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PREFACE

The problem of the "Analysis of Shock Wave Phenomena for Free-
way Control" was undertaken as part of an overall freeway-corridor
traffic improvement program. Our part of this effort is to under-
stand how disruptive shock phenomena occur on the freeway, what
happens to vehicles as a result and to initiate a study into devel-
opment of a traffic control system aimed at keeping traffic flow on
the freeway optimal. Our efforts toward understanding disruptive
shock phenomena was reported in a study done on the lane blockage
problem, "Freeway Traffic Flow Following a Lane Blockage." 1In
this report, we present our findings to date on the traffic flow
modification part of the problem, namely on the problem of mini-
mizing the total travel time in the freeway-corridor system,
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1, INTRODUCTION

The problem we address is that of maximizing the output flow
in a freeway system or equivalently, minimizing the total travel
time in the system. In Section 2 we discuss this optimization pro-
blem using a steady state assumption and point out its limitations,
such as not allowing reaction to continuously changing conditions
and not allowing a time varying ramp metering rate.

To allow for these, non-steady state or dynamic modeling must
be considered. We do this in Section 3, first considering the
single lane tunnel roadway using a continuum approach. The pro-
blem is to minimize the total waiting and travel time in the
system, queue plus tunnel, during the time of interest. To do
this the integral of the cumulative output flow must be maximized.
The output flow is determined from the initial state of the tunnel

and by the chosen entrance flow control.

First, the usual continuum equation with zero reaction time
is used; then, the new non-zero reaction time model is used to
obtain the vehicular output flow and vehicular concentration. It
is shown that the zero reaction time model leads to unphysical
results. It is therefore not used subsequently in the analysis.
Instead the analysis proceeds on the basis of the finite reaction
time model which takes account of non-instantaneous driver re-
sponse. The problem is to find a vehicular flow rate or concentra-
tion which maximizes the integral of the cumulative output and
which can be practically used as an entrance control. This pro-
blem is approached by discretizing the continuum equation, the
criterion integral and by imposing certain required physical con-
straints on the flow.

A rather simple discretization is presented which allows the
optimization to be done analytically and therefore, illustrates
the ideas clearly. The continuity equation is discretized and
solved subject to a constant entrance control. This yields the
value of the concentration at the exit at any time in terms of
the concentration which existed at the exit at the initiation of



the control and in terms of the entrance control concentration
itself. It is shown that if the entrance control concentration is
less than the steady state optimal concentration, then the pre-
dicted concentration at the exit due to the institution of the
control will approach the control concentration with time, as it
should. More specifically, after one reaction time unit following
the initiation of the control, the exit concentration approaches
the control concentration by some specific amount. This is to be
contrasted with the steady state result which predicts that the
exit concentration becomes the same as the control concentration

immediately.

For the case when the control concentration is greater than
the steady state optimum concentration but is less than the initial
exit concentration, there is an exponential increase in concentra-
tion indicating a stoppage, since the entrance flow in this case

is larger than the initial exit flow.

The preceding rather simple discretization of the basic con-
tinuum equation is then replaced by a somewhat more accurate one
in which an integral formulation of the continuity equation is
presented. The equations are discretized by means of quadrature
formulas and solved subject to given initial and boundary condi-
tions. From this analysis we determine the interrelationships be-
tween different initial concentrations at the exit and different
controls at the tunnel entrance and their effect on the stability
of the traffic flow.

Following this non-steady state analysis of the optimization
problem, we compare it with the steady state model. We indicate
how the dynamic analysis may be considered as a higher order
approximation to the steady state model.

Finally, in Section 4, the dynamic analysis is extended to
a single lane freeway using an expanded version of the finite
reaction time model which accounts for varying capacities along
the roadway and which is formulated for inclusion of entrance and
exit ramps. Diversion of traffic to the surrounding streets is

taken into account.



2.STEADY STATE FREEWAY MODEL

The steady state freeway model1 is a potentially useful model
for the development of a peak period metering control system
designed to keep total flows less than or equal to freeway capa-
cities. The model assumes that the freeway can be divided into
sections, in each of which the flow rate is constant over distance
and time. It is assumed that section k has a fixed capacity B
which is the maximum flow rate possible through the section. If
the flow rate into a section is less than the capacity of the
section, congestion is assumed not to occur and steady state will

prevail.

Using this steady state model, the optimization problem may
be outlined as follows. We assume that the number of vehicles in
the freeway does not change with time (in the absence of congestion)
so that the total input rate of vehicles entering the freeway (from
the queue) summed over all entrance ramps must equal the total
output rate. If q denotes this rate, then the cumulative output
at time t is qt, and we want to maximize

T
JEE R (1)
0

which is equivalent to maximizing q,3 (See also Appendix A).

Let X. be the metered input rate of flow (from queue at ramp
onto freeway) at entrance j. We want to maximize

n
a= D X - (2)
j=1
Note that we are assuming the rate of arrival D, of vehicles in
the queue at entrance j is invariant with respect to Xl,...,Xn.

The optimization is done under several constraints, for
example



0 < Xj < Dj (3)
which states that the metering rate cannot exceed the rate of
arrival of vehicles at the ramp. Note that if Xj < Dj’ there will
be a steady increase in queue length on the j th entrance T amp
during the time period in which the analysis is carried out. The
analysis is still valid in such a case since the number of vehicles
on the freeway remains constant, even though it is accompanied by

an undesirable increasing queue.

Another set of constraints is necessary to prevent the flow
into a section from exceeding the capacity of the section. Let
Ajk be the ratio of the number of vehicles which enter at ramp j
and pass through section k of the freeway to the total number
entering at ramp j. We can now express the flow through section
k as

n
> Ay X5
i=1

where we sum over all entrance ramps from which vehicles can
reach section k. The capacity constraint is then

n
Z Ajp X5 < By, k=1,...,m . (4)
j=1

Note that Ajk is assumed constant in the time period in which the
aralysis is carried out, and would be determined by observation.

This constrained optimization problem can be solved by the
methods of linear programming. Additional constraints could be

added, as discussed in Wattleworth's article.1

If the capacity of
a section is reduced due to an accident, for example, the linear
programming problem can be solved using the reduced steady state

capacity resulting from the accident.

However, the important limitation of this method, in our

opinion, is that it does not allow reaction to continuously



changing conditions which require a ramp metering rate which varies
with time. We therefore devote the rest of this report to consider-
ing an optimization method which is based on the principles of

traffic dynamics.



3, TUNNEL OPTIMIZATION CONTINUUM MODEL

In treating the optimization problem dynamically, we first
restrict our analysis to the single lane tunnel roadway and use a

continuum model of the traffic dynamics.

We assume that the rate of arrival D(t) of vehicles into the
entrance ramp queue is invariant to the ramp metering rate, and
denote the vehicular flow and the vehicular concentration at point
x and time t by q(x,t) and K(x,t), respectively. The tunnel

entrance is located at x=0, the exit at x=L, (see Figure 1).

We would like to minimize the total waiting and travel time
in the system queue plus tunnel between time 0 and time T. Or as
shown in Appendix A, we wish to maximize the integral of the cumu-

lative output at time t, where

t
0(t) / q(L,t')de (5)
(o]

T T t
/ 0(t)dt =// q(L,t')dt"' dt (6)
0 0o ©

The exit flow q(L,t) is determined from the initial state of the
tunnel at time 0 and from the chosen entrance flow q(0,t).

The constraint on the choice of entrance flow q(0,t) is

t t
j[ q(0,t')dt' < ng +./f D(t')dt' , t >0 (7)
0 )

which assures that no more vehicles enter the tunnel than have
arrived at the entrance ramp. Here n, is the number of vehicles
present at the entrance ramp queue at time t=0. The number of

vehicles which have entered the queue between time 0 and time t is
t

f D(t') dt!

o
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while

t
j[ q(0,t')dt’
[o]

is the number of vehicles which have entered the tunnel from the

queue between time 0 and time t.

