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A, EXECUTIVE SUMMARY

To meet the rising demand for improvements in mass transporta-

tion, without having recourse to long-term high-cost systems, it

is necessary to consider how improvements could be made in both use

and efficiency of existing facilities. Under the Balance Project,

for the DOT Office of Research and Development Policy (TST-10),

various possibilities are investigated for the better utilization

of existing highways through an appropriate preference procedure

for buses or other high-occupancy vehicles.

The Balance Investigation contains three main thrusts:

A macroeconomic analysis whose purpose is to delineate the
tradeoff between low-and-high capital-cost mass-transportation

systems.

A computer simulation study to determine the costs, benefits,
patronage, and impacts on traffic flow of a bus-priority
transit system in a selected city (Seattle); it includes a

comparison with the Seattle 1990 Plan.

An applicability analysis aimed at estimating if it is advis-
able to implement a preference procedure for buses and car-

pools on a facility under given conditions, and to determine
what the optimum designation for a carpool should be in cases

where it is advisable.



1.

2.

B,

APPLICABILITY ANALYSIS -~ SUMMARY

Objectives: The aims of the analysis are

InEuts:

The

Under a given set of highway and traffic
conditions, estimate the advisability of
reserving one or more traffic lanes for such

high-occupancy vehicles as buses and carpools.

In cases where it is advisable to implement
such a priority procedure, determine the
appropriate designation of a carpool to

achieve optimum results.

observable information consists of

Highway Characteristics

1) Number of highway lanes,

2) Per-lane capacity.

Traffic Characteristics

1) Flow rate (vehicles per hour),

2) Flow quality (subcapacity or congested),

3) Bus-auto split.

Occupancy Characteristics

1) Mean bus occupancy,



3.

4.

Method:

OutRuts:

2) Auto-occupancy distribution.

The method involves the extrapolation of the
performance under the priority operation from the
data available under normal operation. This
requires the utilization of appropriately de-
signed speed-flow-density relations which are

fully discussed in the appendix.

The procedure may be summarized in the following

sequency of steps:

a. From the normal flow, we infer the corres-
ponding speed and density for the normal

operation.

b. Assuming that with the imposition of the
priority regulations, the density is dis-
tributed on the two parts in proportion to
the ratio of high- to low-occupancy vehicles
occurring in the normal flow, we derive the
respective densities for the reserved and

unreserved lanes.

€. From each of these densities, we infer the
corresponding speed and flow for each part

under priority operation.

In assessing the results of the priority operation,
it is appropriate to exhibit the effects of the

reserved-lane procedure as determined through an
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appropriate measure of effectiveness.

By comparing the total passenger flow under both

operations, we calculate the relative increase/

decrease of passenger flow per hour resulting from

the priority rules.



1.

2.

3.

C. GLOSSARY (TECHNICAL SUMMARY)

Facility Characteristics

-~
H ]

(@]
]

Number of lanes,
Number of reserved lanes,

Capacity in vehicles per hour per lane.

Demand Characteristics

Number of autos,

Number of buses,

Proportion of autos with exactly j occupants,
Mean bus occupancy,

Zjaj = Mean occupancy per auto.

Mathematical Formula

o = -e(l-m)In(l-m), A = (1 - %) In(l-m),
where

p =V/C - ratio (Normalized flow),

m = Normalized mean speed, %— s

0
A = Normalized density, %— .
*

Normal Operation (Steady State)

Vy = Mean speed induced by normal flow,
DN = Mean travel time per mile; i.e.,

DN - g 3% * DB passenger hours per mile, where H is the

VN
time period considered.




5. Priority Operation

where

<
~

<
=

o]

o] =2
(i

n

= Number of occupants per carpool,
5 n-1
op = X on , ay = .Z aj,
j=n j=1
5 5
p, = I juj z aj, q,=
j=n j:n
/
D = H aRP i bRB + “un
P VR VU ’

Mean speed on reserved lanes,
Mean speed on unreserved lanes,
Auto flow on reserved lanes,
Bus flow on reserved lanes,

Auto flow on unreserved lanes

6. Effectiveness Measures

a.

b.

II

Passenger Flow

aan * bRB * aan

ao + bR

Total Passenger Travel Time

T

L _|?Rfn " PRE VN 24y VN
ao + DR Vo aOL+BBVU



7.

Sample Result

= 4, R =1
= 6000, b = 400
Subcapacity Congested
n 1l I
(Passenger (Passenger
Flow) Flow)
2 -0.35 R-J
3 0.04 0.24
4 0.07 0.43




D. INTRODUCTION

With the current decline in enthusiasm for highway construction,
it is reasonable to anticipate that, in future transportation
planning, there will be a continued shift of emphasis towards
transit systems of high-passenger capacity. The large commitment
of resources required for any comprehensive rail-type system makes
it important to consider the possibilities for increasing the pas-
senger-carrying capacity of existing facilities through a more
systematic wuse of multi-passenger vehicles. The recognized adapt-
ability of bus-systems as a convenient means of passenger trans-
portation suggested an idea which, though previously discussed in
a number of contexts, was given specific form in the 1963 address
by Cherniak [1]; namely, that, during peak-traffic periods, a pre-
ferred claim be assigned to buses on the existing highway facilities.
The idea has now been implemented in several locations, and its
success has been noted in the GMC Progress Report [2]. It is
now sufficiently established that it is quite conceivable that
some form of buslane may become a feature of a significant part

of future highway construction.

Depending on the particular circumstances, the preference
procedure may take various forms, incorporating such features as
priority assignment of certain entry and exit ramps, as well as
the reservation of specified lanes either exclusively for buses
or for some more flexible priority operation in accordance with
prescribed regulations. The implementation of the reserved land

designation, a version of which has been in use on the Shirley



Highway in suburban Washington, could also involve such features as
the appropriation of one or more reverse lanes as has been done on
the Fitzgerald Expressway in Boston. The utilization of a priority
system on such impeded facilities as arterial and city streets might
also require preference procedures at traffic-light intersections.

Various operating techniques have been discussed by Goodman [3].

To be implemented, such priority operations must ultimately
result in an overall benefit to the passenger population. The
more efficient use of the facility should be reflected in an in-

Creased overall passenger flow.

A number of studies, aimed at assessing the effectiveness of
such operations (and based on a comparison of passenger travel
time), have been reported in the works of May [4], Stock [7], Morin
and Reagan [5], and in the later extension by Sparks and May [6].
Besides the exclusive assignment of buslanes, these studies also
consider priority operations wherein one or more lanes are reserved
for buses and carpools, the latter being defined by the specifica-
tion of a required minimum number of occupants. In fact, a
valuable outcome of such systems analysis is the resulting de-
cision table delineating the appropriate designation of a carpool
to achieve optimum effectiveness. 1In a comprehensive report on
work done for the Department of Transportation by Alan M. Voorhees
& Associates, Inc. [8], a procedure proposed in earlier studies
is applied to the I-90 Shoreway in Cleveland, for which a thorough

parametric study is presented.

The present report, following the ideas both explicit and
implicit in the work of May and others already cited, presents a

9



method of analysis in a systematic and somewhat simpler form. The
emphasis here is on the clarification of overall procedure so that
the derived formula measuring effectiveness may be applied to any
facility for which the necessary data on demand and occupancy are
available. It should be emphasized, however, that our attention
is confined to the estimation of the effectiveness of the priority
operation on the facility, and does not consider such secondary
features as the effect on waiting time at the entry points. It

is reasonable to assume that whatever is the outcome of the op-
eration on the facility, a corresponding effect will be felt at

the entry points.

The assessment of feasibility involves a comparison of the
performance, as reflected in the passenger flow under normal

operation with the corresponding performance under the proposed

preference systems. The procedure is described below.

With the given facility characteristics (capacity and number
of traffic lanes), we associate the parameters (possibly time-
varying) describing traffic demand and vehicle occupancy which
constitute the inputs to the model. For any observed flow
pattern, the corresponding speed is determined from the speed-
flow relation characteristic of the facility, which may be as-

sumed identical for all traffic lanes.

On the implementation of the priority operation, the re-
served and unreserved lanes must be treated separately. The oc-
cupancy characteristics on the reserved lanes, as determined by

the operating regulations, induces a different flow pattern which,

10



in turn, alters the mean speed. A corresponding adjustment is ex-

perienced on the unreserved lanes.

Once the traffic flow has been determined for the two parts
of the facility under priority operation, the total passenger
flow can be immediately inferred. The comparison of the latter
with the passenger flow under normal operation provides the ap-
propriate measure of effectiveness in assessing the feasibility

of the priority operation.

