time he leaves unttl he orrives at work?
6. How does , . . usually get to work? 1 [] Bus or street car & [ ]Motorcycle
2 [ Commuter train, subway, 7 [ Walk only {Go 10
(Mark il opproprate brses) elevated, etg: Q. 100)
3 ] Automobile — with other 8 [ Other — including
persons bicycle — Specify
4 T | Automobiie — alone 7
s [ ] Truck
7. How for is it from home to the neorest public 1 C_‘| Less than | block [} [j Over & blocks
trensportation line that . . . uses (could use) 21 to 2 blocks (over s mile) ) (Go 1o
10 get to his place of work? fite man i mite) 5 ) None avaiiabte) 9 109)
3] 3 106 blocks
(% to %1 mile)
fAsk f baxes | and/nr Z = is not marked 1in O 6) 1 [} None svailable & [] Too crowded or
2 (C7] Not conventent uncomforable
8. Whot is the reasen . . . does nol use public to get to 7 [ ] Takes too long
tronsportation to go to work? 3 (] Not canvenient to 8 ") Need suto for work
Anything else? place of wark s [ Othet —Specfy
{Mark ol! hawes that appls) 4 [ 7) Too many transfers 7
s [ ] Too expensive
(Ge 10 100)
(Ask of pithes bax | or J = s marked in O 6) v ] No driver's license 7 [ No driving strain
2 [__|Na car available s [ ) Faster
9. Whaot is the tecson . . . uses public 3 [ ) No car pool available 9 [} Other - Specify
transportation to get to work? o C] Cheaper than auto 7
)
Anything else? s [ 7] Safer than auto
' i
{Mart o't howes thot opnlv) & 1 No parking problems
(Asi for persons .| years old or older] V[T Yes 3 [ J Not working S years ago
10c. Does 2] JNo {Go 1o Sec V]
b. Does . . . live ot some location os 5 yeors ogo? 1] Yes 2{]No

¢. Compoared with the time i1 took . . . to get to
work 5 years ogo, is the time to work

1 [C] About the same as 5 yeors ago
2 [} At least 10 minutes more

3 1At leost 10 minutes less

Section IV ~ DRIVER INFORMATION

{Ask for licensed drivers anlyl

About how mony thousonds of miles did . drive
during the post 12 months, including driving o3 part of work?]

1 71 None s [ ]15.000 — 19,999
2~ | Under 5,000 67 7)20.000 — 24,999
307 5.000 - 9,999 3 725000 - 29.999
] 110,000 — 14,999 [] Ej}o 000 and over

Section V — TRAY

EL TO SCHOOL

ALk Se- V4o geeann 5218 years old!

Now | would like to ask some questtons obout
transportotion to school .

1. Last Moy wos . . . attending or enrolled in school? 1| Yes 2 [ No ’Ga 1o Sec. Vi)
2. Was it a public or private school? 11 | Public 27 Private
fsrade Poter 00 Lo b nde pareer
3. Whot grode was . . . attending? R N R T
4. About how many miles was 1t from home to . . .8 school? Miles
T e, e e o gt T
Minules
5. About how long did it take . . . 1o get irom home to school?
6. How did. .. usually get 1o school? 1 [ | School bus — No charge 1Go to Sec Vi)
2 F "1 Public transportation — No charge
IMark arly ane bax) 3 [ 1Schoo) bus — Charge
4 {_ 1 Public rransportation — Charpe
s [ |Walk, bicycle
6 [ 1 Automabiie = Deiver (Go 100.7)
7 [ ] Automobiie - Passenger
8 [ Mororcycle
9 [ ] Other
7. Was hee schesl bus or free public trenapersation sveilable? |1 [ 7] Yes Y 2[ INa
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4 Section VI - TRAVEL DAY REPORT
a.Line [ b, Age [c. Sex d. Employment status e. Occupation f. Retired [g. Licensed driver
No. 1 [ Mate (C.C. 16a) (C.C. 16b) Code {C.C. 19
(c.c.ny
2 [] Femate '] Yes 2[)No 1[JYes 2["|No

Now | have some questions about the trips token on
e or some form of public [
lunch by outomabile would be o second wip,

another by motor vel
be one trip, going

For

Reference day 1 from 4 00 a.m. 10 3:59 a.m. the following day

. A trip is enytime you went from one ploce to
geing to work by autemobile would
returning to work from lunch would be o third rip.