We now proceed with the optimization problem, first with the
standard continuum equation that leads to the formation of shock
waves, and then with the equations of traffic dynamics containing
a finite driver reaction time.

3.1 ZERO REACTION TIME MODEL

The continuum equation is given as

3K 3K _
s 1n(Kj/eK) 3 0 (8)

where K. is jam concentration and Greenberg's log model has been
assumed, with flow and concentration related by the equation

a6, ) = c K(x,t) 1n[ky/K(x,0)] (9)

The criterion to be maximized, therefore is

T t

j[‘j[ K(L,t") 1n[Kj/K(L,t'ﬂ dt' dt. (10)

[o} [¢}

We must determine the dependence of K(L,t) upon K(0,t) and
upon K(x,0). This may be obtained from the characteristic lines
of the partial differential continuum Equation (8) determined from

dx

TR (G 7eR) =dt ; dK = 0 . (11)

Hence, K is constant on a characteristic line and we have

x = [c ln(Kj/eK)]t + D (12)



as the set of characteristic lines, parametrized by constant K and
D. The time t, of intersection of the characteristic through
(0,0) with the line x=L is just the time it takes a control initi-
ated at the tunnel entrance to affect traffic at the tunnel exit.
For times t<t the vehicular concentration at the tunnel exit,
K(L,t) would be determined by its initial value K(x,0) while for
times t>to, K(L,t) is determined by the concentration at the
tunnel entrance K(0,t) which in turn depends upon the entrance
ramp metering control. The optimum solution is for K(L,t) =

K./e for t>t0; however, this would require vertical characteristic
lines of the form x=L (see Eq. (12)), which cannot be generated by
specifying boundary values at x=0. The optimal solution would
then be

K(L,t) - Kj/e as t-ww (13)

with

K(0,t) = Kj/e for all t > 0 . (14)

The characteristics which produce this optimal solution are illus-
trated in Figure 2. The slope of the characteristics dt/dx at
(L,t) approaches «» as t+». This configuration is produced when
the concentration at the tunnel entrance K(0,t) is changed sud-
denly from K(0,0) to Kj/e. But K(L,t) for all t>t is determined
by these values of K(0,t) at the entrance. For the behavior of
K(L,t) to be determined by the values of K(0,t) over an infinites-
mal interval of change from K(0,0) to Kj/e is not physically
meaningful and hence it is unproductive to continue with this
standard continuum approach which neglects the finite reaction
time of drivers, leading to the unphysical result.

3.2 FINITE REACTION TIME MODEL

If the driver's reaction time is taken into account, a more

meaningful result is obtained. Letting T denote the reaction

time, we use the following equation of state2



Figure 2. Sketch of Characteristics Producing
Solutions Given by Equations 13 and 14
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q(x,t) = ¢ K(x,t) 1n [Kj/K(x,t-T)] : (15)
Substituting this into the continuity equation

9K (x,t) ag(x,t) _
5t * 3x 0 (16)

we obtain

9K(x,t) 3K
.___);.12;__ + c ,:_BY (x,t) 1n {Kj/K(X,t-T)}

; %%)T—) 2 K(x,t--r)jl - (17)
Because of the finite time lag in the equation, an initial condi-
tion must be specified over an interval of one reaction time. We
specify the concentration K(x,t) for positions anywhere along the
roadway, 0 < x < L, and for times - T <t <0, which is the
interval over which the condition must be specified.

The problem is to find an entrance control K(0,t) for times

0 <t < T such that

T t T

t
K.
// qg(L,t')dt'dt = C/ K(L,t') 1n ﬂL—ﬁ dt'dt (18)

© © o o
is maximized, subject to the constraint

t t
/q(O,t')dt' ino + / D(t")dt', t > 0 (7)
[e}

[o)

which, again, states that the number of vehicles which have enter-
ed the roadway from the queue between time t'=0 and time t'=t can-
not exceed the number of vehicles that were in the queue at time
t'=0 and the number which have arrived there since then.

In addition, we may also specify feasibility constraints on
the concentration K(x,t) such as

11



0 < Kmin

< K(x,t) < Kj

where the lower bound Kmin is used since according to the log model

we are using, the velocity of the vehicles approachs infinity as

K-0. K .
mi

interact in accordance with the car following model.

n is the lowest concentration for which the vehicles

We may also set an upper bound on the derivatives of K(x,t)
since in reality the distance and time headways are finite, and a
solution for K(x,t) which changes too rapidly with distance or
time may not be physically realizable.

The problem of finding an optimal extrance control then can
be solved by discretizing the partial differential equation, the
criterion integral, and the additional constraints in accordance
with some grid over time and space. Initial values for K(x,t)
for 0 < x <L and - 7 <t < 0 would be specified at grid points
based upon observational measurements.

3.2.1 Estimating K(L,t)

If we consider the following crude approximation to Equation

(17), we can analytically determine the behavior of the resultant

concentration at the exit, K(L,t)

K,
3K (0, t) K(L,t) - K(0,t)
5t © [ ? 1“%K(o,%-r)i

- K(0,t) (K(L,t-r) - K(O,t—T))//K(O,t-T)L] =0 (19)

where we have used the approximation

3K(0,t) . K(L,t) - K(0,t)
9X L

If we solve this approximated continuity equation, subject to
the boundary condition

K(0,t) = KO = constant (20)

,which is used as the control at the entrance x=0

12



we obtain

-1
K(L,t-
K(L,t) = XL : Ti) + Ko[l - {ancxg/x)} ] : (21)
This sequence is of the form
a =ra + s ; 1T = 1 ; s = K |1 - 1
n+l n ’ lanj7K05 ’ 0 lncKj7Ko
a = K(L,nT) (22)

The general term is

n n-1 n 1-r"
a, = Ta * <r +"'+1)s =ra, *t |y (23)

which can easily be seen from the first few terms in the sequence.
Hence, we have

K(L,nt) [lnlzlij;ii)]n |1 - En(Kj/Ko)]n K, (24)
If,
Ky < Ky/e, 0 < [ln(kj/l(o)]-l <1 (25)
then,
K(L,t+#n1) > K as n > = (26)

The difference between the initial value of the concentration at

the exit, K(L,0) and Ko decreases exponentially with time.

However, for

K =K./e (27)

we have that

ln(Kj/Ko) =1 (27a)

13



so that,

K(L,nt) = K(L,0) for all n. (28)
For
1
KJ/e < KO < KJ, 0 < ln(KJ/KO) <1, WW > 1 (29)
we have
K(L,0) - K_
K(L,nt) = + K . (30)

[tragre]™ e

The difference between K(L,0) and K0 increases exponentially with
time.

We thus see that this particular discretization is valid for
t+~ only when the control K0<Kj/e, since unphysical results were
obtained in the other cases. For the case when the control
K0<Kj/e, the discretization predicted that after one reaction
time unit following the initiation of the control the tunnel exit
concentration had become closer to the concentration Ko’
specifically

K(L,0) - K,
K(L,T) = TR 7KS) + K, (31)

the initial difference between K(L,0) and Ko has been divided by
ln’Kj/Ko). While this is a gross overestimation of the rapidity
of the change due to a control, it is still an improvement over

a steady-state assumption which is equivalent to assuming that
K(x,t) becomes K0 immediately for all x for optimization purposes.