Tables are presented in section 4 which give the results

in specific cases as determined from each of the two measures.

The ciritcal step in the analysis is the extrapolation of
the priority performance from the known characteristics under
normal operation. In previous studies, this has frequently been
done by identifying the total flow for both cases, which, however,
can imply both theoretical and practical contradictions. The
method followed here is based on the identification of total
density for both operations which has the merit of being at least
theoretically self-consistent; however, the practical implications

of this hypothesis may require closer examinastion.*

*In the previous studies, the total passenger travel time was
generally used as the feasibility measure. Under the density-
conservation hypothesis, it can be shown that this latter
quantity remains constant.

11



A significant point in the computation is the use of an ap-
propriate form of the speed-flow-density relation; on which, however,
there appears to be no general agreement. In our quest for a form
suited to the present application, we have been led to an analytic
expression for the relation which appears more acceptable than
those previously used. A more detailed analysis of this formula,
together with a discussion of other representations previously
proposed, is given separately in an appendix, where the speed-flow
relation, together with the associated speed-density and flow-

density relations are illustrated graphically.

12



E. MODEL DEVELOPMENT

1. System Parameters -- Normal Operation

We consider a facility having L traffic lane in either direction
with an each-way capacity of C vehicles per lane per hour and on

which the mean free speed is given by v,

At any point in time, the traffic in the direction under con-
sideration is assumed to consist of a mix of autos and buses, the
weight of vehicle demand being split between a autos and b buses
per hour. We let B denote the mean passenger content of a bus;
while for the occupancy classification of the auto distribution,

we let oy denote the proportion of autos with precisely j occupants

so that with, 1<j<5, we have

[Sr BN Oy}

a. =1, (1.1)

by assuming that only a neglibible fraction of autos have more than

five occupants.

Taking the value 2 for the bus-equivalence factor, the traffic

demand equivalent in vehicles per hour; namely,
V=2a+ 2b (1.2)

may be written as the normalized fraction of the capacity in the

form

- a+ 2b
PN TTIT (1.3)
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where PN denotes the V/C - ratio for normal operation. For this
value of the flow demand, the corresponding value of the mean speed
vy can be determined from an appropriate form of the speed-flow
relation, the optimum form of which would be provided by sufficiently

accurate data from the particular facility under consideration.

In many cases, however, such data are either not available
or are so limited in both range and accuracy that the use of a well
designed mathematical formula would be no less reliable, as well
as being far more convenient. Many formulas describing this speed-
flow dependence have appeared in the literature. In the appendix,
we discuss a number of them, and also, suggest a new formula
that appears to give a more satisfactory response throughout
the entire density range. In terms of the normalized flow and

mean-speed variables; namely,
o = %’ m= - (1.4)
the proposed relation has the form
p = -e(l-m) In(1l-m), (1.5)

in which e is the base of the natural logarithms. Corresponding

to the flow demand (1.3), the associated normalized mean speed My

is therefore to be determined from the equation
(1-my) In(l-my) = - & o (1.6)
N N e 'N? )
from which the actual speed vy is given by

N T Voy . (1.7)
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The reciprocal of this latter quantity represents the mean
time per mile for passengers on the facility, under normal op-

eration.

Equation (1.6) will have two roots in the range (0,1): the
greater root, exceeding the capacity speed, corresponds to normal
subcapacity flow, while the lesser root is implied for congested
flow. The appropriate choice will be evident from the context

since direct observation indicates which is the appropriate range.

If we use a to denote the mean occupancy per auto, so that
5
o = L jo. , (1.8)

then the (instantaneous) mean passenger flow is clearly given by
PN = ao + bR (1.9)

passengers per hour. The associated (instantaneous) mean time per
mile, normally experienced by passengers on the facility, may

be written

s (1.10)

measured as passenger-hours per mile per hour.

If the intensity factor (1.10) be integrated over the time
period of operation, we obtain the total mean passenger travel
time per mile on the facility. Considering the system in operation

for a period of H hours, this overall quantity is therefore given by

15




D - / ac_+ b8 gy, (1.11)
N

measured as passenger-hours per mile. Over a period during which

demand and mean occupancy may be assumed constant, we have

aa + bB

D, = H
VN

(1.12)
providing a simple basis of comparison with the corresponding

factor evaluated under a different operation of the facility.

We recall that VN is to be determined from relations (1.6)
and (1.7). In interpreting formula (1.11) in the general case, it
should be pointed out that both the demand and occupancy character-
istics have to be determined from observations taken over time
scales of about 15 minutes, while the total time for the considered
operation (the peak-traffic period) is generally of about 2 or 3

hours.

Thus, an adequate evaluation of the integral can be made by
a subdivision of the operating time into roughly ten segments,
over every one of which the integrand may be assumed constant.
Any pretension to greater precision would have to presume informa-
tion, on the time variation of the integrand, finer than could be
realistically expected within the practical limitations, and so

would merit little practical interest.

16



In fact, if we consider the type of averaging inherent in the
present analysis, it is likely that once the total volume and
overall occupancy have been measured, there is no further loss in
accuracy in assuming constancy for these quantities over a time period

of the order of an hour.

2. Priority Operation

The priority rules envision the reservation of R lanes for
the use of buses and carpools, the latter being designated by the
requirement of a minimum number of occupants, n, in the range
2<n<5. In accordance with this priority rule we let ap and A
respectively, denote the proportion of autos to be assigned to the

reserved and unreserved lanes, so that

(2.1)

where

ay =1 . (2.2)

The reserved-lane traffic now consists of a mix of autos and buses

while the unreserved lanes contain only autos.

A crucial step in the procedure is the estimation of the flow
on the reserved and unreserved parts under priority operation from
the known performance under normal operation. 1In a number of

previous studies, this is done by a direct extrapolation, assuming

17



that the flow on each part can be equated to the arrival rate of
the designated vehicles, which implies that the total flow for

both operations are identical. However, since this can lead to
such anomalous requirements as a flow in excess of capacity on

one part of the facility, it cannot be taken as an acceptable as-
sumption. Moreover, it should be noted that, under this assumption
of flow conservation, the total passenger flow is unaffected by

the imposition of the priority operation.

A more reasonable method of estimation can be based on a
procedure* which implies the identification of total traffic
density for both operations. We have seen that from the flow
under normal operation as given by (1.3), we can determine from
relations (1.6) the corresponding normalized speed my» which
may be read directly from the graphical representation of the
speed-flow relation shown in figure A-1. Moreover, to each speed
and flow, there corresponds a density k, in terms of which we

define a normalized density X by setting

o= £ (2.3)

where ky denotes the jam density. The implied speed-density and

flow-density relations are shown in figures A-2 and A-3, respectively.

From the flow-density curve in figure A-3, we can determine the

normalized per-lane density AN corresponding to the flow CINE

*This method of determining the priority performance was suggested
by Calvin H. Perrine.

18



Under priority operation, there is a distinct per-lane density
for each part. Assuming that on both the reserved and unreserved
portions, the per-lane density is proportional to the fraction of
normal flow designated for the respective parts, we set*

w2 2RI Lo, (2.4a)
R a + 2b R

aa

_ U L A
‘WwEaFm TR Vo (2.4b)
and the implied relation
Liy = Ripg + (L - R}y (2.5)

expresses the identification of total density for both operations.
From the flow-density relation depicted in figure A-3, we can

read the normalized flow values pgp and oy which correspond, res-
pectively, to the reserved- and unreserved-lane density values

AR and AU of (2.4). The flow values PR and Py will now be used

to estimate the corresponding bus and auto flows on the respective

parts.

The traffic on the unreserved lanes is composed of autos
only, and so, if we let ay denote the flow in cars per hour, it

will be determined from the relation

ay = (L - R) CpU . (2.6)

*As already noted in the Introduction, the practical implications
of assumptions (2.4) may merit closer scrutiny.
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On the reserved lane, we consider the flow as consisting of a
mix of ap autos and bR buses per hour, which we assume to be in
the same relative proportion as under normal operations, so

that

b
S0 (2.7)
R R
while the total reserved flow is given by
ap * 2bp = RCpp - (2.8)

If we use relation (2.7) in (2.8), we can determine the auto and

bus flow separately in the form

RCp RCp
= R =R |
TS, 0 PRT g (2.9)
aaR 2 + -

It remains to determine the speeds on the respective parts.
The quantities will be found from the speed-density relations de-
picted in figure A-2. Using the values (2.3) for the respective
densities, we read from the speed-density curve the corresponding
normalized speeds mp and my; from which the actual speeds vp and

vy are, respectively, given by
(2.10)

in which we assume that, on a freeway, the imposition of the priority
operation leaves the free speed v unaffected. A possible modifica-

tion necessary on other types of facility will be discussed later.