1. 0Oid... go ony place ot t 7] Yes — One or more trips not previously reparted (F (i columns)
onytimeon______ ? 2 [ ] Yes — Al previously reported l (6o 1c 0. 1 do}
5 .o
20N @r " ) ®
2. A1 whot time did . . . star Teip1 7 Teip2 P Tripd Tripd P
the (181, next) trip he took
on ? . '[Jam. . 'Jam s '[DJam . 1Oam.
2 Je.m. 2 Jo.m. 2 Jp.m. 2[Jo.m.
3. How foris l:' from whers . . . Miles Miles Miles Mites
started 1o where he went? Y Less o
0 _JLess thann (] Less than ¥ (] Less than ¥ ] Less than ¥
mile (5 blocks) Dmule (5 blocks) Dm-le (S blocks} L_'l mile (5 blocks)
4. How long did it 1ake te V)5 min. or ) 15 mun. or 1 15 min. or 1 15 min. or
et there? fess - less tJ less - less
2[7116-30 min. 2 []16-30 min, 2] 16-30 min. 27} 16~30 mn.
3113145 min. 3 [} 3145 min, 3] 3148 min. 3] 3145 min.
4]46 min.—~1 hr, 4[] 46 min.—1 hr, 4[] 46 min.—| hr, 4] 46 min.=ihr.
s{T]Bet. | and 2 hrs.|s ) Bet. 1 and 2 hrs.|s C)Bet. t and 2 hrs.{s [C18Bet. 1 and 2 hrs,
6§ }2hrs. ormore  |g Cl2hes. ormore 6 [ )2 hrs. or more [ {T12 hes. ar more
CODE KEY —— |!. To work 5. To school or church 9. Pleasure driving
2. Butiness, other then to work 6. To doctor or dentist 10, Other socisl or recreational
3. Shopping 7. Vacatien I1. Other
4, Other family or personal B. Visit friends or Return hame (reclassifica-
5. Whar wos the moin reason for business relatives tion required)
this trip? . Trip 1 Trip 2 Teip 3 Teip 4
(H returrs home'* enter the moin
purpose of the outgoing tripfs], Code Code Code Code
olus "'P H."") (Enter one code.)
6. o oddition te , . . did
“y": .:Iu living here go on 0 [C] No others 0 ] No others 0 (7] No others 0 [ No others
this wip? (List line ny mbers Line numbers Line numbers Line numbers Line numbers
of other householid members
5 yeors old or oider who
went on this trp.)
CODE KEY ———=- ||. School bus 5. Airplane 9. Motorcycle or motor bike
. Other bus and/or street car 6. Taxi 10. Truck (including pick-up)
3. Elevated or subway 1. Automabile ~ Driver 11, Other
4. Other train 1\ B.'Automobile — Passenger
>
Trip | Teip 2 Teip 3 Tein 4
7.  What means of transportation Code Code Code Code
were used for this tip?
{1 mora than one & 1l mayor 1l code 15 only (1f code 1=5 oniy {if code 1=5 only (1f code 1=5 only
means ) go ta O goto Q. 13} go to Q. 13] go 10 Q. 13)
8. Wos public transportation far this | ' [L] Yes VD ves V] Yes V) Yes
trip avoilable within 6 blocks 2] No 2[]No 2 INo 2} Ne
Y2 mile)? 3 7 ] Don't know 3 "] Don't know 3 ] Oon't know 1] Don't know
(Complete questions 912 Automobile No. Automobile No. Automobile No Automobile No.
crie 7 or Rwos enternd 1 Q71
9. Whot gutemobile wos used? |- - d o _____J_ L ____] e
{7IGH!CIle automabile or or or or
aumber fram C C ) s {1 Not an aute s ("] Not an aute s [} Not an nute 9 [T] Not an aute
Tisted on histed on hsted on lrsted on
the C.C. the C.C. the C.C. the C.C.
10. Who drove the cutomabile Line No. Line No. Line No. Line No.
for this trip? (X3 Not a house- 59 Not a house-  [o9 Not 8 house- (1] Not 8 house-
- hold member tl hold member = hold member = held member
11, Was parking free for this 1ip? 17 Yes t [ Yes t ] Yes t [ Yes
2[JNo 2 JNo 2{No 23 Na
3 ) Dvd not park 3 [] Dvd not park 3 [} 0vd not park 3 ) Dvd not park
4 ("] bon't know 4" ) Don't know 4[] Don't know 4[] Don’t know
12. Mow many people were in the
outomobile including the driver? Number Number Number Number
[tk donle « Halaon urter Sinrdl 0[] Don't know o[ |Don’t know o[ ]Den’t know 0 ) Don’t know
13. Did... go anywhere else V[Tl Yes — One or 1 [C] Yes — One or t[] Yes — One or 1] Yes - One or
on more trips not more trips not more trips not more trips not
recorded (Gn recorded (Gin recorded (Gn recorded /G0
to next colimn) tn next cntumn) tn nrxt ¢ nlumn) to next calumn)
2[7] Yes — Mo | 217] Yes ~ Go |2 Yes — Go |2 Yes — Ge
Al trips { 1m0 All wrips o DAH treps 1n All trips 73
recorded § O recorded { Q. recorded 0. recorded ( C
1[I No 145 |5 )No 14a| 3 [ No 4o 3 [ No ldo
140. Duting the 7 doys ending (the ' [ Yes — One or more trips not previously reported (Go 1o 14b)
day before travel day) ___
] 2] Yes - All wips previously reported Full Sections Hi=VI for next
2y [ Mo person 5 years oid or older
b How many such trips ended L
. during the 7 duoys? {Go to Sec. Vi)
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Sections I-VII of the gquestionnaire, skipping the sections
which did not apply. On subsequent trips to Group I house-
holds, those first interviewed in April, only Sections VI and
vII, which recor( specific trips, were completed.