In the case where Kj/e<Ko<Kj’ if K(L,0)>Ko, the exponential
increase in concentration indicates a stoppage. This increase in
K is physically meaningful, since when Kj/e<Ko<K(L,0),
q(0,0)>q(L,0) since flow decreases as concentration increases
above Kj/e. In other words, the fact that the initial concentratio

14



is higher at the exit than at the entrance (and is greater than Km
where Km is the value of the concentration for which the flow is
maximum) means that the flow at the exit will be less than at the
entrance, and therefore the number of vehicles in the tunnel will

increase, causing K to increase with time.

For the case when the control K0>Kj/e but the initial concen-
tration K(L,0) is less than Ko’ Equation (30) predicts that K(L,t)
will exponentially decrease without bound. This also has some
physical meaning if K(L,0) is not too small, since then there
would be a higher flow at the exit than at the entrance,
q(L,0)>q(0,0) and more vehicles would leave the tunnel than enter.
Consequently, K would decrease.

We note, however, that whenever K0>Kj/e and K(L,O)#KO the
result for K(L,t) cannot remain valid as t+» since in fact K does
not increase or decrease without bound, rather 0<K<K.. However,
choosing KO>K./e would not be optimal in general due to the stop-
page waves which could occur and in practice we would not con-

sider this control.

3.2.2 An Alternative Discretization

The preceding method of discretizing Equation (17), is not
necessarily the most accurate one; it was chosen because it was
easy to work with analytically and made the application of the
optimization procedure clear.

Another technique is to start with an integral formulation
of the continuity equation. Consider a grid where the tunnel is
partitioned by a set of points xo=0, XqseeeXp 75 xn=L, and time is
discretized by ceest g to’ tis thy... The number of vehicles
entering the section of the tunnel between positions X5 and x.

i+l
during the time interval [tj’tj+1] is the integral of the flow at

tj+1
/ q(x:,t)dt
t 1

j

X.
1

15



The number leaving the section is

tj"'l
.{f q(xi+l’t)dt.

J

The net change in the number of vehicles in the section between

time t. and t. is therefore
j j+1

tj+1
[ [atp0) - atgga0]ar
J
This quantity can also be expressed as the number of vehicles in
the section at time tj+lminus the number at time tj

J X.
i

Fi+1 Xi41
/ K(x,t,,;)dx - / K(x,t5)dx,
X.

1

Hence, the continuity equation can be written as

X.
tj+1 1+1
/P [q(xi+1,t) - q(xi,t)]dt +./r [K(x,tj+l) - K(x,tj)}dx = 0,

t. X.
J . (32)

If we divide by (t.+1-tj)(xi+l-xi) and take the limit as
(tj+l-tj) + 0 and (xi+l—xi) + 0, we obtain

However, it seems more direct to discretize the integrals directly
by means of quadrature formulas than to reduce to differential
form and approximate the derivatives by difference quotients.

Applying the trapezoidal rule to both integrals in Equation
(32), we obtain

16



[q(xl+1’t') - q(xi:tj) + q(xi"‘l’tj"'l) - q(xi’tj"'l)] (tj+1_tj)

+ [K(xi’tj+l) - K(X :t) + K(X1+1’ j+ 1) - K(xi+1:tj):| (xi"'l-xi)
(33)
Substituting the equation of state

q(x,t) = cK(x,t) ln<Kj/K(x,t-T)> (15)

into Equation (33) we obtain

K,
- ] -
c(ty,q-ty) {K(xi+l,tj) 1n[K(xi+1’tj‘T)] KOxp,t5)

K. K.
j ]
'ln[k(xi,tj-r)] MRS CEFEPLITED 1n[K(x r)]

1+1’
X
- K(x.,t.,..) 1n
i?7j+1 [K(xi,tj+l-r) }

+ (xi+1-xi)[K(xi,tj+l) - K(xj,t5) + K(x,

i+108541) 7 Kixgt ﬂ
(34)

If the grid points are evenly spaced so that x. .-x. = h and

i+1 i X
tj+1-tJ h for all i and j, we may write the equations as

K. h

J _ X
K(xi+1’tj)[in{K(xi+1,tj-TT‘ htc]

K, h.

+ K(xl"'l’ J+l) [1H§K(Xl+1, ‘T) ‘ ]

17



K. h
+ K(x.,t...) [- ln{ l % + X ] = 0. (35)
i’ 7j+1 K(xi,tj+1 T) htc

In order to solve this equation, suppose we first choose a
coarse grid, x; = 0 and x. i+1 = L, note that the equation is satis-

fied by a constant, and take as our initial conditions

[
=~

K(0,t)
° , (36)

K(L,t)

|
-~

The control provides the boundary condition

K(0,t) = K_, t > 0. (37)

Substitute Equations (36) and (37) with the grid x. —O, X441 L into

Equation (35). After some algebraic manipulation we obtain

K(xg,q0t5,0) = K(xg,;,t ;)

24X 1n(X. /K Kap0t5) 1 > 4 .
. - +
o (65 7%o) : KoL) K("i+1’tj+1'Tj>

X 7
In i + X
K(x;, st i FRED) h c . (38)

For j=0, to=0, t1=ht’ we obtain

, [K In(K; /K ) - KyIn(K, /K ﬂ
K(L,he) = Ky o+ 1n(K /Kl) + h /P c » 0she<T (39)

as the concentration at the tunnel exit after an interval of time

ht’ Now suppose

Klln(Kj/Kl) = Koln(Kj/Ko) (40)
so that X(L,h )=K I£f K #K /e, two values of K will satisfy this

equation 51nce the functlon K ln(KJ/K) is 1ncrea51ng when K<K /e
and decreasing when K>K /e
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4 >0, K < K./e
e ¥ 1n(Kj/K):l = In(K/K) - 1o g g, K;/e _ (41)

Referring to Figure 3, we see that K1 could be either of the two
points indicated on the q-K curve, one when K exceeds Km and the
other when it is less than it.

In order to solve the equation, we can now repeat the preced-
ing steps, since we again have a boundary condition at x=0 of Ko
and K(L,ht)=K1, to obtain K(L,th)=K1 and so forth. Hence, we
have K(L,t)=Kl for all t>0.

If K1=Ko’ the result is sensible: constant boundary condi-

tions producing that same constant as solution.

If Kl is the other root of Equation (40), however, the con-
centration at the exit remains Kl; it will never converge to Ko'
While this would be unlikely, it does support the principle of
conservation of vehicles applied to the whole tunnel as a unit

(integral formulation of continuity equation).

We now show how the concentration at the exit changes with
time for the given control strategy, K(0,t) = Ko’ t > - 1, and
with an initial condition K(L,t) = Kl’ - T <t< 0. Weuse
Equation (39); let Ko denote the root of Equation (40) which is
not equal to Ko' Suppose KO < K./e. The situation is sketched
in Figure 4 where K 1n(Kj/K) is plotted against K. If 0<K1<Ko or
K0<K1<Kj, we see that K1 1n(Kj/K1) is less than KO ln(K./Ko),
hence, K(L,ht)>K1. Note that the denominator of Equation (39)
[1n(Kj/K1) + hx/htC] > 0 for all 0 < Kl < Kj’ This indicates
that concentration at x=L will increase with time, which is
physically meaningful because the flow at x=L is lower than that
at x=0 and hence the average concentration in the tunnel must
increase. Since the concentration is fixed at the entrance, x=0,
the concentration at the exit, K(L,t), must increase. This direct-

ion of change is indicated by the arrows in Figure 4, (K1<KO).