20



Since we have assumed no shift in occupancy, we can write for

the average passenger content of a carpool

In terms of the above notation, the quantities

Pp = app, * bpB, Py = ay ay

(2.11)

(2.12)

(2.13)

measure the mean passenger flow per hour on the respective parts,

so that the total passenger flow under priority conditions is given

by
Pp = app, +bp 8 +a;a,

corresponding to the quantity (1.9) for normal operation.

(2.14)

For the travel-time intensities on the reserved and unreserved

parts, we have

_ aRr pn * bR B _ aU qn
TR = s T, =
YR

21
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measured in passenger-hours per mile per hour. If we evaluate the
integral travel time in passenger-hours per mile on the respective

parts, we obtain

H H
a, p. * b, B ap, q
D, = Ron R 4t, p = R D g¢, (2.16)
R VR U Vi
0 0
so that the sum,
H
a,p. + b, B a; q
= _ R*n R U 'n
DP = DR + DU —/ — Ml dt, (2.17)
0 ‘R u

gives the total passenger travel time per mile under priority
conditions, corresponding to the factor (1.11) for normal operation.
Where the integrand may be assumed constant, we have

ap P * bp B ay aqy

D. = H + . (2.18)
P VR vu

Again, as in the case of normal operation, whenever it is necessary
to take account of the time variation in the integrand, the evalua-
tion may be effected by subdividing the interval into segments over

which the integrand may be assumed constant.

Addendum

To see that the total passenger travel time remains unchanged,

we first note that, with ap and bR given by (2.9), we have

RC

aan + bRB = m OR(aaan + bB), (2.19)
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so that

a,p., + byB
R R R
an - %E aap *+ 2 (aaan * bB))\R ? (2.20)

where we have used the fact that
PR = ARmR . (2.21)

If we now introduce AR’ as given by (2.4a), into (2-20) and re-

arrange terms, we find

apPy * bpB _ CL 3%gPp * b8 A . (2.22)
VR Vo a + 2b N *

Proceeding similarly with ay given by (2.6), we find

aan
Yy

_ C _
Ty, R gy (2.23)

which, on the introduction of AU from (2.4b) followed by a re-

arrangement, reads

a;.q aa.; q
Un _ CL "7U *n Ay .
vy Vo a+ b N (2.24)

Combining (2.22) with (2.24), we obtain

%RPn * bp Ayl g . 2logPp * aydy) * b8
Ve vy Vo N a + 2b (2.25)

23



It can be easily checked that
opPy * oyl = ¢ (2.26)
and if we also use the relation

PN T AN s (2.27)

and recall formula (1.3) for Py» We find

apP; * bp8 + 2y%n - ao_+ bB

VR Vu VN

’ (2.28)

from which it follows that

N (2.29)

showing the invariance of the time factor on the implementation of
the priority operation.

3. Assessment of Effectiveness

In assessing whether the introduction of the priority operation
would lead to beneficial results, it would appear that an increase
in passenger flow would justify the priority operation, at least
from the viewpoint of the Highway Authority. Since an increase
in total passenger flow would require that

P, > Py, (3.1)

it appears appropriate to introduce an associated measure N by the
formula

I = —— > (3.2)

24



so that favorable or adverse effects are reflected in whether I
is positive or negative. If we introduce forms (1.9) and (2.14)
into (3.2), we obtain

+ b + a
1 = -RPn PR utn (3.3)

ao + bR

for the explicit form of the measure reflecting the effect on
total passenger flow.

4. Numerical Results

In this section, some numerical results will be presented to
illustrate the kind of operational policy insights which may be
gained from the approximate relationships derived earlier in the
report. Two sample calculations will be described first in some
detail to provide a better understanding of the numerical relation-

ships to be presented later.

Consider a freeway of 4 lanes which has been shown to be able
to flow a maximum of 2000 vehicles per lane per hour (C) at the
optimum flow velocity. This freeway has also been shown to have
a free-stream velocity (vo) of 60 mph. During peak-hour operation,
the freeway has been observed to become quite congested and vehicle
flows are much less than maximum flow. Specifically, it has been
observed that 2400 autos (a) and 240 buses (b) are able
to pass a given point in a given hour during the period of con-
gestion. Experimental evidence has also shown that the occupancy
rates of automobiles to be 60 percent with 1 person, 30 percent

with 2 persons, 8 percent with 3 persons, 2 percent with 4 persons
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and 0 percent with 5 persons. Buses have been determined to have
an average passenger loading of 36 persons. Under these conditions,
is reserving a single lane for buses and carpools a worthwhile

operating policy?

To answer this question, the post-reservation conditions of
the freeway under the proposed operating policy need to be computed.

The given information is:

L=4, R=1, a = 2400, b = 240,

o = 0.6, a, = 0.3, a, = 0.08,

3 = 0.02, Og = 0, B = 36.

%
The estimated post-reservation conditions are shown in the fol-
lowing table for the case in which carpools with 2 or more persons,

and 4 or more persons, are permitted to use the reserved lane in

addition to the buses.

n N my An PR mg R Py my ) L

2 0 0 >1 | 0.997 [0.598 | 0.613 -0.51
0.36 0.144 0.92

, 0.961 | 0.524 0.674 | o0 0 >1 1.62

st e e

The normal conditions are shown in the second, third, and fourth
blocks. The vehicle flows are initially only 36 percent of maximum
flow condition (pN). The traffic velocity before lane reservation
is approximately 8.6 mph or 14 percent of free-stream velocity (mN).

The vehicle density is 92 percent of jam density.
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For the case in which carpools with 2 or more persons are

permitted to use the reserved lane (n = 2), the reserved lane

becomes jammed (AR > 1, Pr = 0, mp 0).

The jamming of the reserved lane is caused by the excessive
number of carpools using the reserved lanes with a policy of 2 or
more persons per car being permitted to use the lane. The unreserved-
lane conditions have greatly improved because of the absence of all
cars with more than one person. Velocity has increased to 36 mph,
or 60 percent of the free-stream velocity (mU). The net result
of this policy is 51 percent reduction in the number of passengers

per hour flowing on the freeway (I).

If the policy regarding carpools is changed so that only those
cars with 4 or more persons are permitted on the reserved lane, then
the results in the above table show that the unreserved lanes become
jammed (AU > 1). This result is caused by the removal of one of the
four lanes from an already congested freeway without the removal
of many of the vehicles. The conditions in the reserved lane have
improved such that the velocity is 31 mph, or 52 percent of the
free-stream velocity (mR). The passenger flow (II) has increased
by 162 percent even though the unreserved lane is at a standstill

(mU).

A less extreme, and more interesting, example is obtained by
taking a considerably less congested case before reserving a lane.
If, for example, the pre-reservation conditions were observed to
be 4800 cars per hour and 480 buses per hour on the same 4-lane

highway, then the results of reserving a single lane and allowing
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buses and cars with carpools greater than 2, 4, and 5 (no cars)

persons, would be those shown in the following table:

n Py My AN PR ng Ar Py my Ay =

2 0 0 >1 0.994 | 0.673 | 0.543 | -0.75
0.72 | 0.325 | o0.81s

4 0.999 | 0.615 0.598 | 0.504 | 0.209 | 0.887 0.54

5 0.994 | 0.673 0.543 | 0.438 | 0.178 | 0.906 0.62

The entries in the second, third, and fourth columns show that,
in this case, the normal operation involves a flow at 72 percent
of capacity (pN), at a speed of almost 20 mph corresponding to
32.5 percent of the free speed (mN), with a density 81 percent of

jam density.

The admission of cars with two or more persons on the reserved

lane again leads to a jam (AR >1, m 0, PR = 0), while the ac-

R=
companying lighter density (54 percent of jam density) on the un-
reserved lanes (AU) yields an increase in speed to 40 mph (67
percent of free speed) (mU), and a flow close to capacity (pU).

The net result is a 75-percent reduction in the number of passengers

per hour transported (II).

When the operating policy restricts the reserved lane to cars
with 4 or more persons, we see that it leads to a reserved-lane
flow practically at capacity (pR), where the speed is increased

to 37 mph or 61 percent of the free speed (mR) caused by a reduction
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in density to 60 percent of jam density (AR). This is achieved by

the further congestion of the unreserved lanes on which the density
is now increased to 89 percent of jam density (XU); this implies

a reduction in flow to 50 percent of capacity (pU),and a reduction

in speed to 12.5 mph or 20 percent of the free speed (mU). The net

effect is a S4-percent increase in the overall passenger flow (I).