For work trip data, the relevant information is on
the control card and in Sections I, III, IV and VI of the
questionnaire. The information from Section III, Travel
to Work, and Section VI, Travel Day Report, are stored in
separate computer files, and it is relatively expensive to
merge the two files. The Travel Day Reports form a
statistically proper sample, for they record actual trips
rather than general patterns of behavior. Given the same
sampling process, a collection of different individuals'
impressions of their usual trip-to-work, as is done in the
Travel to Work section, is likely to be less representative
of their aggregate behavior than the collection of records
of their actual worktrips in the Travel Day Report. Alter-
natively, the Travel to Work questionnaire gives more de-
tailed information about access to public transportation and
parking costs. Transit access time is one of the most im-
portant variables in making a mode-split prediction and changinc
the cost of parking is potentially one of the most important
transportation controls. It was decided to use the Travel to
Work section, reasoning that most people do have fairly accu-
rate impression of their trip to work, and that the bias intro-
duced into the sample would not be significant.

The disaggregate work trip mode split models require
information about the various modes available for the work
trip (access time, linehaul time, cost) and socioeconomic
variables (income, auto ownership). To construct a work
trip mode split data base, the following information was
obtained from the NPTS files: (1) distance to work in miles



for the mode actually chosen (Section III, question 4);
(2)time to work in minutes for the mode actually chosen
(III, 5); (3) usual choice of mode for the work-trip (III1,6);
(4)distance to public transportation in city blocks (III,7);
(5) parking costs, if any (I, 6b); (6) auto ownership (control
card, p); and (7) income (control card, P).

Before the Bureau of the Census released the data from
the survey, the geographic identity of each PSU was masked.
Only the region of the country and certain population
characteristics of the PSU are reported. A reasonably
successful effort was made to decode the demographic data
and identify the urban areas of the various PSU's. Forty-
three distinct Standard Metropolitan Statistical Areas
(SMSA's) containing 56 PSU's have been identified, in-
cluding 22 of the 24 SMSA's with more than a million in-
habitants -- although some identifications are somewhat

tentative. The PSU/SMsSA identifications are made in detail

for the households identified in April (Group I) and

August (Group II). There is not a perfect overlap of PSU/SMSA's
identified in each of these two groups. Of the approximately
3000 households in (Group I)961 are contained in identified
PSU's; in (Group JIJ 971 are in identified PSi's.

The method of locating a PSU is straightforward. The
data from the survey is stored in two computer files: one
file contains the information about travel patterns; the
other contains specific trip records; the socioeconomic
data is in both files. Each household and every individual
is represented in both files. .To decode the PSU locations,
the file containing the trip records was used. In the
file, six population/location items appear for each house-
hold:

1) geographic location (the country is divided into

9 regions);




2) urbanized area (if the household is or is not
in an urban area and 1960 size);

3) SMSA (if the household is in the center city of
the SMSA, not in the center city but in the SMSA,
or not in the SMSA);

4) 1960 SMSA size;

5) type of place (if the place which contains the
household is an incorporated area, or the center
city of both an urbanized area and/or SMSA, etc.); and

6) 1960 place size.

These six pieces of information are used to determine the
possible SMSA's that the household, and thus the PSU, are
contained in. If only one SMSA fits the appropriate
criteria, this identifies the location of the PSU. The
entire PSU is contained in this SMSA, for PSU's do not
cross SMSA borders.

Additional assumptions are made to identify some
SMSA's. On the basis of the criteria outlined above, Chicago/
Detroit and New York City/Philadelphia are two sets of
indistinguishable pairs. Chicago was separated from Detroit
by noting that Chicago has a rapid transit system and
Detroit does not; a distinction between the two cities was
made by comparing the choice of mode for the trip records
in the appropriate PSU's over the 5 interview months. In
Pennsylvania and New Jersey the definition of some types of
suburban communities is different than the definition in
New York State. This distinction was used to separate the
New York City and Philadelphia SMSA's. Other less signifi-
cant pairs were separated by other, sometimes more tenuous,

techniques.



APPENDIX B
REPORT OF INVENTIONS

As a result of the work performed under this contract,
improvements in models and procedures for quick evaluation of
transportation policy options for urban travel behavior were
achieved, as described particularly in Sections 2.1, 2.2, 3.1,
and 3.2

B-1/B-2