If Ko < K1 < Ko’ Kl ln(Kj/Kl) > KO ln(Kj/Ko), hence,
K(L,ht) < K1 causing a decrease in the exit concentration, K(L,t).
Therefore, if 0 < K1 < KB, we expect K(L,t) to converge to KO as

tro,

19



‘1T UBY3} SS8T ST 3T USYM SUQ pUuB o\ﬁx uBYyl I91B3IH SI Ty usypm euQ

‘U0T1BIJUADUO) SY3 I0F SUOTINTOS OM] 9yl JurledIpul dT3BWSYDS Y-b *¢ 2andt1g
Iy
(
CUAD |
(
X \\ oy 0
) - —@- T O—

\

mx\ﬁxu ur ¥ = b

20



C oMAx IO0J
Y 02 (3°7)Y FOo oseaIdU pue oMVﬂMvo I0J Oy ow (2°T))X JO aseaxda(
I0 9SBAJIDUJ FO UOTIDAITQ Burmoys Y snsidp (M/*X)UT Y FO dIjeWAYDdS ‘¢ 2andtg

ﬁu\wxucﬁu

21



Ky = Ko is a point of unstable equilibrium which is not phy -
sically meaningful arising because of our rather coarse approxima-
tion. For K1 > Kg, we would expect K(L,t)»~ which indicates a
stoppage. This case of positive feedback is physically meaningful
because the excessive concentration at the exit reduces the tunnel
output to below that of the input. Hence the number of vehicles
in the tunnel increases, but since the entrance concentration is
held constant at Ko’ K(L,t) must increase further.

In Appendix C another optimization method is presented in
which the K(L,t) which maximizes the criterion integral is deter-
nined and then a K(0,t) is obtained.

3.3 COMPARISON WITH STEADY STATE METHOD

We may explain here in what sense the discrete models are to
be considered as higher order approximations relative to the steady
state model. In the steady state model, we approximate K(x,t) by
a constant. This constant is determined by the boundary condition
K(0,t). Since there is no need for a continuity equation, it is
more convenient to work directly with the flow q(x,t), which is
directly related to the concentration, K(x,t). The steady state
model is optimized subject to the constraint that the flow into a
section does not exceed its capacity. This must be done since
the model cannot describe the congestion which would occur in such
a case. In the simple case of tunnel optimization, the steady
state model reduces to the problem of maximizing the flow in the
tunnel, q, subject to the constraints 0 < q < demand rate, and
q < capacity of tunnel. The tunnel capacity would be cK./e, the
maximum value of q=cK 1n(Kj/K). Hence the optimal solution would
be

q = MIN[cKj/e, demand rate]
In the discrete model following the integral formulation of

the continuity equation, we approximated K(x,t) by a piecewise
linear function spatially, and approximated q(x,t)=cK(x,t)-
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1n[Kj/K(x,t-T)] by a piecewise linear function with respect to
time. This was implied when we discretized by the trapezoidal
rule. If we divide the roadway length [0,L] into n divisions, we
need (n+l) conditions to determine K(x,t) as a function of x; for
example, the control, K(0,t) and the slope of K(x,t) over each
subinterval, assuming continuity at the end points of each sub-
interval. The boundary value, K(0,t) specifies only one of these
conditions. The other n conditions are specified by applying the
integral form of the continuity equation to each subinterval.
These equations assert that the net flow into the subinterval
equals the net change of number of vehicles in the subinterval.
It does not require that vehicles be conserved at every point of
the subinterval as does the differential form of the continuity
equation., This, of course, is not without its possible disad-
vantages, for example, if the grid spacing is large, it is pos-
sible that a jam may occur at a point within a grid space which
would not be indicated by linear interpolation between end points.
However, this would probably occur only when the initial condi-
tions are inhomogeneous, and such jams would not be predicted at
all by the steady state model which does not use a continuity
equation.

Before leaving this comparison between the steady state model
and the discrete models, we may note that K=constant is a solution
of the continuity Equation (17) so that if the control applied at
x=0 results in a solution which is so nearly constant over a sec-
tion of roadway that it can be approximated by a constant, then
discretizing the continuum equation and treating the entire section
of roadway as one grid unit, will give at least as good an approxi-
mation as the steady state solution. However, the discrete equa-

tion can also allow for small variations.

In the presence of initial conditions in which K varies
rapidly, the steady state approach is essentially a choice of con-
stant control which optimizes the flow after a sufficiently long
time interval has passed when K has become sufficiently close to
a constant. The steady state approach disregards any immediate

effects of this constant control. In reality, if we have the
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boundary condition K(O,t)=Ko=constant, we would expect K(x,t)+Ko
as t»~ for all x. If a discrete approximation to the continuum
Equation (17) satisfies this, then it should be at least as good
as the steady state model since it predicts the value of K cor-
rectly for sufficiently large t, and offers a better approximatio:
for smaller t.

In Appendix E the steady state tunnel optimization problem i:
extended to allow for a fixed percentage of vehicles to be diverte

to an alternate route.
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4, SINGLE LANE FREEWAY

We now extend the optimization problem to the case of a sin-
gle lane freeway* by means of the following modifications of the
tunnel model:

1. There are n entrance ramps along the freeway
2. There are m exit ramps

3. To account for the fact that different sections of road-
way may have different capacities, we assume

q(x,t) = C(x) K(x,t) ln[Kj/K(x,t—T)] (42)

where C is now a function of x.

4. We assume that some percentage of vehicles arriving at
an entrance ramp will divert to the surrounding streets

as a result of queueing on the entrance ramp.

Wattleworth's steady state mode1l allows different sections of
roadway to have different capacities of flow. If we assume the usual
equation of state without the reaction time, or the new equation
of state with the reaction time, the relationship of flow to con-
centration is the same for all sections of roadway. If we define
capacity as the maximum possible flow over the section of roadway
under steady state conditions, we have

qg=CK ln(Kj/K) . (43)
Hence,

dq/dK = c[in(Kj/K) - 1] = 0, when K = K, /e (44)

and the capacity is therefore CKj/e. '

*We note here that the problem treated in this section may be con-
sidered applicable also to the multilane freeway if flow, speed

and density may be averaged over freeway lanes. To the extent

that such averaging is efficacious for freeway control, the present

section may be considered as addressing the multilane freeway pro-
blem.

25



Since Kj and e are constants, one way to vary capacity along
the road is to let C be a function of x as shown in Equation (42).
While this might not accurately represent all reduced capacity
situations, it can be handled without much change to the models.
The variation of C(x) with x may be either continuous or dis-
continuous, depending on road conditions. Allowing C to be a
function of x actually modifies the car following model5 from whic
these equations may be derived, since we now have

V_ (t+7) = C(x_) 1n[(xn_1(t) - xn(t)) Kj] (45)

where xn(t) is the position of car n at time t. Differentiating,

we obtain

2
d®x_(t+T) dx_ _ dx
th - C(Xn)< d? - - dtn>/<%n-1(t) ) xn(t?

dx
v (X)) g 1n[<xn_1(t) - xn(t)) Kj] (46)

The additional term on the right hand side of the equation, not
present in the usual models, reflects the fact that if the capa-
city of the road is decreasing, vehicles will be slowing down.

Let qk(x) be the flow rate of vehicles destined for exit
k at point x, time t of the freeway.

Let Kk(x,t) be the concentration of vehicles destined

for exit k.