If the policy were carried one step further to the point where

all cars are excluded from the reserved lane, we find that the im-
provement in passenger flow is further increased to 62 percent.
The unreserved lanes are now even further congested to a density
which is 91 percent of jam density, and the flow thereby reduced
to 44 percent of capacity at a speed slightly less than 11 mph or
18 percent of the free speed. However, the accompanying increase
in speed to 40 mph (67 percent of free speed) on the exclusive
buslane is more than adequate compensation; in fact, the buslane
density (54 percent of jam density) now implies a slightly sub-
capacity flow on the reserved lane. The relatively high bus oc-

cupancy is a significant factor in the net gain in such cases.

The graphs indicate the general trend of such effects, showing
how the passenger-flow measure varies with the a-priori flow
(DN = V/C - ratio) for a selection of values for the bus-auto ratio
and with various designations of a carpool. A situation in which
the introduction of the priority operation permits both lane systems
to move is shown with a solid line, while the jamming of one or
other lane system is indicated by a broken line. The dashed lines
denote the jamming of the unreserved lanes, while the situations

that would cause a particular priority operation to jam the reserved
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lanes are reflected in the dotted curves. The illustrations include

results for three-, four- and five-lane highways.

a. Three-Lane Highway

Figures la, 1b, 1lc, and 1d give the results for a three-lane
highway under congested conditions, where the reservation of one
lane is contemplated. Figure la shows the expected outcome when
the bus-auto ratio is as low as 1 percent; in that case, it ap-
pears that throughout the flow range, no priority operation
would prove satisfactory since any operation leads to the jamming
of one or other of the traffic lanes. The carpool designation
n = 2 causes the jamming of the reserved lane and, except in the
case of extremely high traffic density, also negative values
for the passenger-flow measure. Any one of the carpool designations
n =3, 4, and 5 (the designation n = 5 signifies an exclusive
buslane) causes the jamming of the unreserved lanes; however, it
should be noted that despite this, the priority operation could
still lead to significant improvements in the passenger flow, in
the high-density range. It would appear that the designation
n = 3 would give the most promising priority performance since it
yields positive values for the passenger-flow measure throughout
the flow range and extremely high values in the extremely con-

gested range.

Figure 1b gives the corresponding results when the bus-auto
ratio is increased to 5 percent. Here,the designation n = 2 again
causes the jamming of the reserved lane and yields a negative value

for the flow measure. The designations n = 3, 4, and 5 give roughly
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similar values to the flow measure; however, whereas the cases n = 4
and 5 imply the jamming of the unreserved lanes, the designation
n = 3 would permit both lanes to move, at least in the moderately

congested range.

The pattern is roughly the same when the bus-auto ratio is
increased to 10 percent as shown in figure lc. Again, the designa-
tion n = 2 indicates a negative result with jamming of the reserved
lane, while the designations n = 3, 4, and 5 give positive values
to the flow measure in spite of the possible jamming of the un-
reserved lanes in the high-density range. While the cases n = 4
and 5 give higher values to the flow measure than does n = 3,
the latter permits a much wider range (i.e., density range) for
the implementation of the priority operation, without leading to
the jamming of the unreserved lanes. In this respect,the designation

n = 3 may prove the most satisfactory.

This pattern becomes even more pronounced when the bus-auto
ratio is increased to 15 percent as illustrated in figure 1d. The
designation n = 3 could now be applied over the entire density
range leading to positive values for the flow measure without
jamming any lane. The designations n = 4 and 5 yield much higher
values for the flow measure but can cause jamming on the unreserved

lanes in the range of high-density traffic.
b. Four-Lane Highway

The results for a four-lane highway under congested conditions,
where the reservation of one lane is contemplated, are shown in
figures 2a, 2b, 2c, and 2d for the various values of the bus-auto

ratio. 32
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In the case of a low l-percent bus-auto ratio as shown in
figure la, the implementation of any priority operation will cause
jam conditions. In the case of a carpool designation n = 2, the
reserved lane is hammed, while in the other cases n = 3, 4, and 5,
the unreserved lane is jammed. Since the designation n = 3 leads to
the widest range of positive values for the passenger flow, and
also to the largest values for the passenger flow at any point

in the range, it would appear to offer the best potential.

The results for a bus-auto ratio of 5 percent are shown in
figure 2b. The designation n = 2 again causes the jamming of the
reserved lane and, except for the extremely high-density range,
negative values for the passenger-flow measure. At the other
extreme, the reservation of an exclusive buslane (n = 5) causes
the jamming of the unreserved lanes but yields high values for
the passenger-flow measure throughout the range. The intermediate
values n = 3 and 4, while not giving such high values to the flow
measure, do yield significant improvement without causing a jam
in the region of moderate congestion. In fact, the designation
n = 3 offering the widest range of jam-free priority operation

would appear to offer the greatest promise.

When the bus-ratio is increased to 10 percent (Fig. 2c), the

designation n = 2 again gives quite unfavorable results. The

designation n 3 offers a very moderate improvement in passenger
flow throughout the range without causing a jam on either part of
the facility. The designations n = 4 and 5 give much greater

improvements to the passenger flow; however, in the range of high

congestion, this improvement is achieved at the expense of jamming
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the unreserved lanes. It would appear that for moderate congestion
the best results are achieved by an exclusive buslane. In the
range of intermediate congestion, it would be advisable to admit
carpools of four persons. If the congestion is heavy, the best
policy is probably to admit carpools of three or more persons on

the reserved lanes.

In the case of high (15 percent) bus-auto ratio, the results
shown in figure 2d are quite clear-cut. The designations n = 2
or 3 yield consistently negative values for the passenger-flow
measure: this is accompanied by the jamming of the reserved lane
for the case n = 2 in the entire range and also for the case
n = 3 excepting the range of moderate congestion. On the other
hand, the designations n = 4 and 5 yield significant improvements
in passenger flow without jamming any of the lanes. It is of
particular interest in this case that the exclusive buslane (n = 5)
yields values for the flow measure more than double that obtained

by admitting carpools of four persons on the reserved lane.
c. Five-Lane Highway

The results for a five-lane highway under congested conditions

are illustrated in the sets of figures 3 and 4.

Figures 3a, 3b, 3c, and 3d show the expected outcomes when the
operation is based on the reservation of one lane. The results in
the case of low bus-auto ratio are shown in figure 3a. The curves
for the respective carpool designation follow a definite pattern
over the range of a-priori flow. However, where the designation

n = 2 leads to a jammed reserved lane, the designations n = 4 or 5
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cause jamming on the unreserved lanes. Again, the most promising
designation is for carpools of three or more persons, which does
not cause jamming except in the extremely high-density range and

yields consistently positive values for the passenger-flow measure.

The results for the higher bus-auto ratio of § percent are
shown in figure 3b. The designation n = 2 causes jamming on the
reserved lane and negative values for the flow measure except in
the extremely congested range. The exclusive buslane (n = 5)
leads to consistently significant improvements in the passenger
flow, but is likely to cause jamming on the unreserved lanes in
the high-density range; the admission of carpools of four persons
on the reserved lane does not seriously affect the situation. When
carpools of three or more persons are admitted to the reserved
lane, the improvement in passenger flow is not as pronounced but

the danger of jamming appears to be eliminated.

In the case of a bus-auto ratio of 10 percent (Fig. 3c), the
results are quite clear-cut. The admission of carpools of either two
or three persons jams the reserved land and yields consistently
negative values for the passenger flow. On the other hand, the
reservation of an exclusive buslane implies a consistent and sub-
stantial improvement in passenger flow over the entire range
without any danger of jamming. The admission of carpools with
four persons yields a qualitatively similar pattern though it

moderates by roughly 30 percent the improvement in passenger flow.

Figure 3d shows that when the bus-auto ratio is raised to

15 percent, no improvement in overall passenger flow can be expected
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from a priority operation. The reserved lane becomes jammed for
the designations n = 2 and n = 3 and, except for the moderate con-
gestion range, also for the case n = 4. Even the reservation of

an exclusive buslane (n = 5) yields a consistently negative value
for the passenger-flow measure, and in the high-density range, also

leads to the jamming of the reserved lane.

The corresponding results when the reservation of two lanes

is contemplated are shown in figures 4.

The predictions in the cases when the bus-auto ratios are 1
and 5 percent are shown in figures 4a and 4b, respectively. The
designation n = 2 causes the jamming of the reserved lane in each
case and (mostly) a reduction in the overall passenger flow.

The designations n = 3, 4, or 5 cause the jamming of the unreserved
lanes, while over most of the range they yield positive values to

the passenger-flow measure.

When the bus-auto ratio is 10 percent (Fig. 4c), the designa-
tion n = 2 again leads to a jam on the reserved lane and negative
values for the passenger-flow. If we admit only cars with three or
more persons, then there is a consistent improvement in passenger
flow with the tendency to jam the unreserved lanes confined to the
high-density range. The reservation of an exclusive buslane
(n = 5), or the admission of four-person carpools (n = 4) while
increasing the passenger-flow measure, also tends to jam the un-

reserved lanes over the entire density range.

Greater potential for implementation is seen when the bus-auto

ratio is increased to 15 percent (fig. 4d). The designation n = 2
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again jams the reserved lane and yields negative values for the
passenger-flow measure. At the other end, the reservation of an
exclusive buslane (n = 5) yields a positive value for the passenger-
flow measure but causes jamming on the unreserved lanes, except

when the congestion is quite moderate. The admission of carpools
with four persons, while decreasing the passenger-flow measure,
extends the range of nonjamming. The further admission of car-
pools of three persons continues this tendency; namely, the pas-
senger-flow measure is further reduced but the range of satisfactory

(nonjamming) operation is further extended.

S. Possible Extensions of Analysis

a. Highway Classification

The number of highway lanes characterizes the physical dimen-
sions of the facility, and thereby, determines the capacity. The
second dimension of classification which typically distinguishes
between freeways and arterials is, at least partly, reflected in
the parameter describing mean free speed. According as other
factors, such as speed limits, become significant, the less likely
does the mathematical formula approximate the speed-flow relation.
The formula is most likely to be applicable on those facilities
which share the principal features of a freeway. However, as
long as we have at out disposal in some form a speed-flow curve
describing the traffic pattern on the facility, the present method

of analysis may be applied.
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For the freeway, we assume that the imposition of the priority

operation does not affect the mean free speed on either part.

On an arterial the increased restriction on the unreserved
part may require a reduction of the mean free speed: accordingly,

if we write va for this modified free speed, we have

® =
V¥, AVO,

where the quantity A < 1 is to be chosen to give the appropriate
adjustment. Typically, A could be chosen to reflect the penalty
for the unreserved lane in conceding priority to the reserved lane

at traffic-light intersections.

In the case of city streets,there are available only very re-

stricted data on the speed-flow characteristics. While a rough
estimate could be obtained by using smaller values of A, it is
probably more reliable to use actual data from the facility no
matter how crude and limited they may be. Moreover, it should be
noted that when the bus frequency on a city street is sufficiently
high to warrant consideration of priority rules, it is likely

that a de-facto reserved lane is already in operation.
b. Reverse-Lane Operation

In certain cases, a more efficient use of the facility may
be made by appropriating one or more reverse lanes for priority
use. This would arise in a situation where the demand so pre-
dominates in one direction that such appropriation of lanes from
the direction of lighter traffic would have little adverse effect

on the flow in the latter direction.
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In cases where such operations might be beneficial, the main
difficulty arises in the necessity to design an effective operating
procedure. Where the implementation appears practical, the pre-
liminary quantitative assessment may be made by a straightforward
extension of the procedures already outlined for a one-sided priority

operation.

In the analysis of the extended system, it would be necessary
to consider the demand and passenger flow in both directions, and
thereby, estimate the overall reduction in travel time as well as
the distinct effects on what are now three separate parts of the
facility; namely, the side of dominant flow together with both
the appropriated and nonappropriated parts of the other half.

Such an operation is sure to improve the travel time for passengers
in the dominant-flow direction. The purpose of the analysis would
be to estimate if the improvement, as modified by the delay that

may be thereby imposed on the opposite-direction traffic, is worth

the cost of implementation.

Further modifications of the analytic procedure could be
made to accommodate such factors as projected occupancy shifts

that might result from the introduction of the priority operation.
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INTRODUCTION

In the analysis of highway traffic, the quantities used to

describe the kinematic features are
i. the flow, measuring the volume of traffic per unit time,

ii. the mean speed, representing an average vehicle speed, and

iii. the density, signifying the number of vehicles per unit

length of highway.
The three factors are connected by the relation
Flow = Density x Mean Speed,

so that the specification of one further formula, connecting two

of the three quantities, suffices for the complete characterization
of the traffic flow. This complementary relation is called the
Fundamental Formula of Road Traffic, and generally, is given a

form expressing flow in terms of density. The corresponding forms

of the speed-density and flow-speed relations can then be inferred.

Of the three parameters, the flow admits the greatest ease in
measurement. Notwithstanding this and despite the fact that the
density offers the greatest difficulty for observation, there has
been a tendency to regard the latter as the independent variable.
This may be at least partly caused by the fact that it has the most
clearly defined maximum; namely, the jam density, which gives an
unequivocal designation of the range. A contributing influence

seems to arise from the analogy with fluid mechanics. In that
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context, the equation of state in gas dynamics would have its
counterpart in traffic analysis in the flow-density relation, which

is the usual manner of specifying the Fundamental Formula.

Various forms of the latter relation, or of its equivalent
speed-density relation, appear in the literature, some of which have
been derived from postulated models of traffic flow. On the basis
of a car-following model, Pipes [12] proposed a linear flow-density
relation, which, however, can have but limited validity. The loga-
rithmic form given to the speed-density relation by Gazis, Herman,
and Potts [4], was also derived from a car-following model: how-
ever, a different emphasis led Underwood [14] to an exponential form
for the same relation. It is evident that the former could not be
valid for free flow, while the latter could not reflect the real
situation in the region of congested flow. Consideration of these
factors in his analysis prompted Edie [3] to suggest two density
ranges in the treatment of road traffic: the exponential form
would be used for low-density flow, while the logarithmic form

would be appropriate in the high-density range.

Other forms have resulted from more direct empirical consi-
derations. The original linear form of the speed-density relation,
proposed by Greenshields [7], still remains a strong candidate for
attention. Apart from its simplicity, it has the further attraction
of being asymptotic to both the exponential and logarithmic forms in
their respective ranges of possible validity. The more complicated
algebraic expression designed by Guerin [8] and Palmer [11] to fit
actual data satisfies all the terminal requirements expected of the

Fundamental Formula. Mention should also be made of the Gaussian
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formula, adopted by Drake, May, and Shofer [1], which, however,

shares the drawback already noted for the exponential form.

From a statistical analysis of the traffic characteristics,
Haight [9a, 9b] derived two further forms for the Fundamental
Formula. The first may be considered a modified logarithmic rela-
tion, whereby the embarrassing singularity at low density is removed;
the second generalizes Greenshields' formula, thereby allowing a

further degree of freedom in the choice of parameters.

Finally, we note certain formulas deduced from the fluid-flow
analogy. From this model, the logarithmic speed-density relation
was obtained independently by Greenberg [6]. The procedure was
later extended by Drew [2] who, thereby, derived a generalized form
of Greenshields' formula, wherein the unit exponent was now replaced
by a more general index. In this context, the formulas of Green-
shields and Greenberg, as well as a third formula receiving special

attention from Drew, all appear as particular cases.

From this brief survey, there emerges the curious fact that
the formulas, derived from specific models of traffic flow, do not
exhibit any particular advantage over the empirical formulas, ob-
tained from more direct pragmatic considerations. This is not
surprising since there appears to be no a-priori reason why any of
the proposed models should be expected to reflect the dynamics of
traffic flow throughout the entire density range. Either way,
there is a valid case for approaching the problem pragmatically.
When a satisfactory formula has been conceived, it would still be

interesting to explore the inferences, and possible insights, for
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the various models; in particular, the implied equation of motion

for the fluid analogy would merit attention.*

It is now appropriate - and perhaps overdue - to make explicit
the features expected of the Fundamental Formula. Clearly, the

speed-density relation should yield

1. a finite maximum mean speed (the free speed) at zero

density,
2. a zero mean speed at jam density.

These constraints would imply the automatic satisfaction of the

expected terminal conditions on the flow; namely,
3. a zero flow at zero density,
4. a zero flow at jam density.

There is a fifth terminal condition requiring that the Fundamen-

tal Formula reflect the fact that

5. on a nearly empty road the mean speed is unaffected by

moderate changes in the density,

*The interpretation of the various formulas in terms of the car-
following model has been examined by a number of authors, including
Gazis, Herman, and Rothery [5], Haight [9c], and Drew [2]. Cita-
tions to the work of other investigators may be found in these
references, and also, in the book by Wohl and Martin [15], where
various forms of the Fundamental Formula are compared from the
viewpoint of applicable utility: a fuller discussion of the under-
lying hypothetical models is also included.
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the reasonableness of which can hardly be questioned.®* Besides
these five conditions, there are other features which, though not

logically necessary, are nonetheless desirable; namely,
6. the Fundamental Formula should be simple, and
7. it should lead to a clear definition of road capacity.