We are approximating the vehicles by a continuous 'fluid', which
is actually a mixture of 'fluids' bound for different exits. Thus,
we can subdivide flow and concentration according to destination.
All vehicles at a point have the same velocity V(x,t) regardless

of destination. The basic relations are:

m
q(x,t) = :i qk(x,t) = total flow (47a)
k=1
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m

K(x,t) = jz Kk(x,t) = total concentration (47b)
k=1
4 (6, t) = V(x,t) K (x,1) (47¢)

4.1 EXTENDING THE TRAFFIC DYNAMIC EQUATIONS TO ALLOW C=C(x)

Since the set of vehicles which are destined for exit L are
conserved, we may apply the continuity equation to this set of
vehicles. Formulating this in integral form and discretizing by
the trapezoidal rule, we have

qL(xi+1)’tj) - qL(xi’tj) + qL(Xi+1’tj+l)
- qL(Xi’tj+1) (tj+1'tj) + iKL(xl’tJ"'l)
- KL(Xi’tj) + KL(xi+1’tj+l) - KL(xi+1’tj) (xi+l-xi) =0 (48)

The velocity of vehicles at (x,t) is given by

V(x,t) = C(x) 1n[Kj/K(x,t-rﬂ (49)

where K(x,t-1) is the total concentration of all vehicles. The

flow is therefore,

K.
qL(x,t) = KL(x,t) Vix,t) = C(x) KL(x,t) 1n [KTiT%T?T] (50)

and substituting into the continuity equation and combining terms

gives
KL(xi+1,tj);C(xi+l) 1n[Kj/K(xi+1,tj-r)] - hx/ht}
- Ky (%g5t5) {- Clx;) 1n[Kj/K(xi,tj-T)] ; hx/ht%
K (Xypqatyey) ;C(xi+l) 1n[xj/K(xi+l,tj+l-rﬂ + hx/hti

+ K (g, ) {- C(x;) 1n[Kj/K(xiitj+1-r)] v hx/htl = 0. (51)
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4.2 PARTITIONING THE ROADWAY

There will generally be discontinuities of some sort at the
freeway entrance and exit ramps. We, therefore, partition the
freeway at these points. If x is such a point, there will be two
values of concentration at x, a left-side value K(x-,t)

= lim K(£,t) and a right-side value K(x+,t) = lim (g,t).

£E>X - E-+x+
We may further partition each section by a set of grid points for
numerical computation. Equation (51) holds when neither X; nor
*i+1

is a point of discontinuity. When there is a discontinuity
at x., flow into the interval [x.,x.

i 1+1] will be q(xi+,t). When
we interpolate concentration linearly, we use the right-side value
at Xy K(xi+,t). Thus, in Equation (48) qL(xi,t) and KL(xi,t)
should be replaced by qL(xi+,t) and KL(xi+,t) respectively when
there is a discontinuity at X . qL(xi+,t) will be determined as

a function of KL(xi+,t) and KL(xi+,t-T) as usual

K.
qL(xi+,t) = C(xi+) KL(xi +,1t) ln[K(xi 1,t-TT]' (52)

Thus, when there is a discontinuity at X5 but not at Xip1e

Equation (51) is replaced by
Ky (X5, 75t5) ;C(xi+1) ln[Kj/K(xi+1,tj-T)] - hx/htf

RGN g— Clx,*) ln[Kj/K(xi+,tj-T)] - hx/hti

" K (X t,) iC(xi+1) ln[Kj/K(xi+l,tj+l-Tﬂ + hx/hti

- K Oxgha ey, ) g- Clx;+) 1n[Kj/K(xi+,tj+l-r)]'+ hx/ht} = 0. (53)

We have now specified the equation for one grid spacing to the
right (downstream) of a discontinuity. It is also necessary to
specify an equation for the grid spacing to the left (upstream)
of a discontinuity and to specify a relation between the concen-
trations on either side of the discontinuity, that is, between
K(xi~,t) and K(xi+,t). As these relations will depend on the

nature of the discontinuity, we will discuss each case separately.
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4.2.1 Entrance Ramp

We define a number of parameters which are needed to discuss
this case.

Let yj be the location of entrance ramp j, (j=1,...,n).

Let e.(t) be the metered input flow rate from entrance ramp j
onto the freeway. This is our control variable, subject to the
constraint that we cannot allow more vehicles onto the freeway
than have arrived at the entrance ramp.

Let e.k(t) be the input flow rate of vehicles destined for

exit k from entrance ramp j onto the freeway. Note that

m

2 e (t) = es(8) . (54)
k=1

The division of e.(t) according to destination is dependent on the
relative demand rate for various destinations.

Let D.k(t) be the rate of arrival of vehicles at entrance
ramp j which are destined for exit k, (demand rate). Not all of
Djk(t) will enter the entrance ramp queue. Depending on queue
length, a fraction of the demand will divert to the surrounding

streets rather than wait in the queue.

Let P.k(L) be the percentage of demand at entrance j destined
for exit k which diverts to surrounding streets when there are L
cars in the queue. ij(L) will generally depend on j and k, as
well as L, since for short trips, vehicles will be less willing to

wait in a queue than for long trips

Let Lj(t) be the number of vehicles in queue at entrance
ramp j at time t.

The actual rate at which vehicles destined for exit k enter
the queue at entrance ramp j is

Dy (1) [l-PJ.k<Lj (t))] . (55)
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The total rate at which vehicles enter the queue at entrance

ramp j is

N =

2 D (t) [1-ij(Lj (t))] (56)

and the total rate at which vehicles leave the queue to enter the
freeway is ej(t). Hence, queue length is determined by the dif-

ferential equation

[L (t) n

z s [1P (1 )] - es o) (57)

where we assume D.k(t) and P.k(L) are known functions. We assume
the initial condition L(0) is known. We require

Lj(t) >0 for all 0 <t < T, j=1,...,n

and ej(t) > 0.

We can model the complete closure of ramp j by taking eJ(t)-O
and P, k(L) 1 for all k if we have an initial condition of L (0)=0,
51nce all vehicles would then be diverted to the streets.

Suppose vehicles arriving at entrance ramp j at time t enter
the freeway at time w.(t). Then, the total number of vehicles
entering the freeway from entrance ramp j between time t and w (t)
equals the number of vehicles in the queue at time t, since these
are the vehicles ahead of the vehicle arriving at time t.

w; (t)
j[ ej(t') dt' = Lj(t) (58)
t

This may be written in differential from by differentiating with
respect to t (the prime will indicate the derivative with respect
to t),
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e.|lw.(t wi(t) - e.(t) = L!I(t) . 59
GG HOERHO (59)
The proportioning of vehicles entering the queue at time t to
various destinations will be the same as the proportioning of
vehicles entering the freeway at time wj(t), since these are the

same vehicles. Hence,

e.k[w.(t)] ) Djk(t)[l'ij(Lj(t))] (60)
eJJ'—[W_J'J(ET k}jjl Djk(t)[l-ij(Lj(t))]

This relation determines €5k in terms of the control variable e.,
so that all parameters are now known for the problem.Equations (59)

and (60) are discretized in Appendix D.

We now discuss the freeway traffic dynamics in the region of
entrance ramp j. As sketched in Figure 5, flow destined for exit
k upstream of the merging point is qk(yj-,t) on the freeway and
ejk(t) on the entrance ramp. Flow destined for exit k downstream
of the merging point is qk(yj+,t).

Since vehicles cannot pile up at the merging point, flow in

must equal flow out, hence
qk(yj+.t) = qk(yj-,t) + ejk(t) . (61)

This is a continuity relationship, relating q(yj+,t) to q(yj-,t).