This last pair emphasizes two distinct aspects of what may be
essentially a single intuitive concept. While simplicity may pri-
marily be an esthetic feature, the unequivocal clarification of
maximum flow, together with its associated speed and density, pre-

supposes a certain simplicity in the Fundamental Formula.

As already noted, many of the formulas mentioned earlier vio-
late one or other of the terminal conditions (1) and (2). Moreover,

when we impose the fifth condition (5), only two candidates survive,

namely
a, the Guerin-Palmer formula, and
b. a restricted form of Drew's formula,

where, in the latter, the restriction signifies that the index must
be greater than unity. That Drew, in his analysis, gives only pas-
sing attention to this range, may be caused by the fact that it
implies for the fluid model, on which the derivation is based, an

equation of motion, in which the forcing term does not suggest an

*For a discussion of this and the other terminal conditions, see
Haight [9c].
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obviously plausible motivation. Returning to the Guerin-Palmer
relation, we note that the formula was designed to fit actual data,
bearing in mind the satisfaction of the terminal requirements, in-
cluding the fifth condition, with commendable success. However,
though the form is algebraic, it involves irrational factors which
deprive it of analytic simplicity, as evidenced by the fact that the
definition of capacity leads to a sixth-order algebraic equation
with an undetermined coefficient. An assessment of the full merits
of the Guerin-Palmer formula would require a more detailed examina-

tion of this latter equation.

In the present work, we propose a form of the Fundamental
Formula which, besides satisfying the five terminal conditions, also
meets the requirement of analytic simplicity, so that the capacity
together with the associated speed and density is readily deduced
Considering it reasonable to assume that the most reliable informa-
tion lies in the data associating speed with flow, we find that an
inspection of the graphs depicting this correspondence suggests a
form that admits a relatively simple mathematical representation of
the underlying relation. The derivation of the implied speed-density
and flow-density relations is then a straightforward deduction,
from which it emerges as a natural feature that density should
play the role of the dependent variable. This perspective of the
problem, although the most consistent with practical considerations,

does not seem to have been explored heretofore.

Presented in its simplest form, the formula contains two in-
dependent parameters reflecting the jam density and the free speed,

respectively. At first sight, it would appear to lack one
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disposable parameter available to the Guerin-Palmer formula, by
means of which the latter may permit the independent specification
of the capacity or of its associated density. The clarification of
this question would require a fuller investigation of the latitude
permitted in the choice of the undetermined coefficient in the
Guerin-Palmer relation. Within the limitation already noted, the
formula of Drew also has a third independent parameter permitting
the independent designation of one of the three basic quantities at
capacity. However, this freedom should be exercised with a cautious
eye on how faithfully the associated graph portrays the shape of the
data-based curves. We shall return to this point in the later dis-

cussion.

More significant for the form proposed here is the fact that it
appears to offer fairly wide latitude for generalization, so as to
admit the independent assignment of other road parameters besides
jam density and free speed. Such factors might include capacity, or
alternatively its associated mean speed or density, as well as other
less obvious quantities. But there does not appear to be any
general agreement as to what factors should be represented in the
Fundamental Formula. This question can be decided only by systematic
observation, designed with the specific aim of abstracting the speci-
fic characteristics. The observation and analysis of traffic wave
propagation, suggested in the works of Lighthill and Whitham [10]
and Richards [13] could be utilized to assess the relative validity
of the proposed formula and its possible generalizations against
the two alternatives discussed above. In particular, a detailed

inspection of propagation speeds ought to indicate whether or not
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capacity should appear as an independent parameter in the Funda-
mental Formula. In the absence of adequate information permitting
either an assessment of the dominant parameters or an appraisal of
the relative merits, a full investigation of the possible generali-
zations of the formula presented here is hardly justified at the

present time.

We conclude with a brief discussion of the implications for the
fluid-flow analogy of the proposed formula. Since the Fundamental
Formula determines the forcing term in the equation of motion; this
could lead to the formulation of an appropriate hypothesis governing

the acceleration pattern in traffic dynamics.

1. Formulation

In the analysis of road traffic, it is customary to let q de-
note the flow (vehicles per hour), while v and k represent the cor-
responding mean speed (miles per hour) and density (vehicles per
mile), respectively. The three quantities are connected by the re-

lation

q = kv, (1.1)

which, it should be noted, is dimensionally necessary and so is not
necessarily restricted in its relevance to vehicular movement on
highways. For the particular application to this latter type of
traffic, it is necessary to specify a further relation expressing
the interdependence of the three quantities, characteristic of high-
way flow. This relation, called the Fundamental Formula of Road

Traffic, may be conceived in its general form
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qa=q (v,k).

However, if we bear in mind that it is to be used in conjunction
with relation (1.1), it is evident that this degree of generality
is redundant. 1In fact, formula (1.1) can be used to eliminate any
one of the three quantities from the characteristic relation, so
that it suffices for the Fundamental Formula to express the mutual
dependence of the remaining two. This dependence has generally

been given one of the forms

q=q(k), v = v(k),

relating either the flow or the speed to the density. For the rea-
sons already discussed, we shall rather consider the density to

have been eliminated so that the Fundamental Formula takes the form

q = q(v), i (1.2)

expressing the dependence of flow on speed, both of which admit a
fairly direct means of observation, and for which there is rea- |

sonably reliable data available.

The density has a clearly defined maximum; namely, the jam
density, which we denote by k4. Moreover, it is consistent with
experience to associate with a vehicle unhindered by other traffic,
a characteristic maximum speed called the free speed and denoted by
VO. If we further recall that jam-packed traffic is stationary,

we see that the first pair of terminal conditions on the speed may

be written

k=0-»+vs=yv_ , (1.3a)
kK =5k, v =0 . (1.3b)
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These, in conjunction with relation (1.1), immediately imply the

satisfaction of the terminal features expected of the flow; namely,
k=0->-q=0’ (1'43)
k=%ky rq=20, (1.4b)

The fifth terminal condition, that on a nearly empty highway
the speed is unaffected by modest changes in the density, may be
incorporated by imposing the requirement

lim dv _ 0

k+0 dk - O (1.5)

which will receive more detailed attention later. We note that the
five conditions have been formulated with respect to the terminal
values of the density range. Since we shall consider the density as
the dependent variable, and the Fundamental Formula in the form of

a speed-flow relation, our procedure will necessitate a correspond-

ing reformulation of these conditions.

As the fulfillment of requirements (1.4) follows automatically
from (1.3), it will suffice to generate a formula of the form

(1.2) which implies the satisfaction of conditions (1.3) and (1.5).

2. Normalization

It will prove convenient to introduce normalized density and

speed parameters, A and m, by setting

)\=-}§,m=¥- (2.1)
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so that with a dimensionless flow variable ¢ , defined by

Q= kavg o, (2.2)
relation (1.1) reads

¢ = Am, (2.3)
in which each of the quantities A and m now has the range (0,1).
The terminal conditions (1.3) then become

A=0-»m=1, (2.4a)

A=1-+m= 0, (2.4b)
while requirement (1.5) assumes the form

lim dm _ 0 . (2.5)

A0 dx
From (2.3) and (2.4), the fulfillment of the dimensionless form of

(1.4); namely,

A = 0 » ¢ = 0, (268.)

>
W
=
4
-
]
'O

(2.6Db)
will follow automatically.

The problem then is the determination of a formula expressing

the dimensionless form of (1.2); namely,
¢ = ¢ (m), (2.7)

which, when taken in conjunction with relation (2.3) will satisfy
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conditions (2.4) and (2.5).

As a consequence of relation (2.3), we observe that

do _ dm
a%“m**ﬁ’ (2.8)

so that conditions (2.4a) and (2.5) also imply that

lim d¢ _

wo o - b (2.9)

to which it will be convenient to refer later.

3. The Fundamental Formula

Expressed in terms of speed and flow, the terminal features

(2.4) and (2.6) clearly require that

1
o

1+ 4 , (3.1a)

=
n

o, (3.1b)

m 0+ o

while the fifth condition (2.5), if we note the limit requirement
(2.9) and apply the chain rule, implies

lim
m+1

|%¢l=m, (3.2)

The formulation of the flow-density relation must meet the require-

ments (3.1) and (3.2).