It is also necessary to relate velocity to concentration at
this point. The velocity of vehicles downstream of the entrance
will depend on the concentration downstream, hence

Vir;+.t) = Clyy) 1n[1<j/1<(yj+,t-r)] (62)

P ry*.t) = Viyy+,t) Klyy+,t)

Cry) Kby y*,t) 1n[Kj/K(yj+,t-T)] (63)
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where

m

Kiy;#,t-0) = 3 K lys+, 1), (64)
k=1

However, vehicles upstream of the entrance ramp will generally
perceive the higher concentration downstream and will adjust their
velocity in accordance with this higher concentration. Hence,

VOt = COy) In[K;/Kyge,t-0) (65)

and

qk(y:j"st) V(Yj-,t) Kk(yJ-:t)

Cly;) Ky Ory-t) In[K /K@y e, t-1)] (66)

Substituting into Equation (61), the relation between
Kk(yj-,t) and Kk(yj+,t) is

[Kk(}’:]*“:t) - Kk(yJ-’t)} C()’j) 1n[Kj/K(yJ'+st_T)] = ejk(t)' (67)

Note that flow rate and concentration have discontinuities at an
entrance ramp. Velocity is continuous at an entrance ramp, since
vehicles upstream and vehicles downstream both react to the down-
stream concentration. We may also note that with this model, the
grid spacing along the freeway should not be too fine, since we
assume that one grid space upstream of the entrance ramp, the
drivers react to concentration at that point. If this point is
too close to the entrance ramp, the drivers' reaction would in
reality also be dependent on the concentration downstream of the
entrance ramp. This fact, however, could be taken into account
in the model by allowing velocity at points near the entrance to
be dependent also on the velocity downstream of the entrance ramp
in a manner reflecting drivers' deceleration practices.

We may now specify the equation for one grid space upstream

of an entrance ramp when the grid space is sufficiently large so
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that velocity one unit upstream of the entrance is assumed depend-
ent only on concentration at that point. Suppose the entrance
Applying the continuity equation to the interval

t) and KL(xi+1,t)

ramp is at Xj41°

[x.,xi+l], we get Equation (48) with qL(x

i
replaced by qL(xi+1-,t) and KL(xi+1-’t)

i+1?

» respectively. Substituting

Ay (X;,175t) = Clx5, 1) K (i, 1-,1) 1n[Kj/K(xi+l+,t—Ti] (68)
and
ay,(x;,1) = Clx;) K (x;,t) 1n[Kj/K(xi,t-rﬂ (69)
gives

KL(xi+1-,tj)[C(xi+1) ln[Kj/K(xi+1+,tj—T)] - hx/ht]

+KL(xi,tj)[-C(xi) ln[Kj/K(xi,tj-T)] - hx/ht]

+KL(xi+l-,tj+1)[C(xi+l) 1n[Kj/xi+1+,tj+l-T)] + hx/ht]
+KL(xi,tj+1)[-C(xi) ln[Kj/K(xi,tj+l-T)] - hx/ht] =0 (70)

as the discretized dynamic equation governing the traffic flow near

an entrance ramp.

4.2.2 Exit Ramp

We now consider traffic flow near an exit ramp.

Let z; be the location of exit ramp i. The highway flow on
the downstream side of exit ramp i is related to the flow on the
upstream side by the following equation

0 if k=1
qk(zi+’t) = (71)
q(z;-,t) if k # i

This is because all vehicles destined for exit i leave the highway,
and all vehicles not destined for exit i are conserved and cannot
pile up in an infinitesmal distance at the exit Tramp.
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We expect the total concentration of vehicles to be lower on
the downstream side of the exit ramp. Vehicles on the downstream
side will react to this lower concentration. Vehicles on the up-
stream side, however, will probably not accelerate in spite of the
lower concentration ahead, because the immediate higher concentra-

tion retards them. Thus, we have

V(z;-,t) = C(z,) ln[Kj/K(zi—,t-T)] (72)
V(zg+,t) = C(z,) ln[Kj/K(zi+,t-T)] (73)
Qe (2575t) = Clz;) Ky (z;-.1) 1n[Kj/K(zi—,t-'r):l (74)
Qe (2;+,1) = Clz;) K (z;+,1) ln[Kj/K(zi+,t-'r):| . (75)

The velocity is discontinuous at z;. This assumes that upon
passing the exit ramp, vehicles instantaneously reach the higher
velocity, and neglects the fact that vehicles cannot accelerate
instantaneously as well as the fact that the driver may be con-
tinuing at the slower velocity for one reaction time before

reacting to the decreased concentration ahead.
The condition relating concentration on the downstream side

to concentration on the upstream side is therefore

Ki(zi+,t) =0 (76)
Kk(zi+,t) 1n[Kj/K(zi+,t-T)] = Kk(zi-,t) ln[Kj/K(zi-,t—T)] . (77

The discretized continuity equation for one grid space [xi,xi+1]
upstream of the exit ramp, where X541 is the location of the exit
ramp is therefore just given by Equation (70) with X54q* in the

function K(Xi+1+,tj-T) replaced by Xi417"

4.2,.3 Criterion Integral

The flow onto exit ramp i is qi(zi-,t), since this is the flow
of vehicles destined for exit i at a point immediately upstream of

the exit ramp.
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We want to maximize the integral of total cumulative output,
summed over all exits

t

m T
Z // q;(z;-,t")dt" dt
i o 0

1i=1

m T
-3 / (T-t) q; (z,-,t)dt

i=1 0

m T
K.
C(z.) / (T-t) K. (z.-,t) 1n|:7—1ﬁ—_ - ]dt 78)
;gﬁ Zi / 171 K z5 ,t-1T (

which can be discretized as described in Appendix B.

4.2.4 Beginning of Highway

At the beginning of the highway, conditions are similar to
that at an ordinary entrance ramp.

If Yo denotes the location of this point, we have

A (¥ *st) = ey () (79)
and we may take qk(yo-t) = 0 since there is no highway upstream
of y .

o

Equation (67) reduces to

Cry) K (yy*»t) In[K; /KOy +,t-0)] = eox(t) - (80)
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5. SUMMARY AND CONCLUSIONS

The important limitation of the steady state method of optimiz-
ing freeway traffic flow, in our opinion, is that it does not allow
reaction to continuously changing conditions which require a ramp
metering rate which varies with time. We, therefore, presented in
this report a non-steady state optimization method which was based
on the continuum equation of traffic flow.

We first considered a tunnel optimization continuum model. We
wrote down the newly developed finite reaction time traffic flow
equation and then the integral of the cumulative output, which is
to be maximized, containing the concentration at the tunnel exit
K(L,t). We then determined the dependence of K(L,t) on the
initial exit concentration K(L,t), - T <t < 0 where t is the
reaction time and on the entrance control concentration K(0,t),

0 <t <T, subject to physically meaningful constraints. We
analytically determined this dependence from a simple discretiza-
tion of the traffic flow equation under a constant control
K(O,t)=KO. We derived an equation for the concentration K(L,t)
which approached the control concentration K0 with time whenever
the control was less than K.,/e (the concentration corresponding to
maximum flow on the q-K curve). The difference between the initial
value of the concentration at the exit and Ko decreased exponenti-

ally for this case.

For a control K0 > Kj/e and an initial concentration
K(L,0) > Ko an exponential increase in concentration indicating a
stoppage was predicted.

An alternative discretization was also developed which was
more accurate, in which the traffic flow equation was put into
integral form and then discretized. The equation was solved sub-
ject to the initial conditions K(0,t) = KO and K(L,t) = K1 for
- T <t <0, and used an entrance control K(0,t) = K, for t > 0.
We obtained an equation which gave the concentration at the tunnel
exit in terms of Ko’ K. and Kl' This solution was discussed. For

K1 = KO we found that K(L,t) = K1 as it should: if the initial
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concentration is equal to the control, no change occurs and the

concentration remains the same.

1<Ko’

the concentration increased with time because the flow at the exit

For a control KO < Kj/e and an initial concentration K

was lower than at the entrance.

For a control K0 < K./e and also less than the initial con-
centration Kl, the concentration decreased and converged to the
control Ko as t»=, This was compared with the steady state model
where the concentration at any point x and any time t, K(x,t), is
considered to be a constant. In the steady state approach the flow
is optimized after a sufficiently long time interval has passed,
when K has become nearly constant. In reality, K(x,t) - Ko as
t - ., The dynamic approach offers, therefore, an approximation
for the concentration for earlier times (and allows for a time

varying control).