Before the presentation of the suggested form, it is appro-
priate to make some motivating remarks which shall be set in the

context of the Guerin-Palmer and the Drew relations. The general
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formula of Drew, when transformed to a speed-flow relation, in the

present notation reads

2

o = m(l-m)N+l, N> -1,

which clearly meets requirements (3.1). Moreover, differentiation

yields
2 1-N
d¢ N+1 1+N
= (1-m) - 2 m(1l-m) ’
dm N+

which satisfies condition (3.2) only for N > 1.* 1In fact, for
N > 1, we have
N-1 ,

d¢ _ 1
l dm | =0 (l-m m->1

Even for values of N quite close to unity, this implies a rather
sharply steepening curve in the region of low density, a feature also
shared by the more complicated Guerin-Palmer relation, originally
designed as a flow-density formula which, in the present notation,

reads

. A (1-ni/e
axt + (1-01/2°

with a as a disposable parameter. However, there does not appear

*This range received little attention from Drew [2].
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to be any prior disposition for anticipating this rather abrupt

pattern in the speed-flow relation.*

In fact, the existing data on the speed-flow correspondence,
as produced, for example, in the Highway Manual, would seem to im-
ply a curve steepening at a more moderate rate, in consideration of
which a logarithmic growth for the speed-flow derivative in (3.2)
immediately suggests itself. The formula which, besides meeting
conditions (3.1), also leads to a logarithmic growth rate for the
derivative in the free-flow (low-density) range, in its simplest

terms, has the form
¢ = - (1-m) In(l-m) . (3.3)

Regarding requirements (3.1), condition (3.1b) is obviously
satisfied, as is also condition (3.1a), if we recall that

lim

xap Xmx =0 . (3.4)

The satisfaction of condition (3.2) follows from noting that dif-

ferentiation of formula (3.3) yields

do¢
dm

1 + 1n(l-m) (3.5)

which also indicates the more modest growth rate for the flow-speed
derivative; in fact, relation (3.5) was the motivation which led to

formula (3.3).

£ Tt should be emphasized that the judgment implicit in these and
subsequent remarks is largely intuitive, the validity of which must
be tested by more rigorous means.
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Moreover, the curve follows an expected pattern; it has a
unique maximum for a speed value mcdetermined by setting the

right-hand side of (3.5) to zero. Hence,

- =1-%:0.63 (3.6)

(where e is the base of the natural logarithms), and the associated

flow, b »is given by
b = =3 0.37 (3.7)

The quantity (3.7) represents the dimensionless capacity flow,

while (3.6) gives the associated normalized speed.

Since it is customary to measure flow as a volume-capacity

ratio, it is convenient to introduce a normalized flow variable 0,

defined by

? = %Z = ed, (3.8)
so that

p=-¢€e(l-m) 1In(1l-m). (3.9)

This normalized speed-flow relation is shown in figure A-1.

As it contains no free parameter, formula (3.3) admits the in-
dependent specification merely of jam density and mean free speed.
There is, as yet, no direct evidence, either way, whether such fac-
tors as capacity should be independently represented. In fact, it
appears to be a valid question whether capacity could be an indepen-

dent parameter since quite conceivably it, together with its asso-
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ciated density and mean speed, is completely determined by the jam
density and free speed. Considered from another angle, as the phy-
sical dimensions of the facility are represented by the jam density,
it is quite credible that the potential capacity be directly reflected
in the free speed, at least within practical limits, as 1is implied

by (3.7). Nevertheless, we.shall return, in section 6, to a consi-

deration of a more adaptable form of (3.3).

We remark that for near-capacity flow, the characteristic
feature is the insensitivity of the flow to modest changes in the
mean speed. Expressed in its converse form, this reflects the
phenomenon experienced in the near-capacity range where the mean

speed is extremely sensitive to slight changes in the flow.

We conclude this section by noting some limiting forms valid

for congested flow. Recalling that, for m near zero, we have

In(1-m)? :m - zn° - gm5 - ..., me<d, (3.10)

it follows that, in the congested range, formula (3.3) may be ap-

proximated by

¢ ~m - ym” - @Zm” - ..., me<l . (3.11)
In a similar manner, the asymptotic relation,

%% 21 -m-gm® - ..., me<l, (3.12)

follows from utilizing (3.10) in relation (3.5).
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We now turn to a consideration of the relations of both speed

and flow to density implied by the proposed formula.

4. Speed-Density Relation

In this section, we show that the speed-density relation im-
plied by the Fundamental Formula does, in fact, meet the terminal

conditions (2.4) and (2.5).

In considering the density, we refer to relation (2.3); written

in the form
-9
A= o (4.1

this formula, on the introduction of ¢ from (3.3), yields the speed-

density relation,

m

A= (1 - 1->1n(1-m), (4.2)
in implicit form.

Using the approximation (3.10) in relation (4.2), we obtain

the asymptotic form

NI 1-gm-dn? - L, mecl, (4.3)

valid in the region of congested flow. We can now derive the limit-

ing relations
m=1+)\=0, (4.4a)

m=0->}\=1’ (4'4b)
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where the former follows from applying the limit formula (3.4) to
relation (4.2), while the latter is evident from (4.3). That the

satisfaction of the terminal conditions (2.4) is thereby established

will follow from demonstrating the single-valuedness of the A - m

functional dependence in the range (0,1).
Taking the derivative of (4.2), we find

R - L [1 + 1 1n(1-m)J : (4.5)

Observing that for 1 <y < =,

1ny=/%dt31-)1—,,

with equality holding only at y = 1, it follows that for O <x <1,
- Inx > 1 - x,

and hence, for 0O<m <1
In(l-m) < - m,

implying that
1+ 1. 1n(l-m) < O, (4.6)

with equality possible only at m = (0. Moreover, by applying the

expansion (3.10) near m = 0, we see that

1

~ 1 2 1.3
1 + = In(l-m) < - i

- - ..., me<l, (4.7)

wg—a
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and hence,

1

Ll 1 1n(1-m)} o3 lie ke gn? e | meat, (4.8)

From (4.6) to (4.8), it is clear that the derivative (4.5) is
strictly negative throughout the range (0,1), which suffices to
prove the single-valuedness of the speed-density relation (4.2);
hence, the limiting relations (4.4) imply the satisfaction of the

terminal conditions (2.4).

Taking the reciprocal of formula (4.5) for the derivative, we
have

dm m

= : (4.9)
oy = 1n(1-m)

If we let A+0, so that m+1, it is obvious that the right-hand side
tends to zero, so that the fifth condition (2.5) is also satisfied.
As was implicit in previous remarks, this logarithmic decay seems
more attractive than the algebraic decay implied in both the

Guerin-Palmer and Drew formulas.
The normalized speed-density relation is shown in figure A-2.

5. Flow-Density Relation

The flow-density relation can be inferred only indirectly
through a combination of relations (3.3) and (4.1). Formula (4.1)
gives the density as the ratio of flow to speed. To express the
speed factor in terms of flow, we must rely on the implicit form of

the speed-flow relation (3.3).
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Though the relation must remain in this implicit form, it is
still possible to make explicit the main qualitative features of the

functional dependence. Applying the chain rule to the flow-density

derivative, we find

do _ 1 + 1n(1-m)
=m (5.1)
dx 1+ % 1n(1-m)

in which we have used both relations (3.5) and (4.9). In the limit

of the free-speed (low-density) range, we clearly have

lim d¢ _ 1lim d¢ _ (5.2)
A0 dX T mel dX : )

On the other hand, if we employ the expansions (3.10) and (4.7)

for the congested range, we obtain

1 - In? -,
%% z T gm [12T %m - %;L - .,_J , m<<1l, (5.3)
so that

lim d¢ _ 1lim d¢ _
1 dx ~om> ax - 2 ¢ (5.4)

The denominator on the right-hand side of (5.1) is infinite only
in the limit m = 1, in which case it is cancelled by the numerator
to yield the limiting value (5.2) for the derivative. If we also
observe the limiting value (5.4) for m = 0, we see that the only
zero for the flow-density derivative is that of the numerator in
(5.1), which has already been noted in section 3, as giving the
capacity values for the speed (3.6) and the associated flow (3.7).
From (4.1), we obtain the corresponding value of the density;

namely,
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~ 0.58, (5.5)

measured as a fraction of the jam density.
If we consider the normalized flow p, as defined by (3.8),
then (5.2) and (5.4) imply the limiting values

lim dp _ lim dp _

A0 IX - € ol I -2e (5.6a,b)

The normalized flow-density relation is shown in figure A-3.