We next extended the analysis to the case of a single lane
freeway by including entrance and exit ramps and by modifying the
traffic flow equation to allow for varying capacities along the
roadway. We also allowed for a percentage of vehicles arriving at
the entrance ramp to be diverted to the surrounding streets as a
result of queueing on the entrance ramp. The dynamic equations
for this problem were derived and discretized giving the basic
relations for determining the traffic flow on the freeway system,
near an entrance ramp and near an exit ramp. The criterion inte-
gral to be maximized for optimum flow was also derived.
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APPENDIX A
INTEGRAL OF CUMULATIVE OUTPUT AND TOTAL TRAVEL TIME

We will show that minimizing the total travel time of all
vehicles in some system between time 0 and T is equivalent to

maximizing the integral of cumulative output

T
/ 0(t)dt
(e}

where O(t) is the total number of vehicles which have left the
system between time O and time t. This result holds only when
the input rate is unaffected by whatever controls are being
applied, and we are only considering controls applied after time
0. In the case of ramp metering at the entrance to a tunnel or
freeway, we assume that arriving vehicles form a queue at the
entrance ramp, and vehicles at the head of the queue are allowed
into the tunnel at prescribed intervals. If we assume that the
input rate into the queue is unaffected by the metering rate
(frequency that vehicles are allowed to enter tunnel), then we
may consider the tunnel and queue as the system. If the goal is
to minimize total travel time in this system (which includes
waiting time) during some fixed time interval, then an equivalent
criterion is to maximize the integral of cumulative output. The
latter criterion is particularly suitable if a continuum model of
traffic dynamics is used.

We may now derive the above result (see also Reference 3).

Let

{1 if vehicle i is in system at time t
f.(t) =
i

O otherwise . (A-1)

The time spent by vehicle i in the system is just the integral of
this
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T
/ fi (t)dt.
)

The total travel time of all vehicles in the system between times
t=0 and t=T is the summation of the times each vehicle spends in
the system during this time interval. Hence, we want to minimize

T T

N
z / £, (t)dt =/
i=1 (o}

N
z £.(t)|dt (A-2)
(6} i=1

where the vehicles in the system between times 0 and T are numbere

from 1 to N.
Let
N

S(t) = ZE fi(t) = No. of vehicles in system at time t.

i=1

Let I(t) be the number of vehicles which have entered the

system between time 0 and t (cumulative input).

Let O(t) be the number of vehicles which have left the system
between time 0 and t (cumulative output).

Let S0 be the number of vehicles in the system at time 0.
Then,

S(t) = SO + I(t) - 0(t) (A-3)

Hence, the total time in the system is given by

T T T =
j[ S(t)dt = SoT + j[ I(t)dt - j[ 0(t)dt (A-4)
) 0 0

But, So and T are constant with respect to controls applied after
time 0, and I(t) is assumed to be invariant of these controls.

Hence, minimizing the total time spent in the system is equivalent
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to maximizing

T
j[ O(t)dt
0

the cumulative output.

The above analysis is valid both for freeways and single lane
roadways under the given assumptions. Freeway output would be the
sum of the outputs from all freeway exits.
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APPENDIX B
DISCRETIZING THE CRITERION INTEGRAL

The integral of the cumulative output, or criterion integral

T t
// q(L,t')dt"' dt
o °

which may be written as

T
/ (T-t) q(L,t)dt
0

is simply

and which we eventually want to maximize. Note that the weighting
factor in the integral is (T-t). This gives a higher weight to the
flow at earlier times than at later times. This makes it subopti-
mal to delay vehicles unnecessarily, lowering the flow initially
and raising it later on since the flow at later times is given
lower weight.

If we wish to be consistent with our assumption that q(x,t)
is piecewise linear with respect to time over the grid to=0,...,
t =T, we can use this assumption to discretize the integral.
Because of the factor (T-t), the integrand would then be piecewise
quadratic with a different parabolic arc within each subinterval,
and therefore this approximation is less smooth than Simpson's
rule which approximates the function smoothly.over two subinter-

vals. The resulting approximation may be written as

h n-1
‘Z‘E z [(T_tl) Q(L,ti) + (T-ti‘*‘l) q(L’ti"'l):l
i=0

=n

2
+ ot [q(L.T) - q(L,m]
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and we see that we have a trapezoidal approximation plus a cor-

rection term (hi/6)[q(L,T)-q(L,0)]. This may be further simpli-
fied to

n-1
ht
he D (T-t;) a(l,t;) + 55 T a(t,0)
i=1

=2

2
5 [q(L,T) - q(L,O)J
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APPENDIX C
OPTIMIZING WITH RESPECT TO K(L.t) AND INTEGRATING
BACK TO DETERMINE K(J,t)
FOR THE TUNNEL MODEL

We may determine the function K(L,t), the concentration at

the roadway exit, which maximizes

T t
// K(L,t") ln[Kj/K(L,t'-T)]dt' dt
t t

0 0

and then numerically integrate back, for example by Equation (35),
to determine the control concentration at the entrance to the
roadway, K(0,t). Here, the values of K at the grid points are
not variables involved in the optimization, as they were in Sec-
tion 3 of this report. Thus, a fine grid is feasible without us-
ing excessive computer time. However, after an optimal K(L,t)

is determined, it is not guaranteed that the values of K(0,t)
which are determined from K(L,t) and the initial conditions will
be feasible. For example, they may not satisfy the demand con-

straint
t

t
J/~q(0,t')dt' < ng +-}f D(t')dt' for t > 0
o

0

where q(0,t) is determined from K(0,t); or K may fall outside the
range [Kmin’Kj]’ where the car following model is invalid for

K < Kmin; or q(0,t) may vary too rapidly to be physically attain-
able. Since these are inequality constraints, it should prove
interesting to see whether or not an optimal K that we find does,
in fact, satisfy these constraints.

The lower limit t, in the above criterion integral should
ideally be the time t at which a perturbation in K(0,0) first
causes a change in K(L,t), recalling that we have no control over

K(L,t) for times t < to. If we use the equation2
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K. 2
_i) 3K 3 K __ }
*C 1n<eK> ax * Cr oxat 0, (C-1)

SR
=

where functions of K(x,t-1), from Equation (17), have been expanded
in first order Taylor series approximations, the characteristics
are horizontal and vertical lines and we therefore expect instan-
taneous propagation of perturbations in K(0,t).

Let K(t) = K(L,t) so that we are trying to find the function
K(t) which maximizes

T t
K.
I(K) =/ / K(t') 1n<m3,_7)>dt' dt (Cc-2)
t 0t
(o} o}

Consider a small perturbation 6K(t') in the function K(t'). If K
maximizes I, we would expect §I = 0. Differentiating, we obtain

T t
K.
8I(K) = // SK(t') ln(w-]—_r—)—)dt' dt
t t
(o] o]
/ / Klét(? 3) 8K(t'-1)dt' dt (C-3)

+T

where we have replaced the lower limits in the second pair of
integrals by t + T since 8K(t'-t1) = 0 for t' < t + 1. The
integrals may be transformed to somewhat simpler form Let s=t-t
and s'=t'-1 so that

T ¢t :
K.
§I(K) =// sK(t") ln[K—(Fgﬁ]dt' dt
t "t '
o (o]

T- S
/ / SChia: GK(s')ds' ds . (C-4)
O
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Let

1 for t < T -1
a(t) = (C-5)
0 for t > T - 1

so that the second integrals can be written as

T s
t//t- a(s)xlfs(si)'m §K(s')ds"' ds. (€-6)
(o] (o]

Combining and reversing the order of integration we have

T T
K. .
81(X) =faK(t')/ [ln{K(t'J_r)] ] a(t)K%£$)+T)}' dt dt'  (C-7)
t t!
(o)

Since we can choose 8K(t') arbitrarily at any t' > to’ then if

T
K. .
/ {ln[l((t'gr)] ) a(t)ng)m}dt 7 0 for t' >0 (C-8)
t

it must be non zero in some interval around this point because of
continuity in t', and therefore we could choose §K(t') such that
SI(K) # 0. Since 8I(K) = 0 for all SK(t'), 0 < t' < T we must

have

T
K. ,

/ {1“,:1(&,{0]' a(t)KIEt(tv)+T)}dt =0 t'>0. (C-9)

t! '

Since t' is constant in this integral, the integral evaluates to

T
(T-t") ln[Kj/K(t'-T):l - KT(t(t'—TTT)/ a(t)dt = 0
t'
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T

T T-
j[.a(t)dt = J/~ dt = T - t'-t for t' < T - 1t . (C-10)
t! t!

The optimality condition is therefore

' K.
K(ttTT)(T_tv_T) = (T-t") 1n[m:|
for t o < t! < T -1 (c-11)

which may be written as a recursion relationship

T-t K.
K(t+T) = TT?T? K(t) In KT?%?T ’ tO

If we let T»~, we obtain

K.
K(t+1t) = K(t) ln{KTf%?T] , t 2> to . (C-13)

Starting with initial values for K(to-T) and K(to) which depends on

A
t
A

T - 1. (C-12)

the initial conditions of the tunnel, we can determine K(t0+nT)

for all positive integers n.

If X(-t) = K(0)

inductively, if K(t)
= K./e.
i’e

Kj/e, then K(nt) = K./e for all n because
K(t-1) = Kj/e, then K(t+t1) = Kj In(e) /e

Numerical computations were done which showed that K(t) in
fact appears not to converge as t+w, but oscillates indefinitely
with a period of approximately 6t. The period shows little de-
pendence upon the initial conditions K(O)'and K(-1). The ampli-
tude of oscillation does not change much, and is determined by the
initial conditions. If 1=1 second, then an oscillation of K with
a period of 6 seconds would be predicted which would be very dif-
ficult to attain with discrete vehicles. Due to this high fre-
quency oscillation, this solution is not a feasible solution.

The fact that the amplitude of the oscillations does not decrease
to zero and is dependent on the initial conditions is not physically
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meaningful; we would expect the optimal solution to depend signi-
ficantly on the initial conditions only for a limited time, but

after any existing congestion clears up, the steady state optimum
Kj/e should be reached.

It may be noted, if we wished to proceed with this method,
we could apply constraints which would bound the derivative of
K(L,t) thus reducing the frequency of oscillation to more real-
istic values.
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APPENDIX D
DISCRETIZATION OF EQUATIONS 59 AnD 60 AND
DETERMINING EJK(T) FROM EJ(T) AND WJ(T)

The equations to be discretized are Equations (59) and (60),
which are repeated here for convenience.

ej[wj(ti] wj - ej(t) = Lj (t)
ey w.(tﬂ TS p-ij(Lj(t)ﬂ 60}
CHENE: kgﬁ%kﬁ) P_%koﬁ(ﬂﬂ

The difficulty in discretizing these equations is that the
function Lj is evaluated both at t and at w.(t).

(59)

If we let t
assume values on a uniform grid, wj(t) need not be one of the grid

points. We may therefore propose the following discretization.

Choose any convenient set of grid points tl,...,tn and let

eixL = €5k (t)

~

BaL = oy (0]

ij = wj(tL) (D-1)

We can relate éjkL to ejkL by linear interpolation, since
ejkL = ejk[wj(tL)]. If ti f.wj(tL) < ti+1’ we ca? interpolate €:1
Petween ty and tieq to obtain an expression for ejkL = ejk[wj(tL)]
in terms of ejki = ejk(ti) and ej,k,i+1 _‘ejk(ti+l)'

We then substitute this into Equation (59) to eliminate é'kL

m

- m -
y Witel T YL L) - L0 .
®5kL t Tt €5kL t Tt (D-2)
k=1 L+1 L) & L+1 - ‘L

Similarly, we can substitute in Equation (60) to obtain the
desired discretization. (See the sketch shown in Figure 6.)

49



Another possible method of discretization would be to choose
an irregular grid in the following manner (see Figure 7): We

begin with an initial time ty and choose ty <ty <. <t < wj
(t ). Now let
)
tL+1 - wj(to)
trez = Wyt
trei = Wity q) (D-3)

For any grid point tos w.(ti) is also a grid point. We can thus
discretize Equation (59) and (60) straightforwardly. The dis-
advantage of this method is that the grid points tis1r tyagee-s
are variable since wj(ti) is variable.

The feasibility of implementation of this method has not been
completely analyzed though we did use unknown grid points in the
lane blockage problem4 success fully.
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APPENDIX E

STEADY STATE OPTIMIZATION PROBLEM OF TUNNEL TRAFFIC
WHEN A FIXED PERCENTAGE OF VEHICLES ARRIVING ARE
DIVERTED TO AN ALTERNATE ROUTE (e.g., VIA THE
SURROUNDING STREETS)

We assume that a constant demand rate of D vehicles per unit
time arrive at the tunnel entrance and q vehicles per unit time
are allowed to enter the tunnel. The flow q is the control
variable, but it remains constant over time. Because we assume
steady state conditions, q is the flow at any point in the tunnel
at any time: q < D. The remaining (D-q) vehicles per unit time
travel by an alternate route (e.g. the surrounding streets) where
travel time is assumed to be a constant, tss independent of the
number of vehicles diverted.

Let V be the constant velocity of vehicles in the tunnel and
let K be the constant concentration of vehicles in the tunnel. We
have the following relations between K, V, and q

V= c In(K;/K) (E-1)

q = Kv . (E-2)
We derive

K = K; exp(-V/c) (E-3)

q = Kj V exp(-V/c) (E-4)

from the above equations.

Vehicles spend a time of L/V seconds traveling through the
tunnel (of length L). Vehicles traveling via the alternate
route take a time of tg seconds.

Since q+T vehicles enter the tunnel between time 0 and time
T, and since (D-q)T vehicles travel via the alternate route, the
total travel time of all vehicles is

QT (L/V) + (D-@)T t_ . (E-5)
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Expressing this in terms of V, we wish to minimize
£(V) = T[Kj L exp(-V/c) + tS<D—Kj v exp(-V/c))] . (E-6)
Setting the derivative of f to zero,
£f' (V) =0 (E-7)
we find that the minimum is achieved at a velocity of

V = L/ts + c . (E-8)

The optimal flow is, therefore,
q = K;(L/tg+c) exp 6[1+L/cts]) (E-9)

and the optimal concentration is

K = Kj exp(-[1+L/cts]> = (Kj/e) exp(-L/cts) . (E-10)

When no alternate route exists (let ts+m), the optimal concen-
tration approaches Kj/e, as discussed previously in this report.
Flow in the tunnel is maximized at K = K./e. When an alternate
route exists, however, the optimal concentration decreases, being
multiplied by a factor of exp(-L/cts) <.1. This is because a
lower concentration in the tunnel decreases the travel time of
those vehicles which do enter the tunnel.

In the dynamic case, it may be profitable to have two ramp
controls, one control forcing some vehicles to divert from the
queue entrance, and the other control regulating flow from the
queue onto the freeway. If drivers are allowed to make their own
decisions about whether to enter the queue these decisions may not
be optimal. Of course, it must be determined if a control on the

queue entrance is feasible in practice.
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