The quantity defined by the derivative (5.1), usually denoted by
c, is the wave speed; it measures the speed at which traffic distur-
bances are propagated through the flow medium. The ratio of wave
speed to mean speed is given by

1 + 1In(1-
1 + L i » . (-7
T n(l-m)

~
-~

g0

Since the denominator on the right-hand side of (5.7) exceeds the

numerator throughout the range (except for equality at m = 1), the
wave speed must always be less than the mean speed, reflecting the
fact that traffic disturbances always propagate backward through

the flow. Whether or not the waves travel forward or backward in
space will depend on the flow being less or greater than capacity.
These features have been treated at length in references [10] and

[13].

Finally, relation (5.4) indicates that for the Fundamental
Formula (3.3), the (backward) jam-shock wave speed is twice the
(forward) mean free speed. This appears to be more realistic than

the infinite value implied by the Guerin-Palmer formula.
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6. Generalizations

One could now consider an arbitrary function of the argument
(1-m) 1In(l-m), and investigate the conditions under which such a
function would represent traffic flow within the stipulated require-
ments. However, we shall rather confine our attention to demonstra-
ting that formula (3.3) is, in fact, the simplest example from a
class of functions, which, under relatively mild restrictions, meet
the requirements of the Fundamental Formula. We consider a more

general speed-flow relation in the form
¢(m) = - [(1-m) In(l-m)] . £(m), (6.1)

and note the requirements on f(m) in the interval (0,1), under which
the speed-flow pattern is preserved and the terminal conditions sat-

isfied.

Clearly, f(m) must be strictly positive. Moreover, for the
satisfaction of conditions (3.1), it suffices that f(m) be bounded

(finite) on the interval. From the derivative

%1% = [1 + In(1-m)1£(m) - [(1-m) 1n(1l-m)]1£'(m), (6.2)

it is evident that condition (3.2) is satisfied provided f(1) is
nonzero and f'(l) is finite; also, the logarithmic growth for the

derivative is thereby retained. We may further note that setting

1+ In(l-m) = f'($ [(1-m) 1n(1-m)] (6.3)

gives the equation determining the capacity speed m., which, when
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substituted into (6.1), yields the capacity flow.

Turning to the speed-density relation, we combine (6.1) with

(4.1) to obtain
A= (1 - 1) mn@a-ms 6.4
= (1 - ) m@-m1Em), (6.4)
so that, corresponding to relation (4.3), we have

A2 [1 - Zm - m” - «o.]£f(m), m<<l, (6.5)

and the terminal conditions (4.4) are clearly satisfied if we add

the requirement
£(o) = 1. (6.6)
Taking the derivative of (6.4), we obtain

%% = %[1 + %ln(l-m)]f(m) - %[(l-m)ln(l-m)]f'(m), (6.7)

which remains étrictly negative, provided f'(m) is nonpositive
throughout the range. This latter condition ensures that the satis-
faction of conditions (4.4) implies the satisfaction of conditions
(2.4). Finally,

dm m

} , (6.8)
* . % 1n(1-m)] £(m) - [(1-m) 1n(l-m)]£'(m)

so that the logarithmic decay in the satisfaction of condition (2.5)
is preserved if, as was already required for condition (3.2), f(1)

is nonzero.

With the above restrictions on the generalized form, the
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pattern of every one of the three curves is also preserved.

Summarizing, we see that the two requirements

a. f(m) is bounded, strictly positive, and has a nonpositive

derivative on the interval (0,1), and

b. f(m) satisfies the terminal conditions

1) £(0)

1,

2) £(1) a, 0 <ac<l,

3) [£1()] < =,

are sufficient, though probably not necessary, to ensure that re-
lation (6.1) preserves the features of the Fundamental Formula.
Moreover, by combining (6.2) and (6.8), we obtain the generalized

form,

=1+ 1In(1-m)] £(m) - [(1-m) In(1-m)}] £'(m)
[1+ 2 1n(2-m)] £(m) - [(1-m) In(l-m)] £'(m)

glo,

, (6.9)

for the ratio of wave speed to mean speed.

After (3.3), which corresponds to f = 1, it appears that the
formula next in order of simplicity would be the one implied by tak-

ing for f the linear form
f(m) =1-am, (6.10)
which, with a = 1 - a, satisfies the above requirements, provided

0 <o <1 . (6.11)
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Moreover, equation (6.3) for the determination of capacity now has

the form

1+ 1n(l-m) = - f‘;ﬁ [(1-m) 1n(l-m)], (6.12)

permitting, through the appropriate choice of o, the independent spe-
cification of either capacity or its associated speed. While this
equation does not have an obvious solution, it does admit a simple

approximate solution within the range of small values for a.

7. Fluid-Flow Analogy

In deriving the Fundamental Formula from the analogy with fluid
mechanics, the usual procedure involves the application of both the
equation of motion and the equation of continuity to the traffic
stream.* The utilization of the dimensional relation (1.1) in the
analog of the continuity equation leads to a partial differential
equation, in wbich both speed and density appear as dependent vari-

ables.

To write the corresponding equation of motion in explicit form,
it is necessary to postulate a specific law governing acceleration
in traffic flow, which describes how the pattern varies with such
factors as speed and density, including the distance-measured deri-
vatives of these quantities. When combined with the yet-unspecified
equation of state (Fundamental Formula), the equation of motion
then yields a second partial differential equation governing speed

and density. The requirement that the latter be consistent with the

*For more detail, see references [2] and [6].
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one derived from the continuity relation leads to an ordinary dif-
ferential equation, the integration of which yields the functional
dependence expressed by the Fundamental Formula. Here we outline
the procedure using a general form for the driving term in the equa-
tion of motion. From the ensuing consistency relation, it will be
evident what the acceleration law should be in order that the im-
plied Fundamental Formula should assume a pre-assigned form. In
particular, we derive the acceleration pattern associated with the

Fundamental Formula as expressed in the speed-flow relation (3.3).

We use t to signify the time variable, and let x denote the dis-
tance variable measured along the highway. At an arbitrary point in
time and space, we consider the acceleration determined by the in-
stantaneous traffic factors through an unspecified function, which,
in view of the constraint (1.1), may, in its most general form, be

written F(v,k). The equation of motion, therefore, reads

' 3
A var = F(v,k) . (7.1)

If we consider the associated equation of state in the form of

the general speed-density relation.
v = v(k), (7.2)

then its introduction into the equation of motion (7.1) allows the

latter to be written as

3k k1
5t oVeS = 2 F(v,K), (7.3)

where we have used prime to denote differentiation with respect to k.
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The corresponding equation of continuity has the form

ok , 3q _

Eyg + = 0, (7.4)
or, alternatively, in view of (1.1),

ok ok v

-a—f + V-a—i = -kH (7.5)
The latter may be rewritten as

ok ok _ ok

3T + V-a—)—(' = - kv! x ¢ (7.6)

through the introduction of the functional dependence (7.2) into

the right-hand side of (7.5).
The mutual consistency of equations (7.3) and (7.6) requires

(7.7)

so that the form of the driving term describing the acceleration
pattern, in traffic, is determined by the functional dependence im-

plied in the equation of state (7.2).

Conversely, if the acceleration law can be specified explicitly,
equation (7.7) yields the implied equation for v', so that the de-
termination of the equation of state is reduced to a quadrature.

In fact, if we let
G = G(v,k) (7.8)

denote an arbitrary function, dependent purely on the speed and

density factors and independent of their space derivatives, and
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consider F in the form

F(v,k) = -k35 [6(v,k)1° - (7.9)

(which, on reflection, appears quite reasonable), the equation for

v' becomes
v' = G(v,k), (7.10)

so that a straightforward integration yields the Fundamental For-

mula.

Returning to the more direct perspective of equation (7.7),
we introduce the dimensionless variables (2.1), so that the form

for F becomes
dm. 2
F = -vp“ags (a%) . (7.11)

If we substitute for the dimensionless speed-density derivative
from (4.9), we find

2 oA m2

F = -vq“2A .
0 "3x 1+ % 1n(1-m)]2 (7.12)

Returning to dimensional variables, we obtain

.1 2k
Flvi - 2 [1+ Y0 K
* 7 In(1 - ) (7.13)
0

for the law governing the acceleration pattern consistent with the

assumed form (3.3) for the Fundamental Formula.

While the above form is considerably more complicated than either
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of those considered in references [2] and [6], it implies the re-
latively simple form (4.2) for the speed-density relation. We have
already remarked on the desirability for simplicity in the Fundamental
Formula. On the other hand, if we require that a single law

describe the acceleration pattern throughout the entire density

range, there is no reason to ex;:ct that such a law should have a

simple formulation.

76



2a.
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