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PREFACE

Computer simulation of structural deformation under vehicle

crash conditions is an important tool for the prediction and design

improvement of vehicle crashworthiness. As an alternative and aid

to crash testing it also provides important cost benefits. There

are various mathematical models, with varying degrees of sophistica-

tion, describing the dynamics behavior of structures. The present

study is an attempt to unify the different approaches by using a

modular concept. Such an approach can provide the flexibility to

model different parts of a vehicle with different degrees of sophi-

stication and computer efficiency, and, hopefully, it can help avoid

the need for large, cumbersome software.
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1, INTRODUCTION

Computer simulation of structural deformation under vehicle

crash conditions is an important tool for the prediction and design

improvement of vehicle crashworthiness. As an alternative and aid

to crash testing it also provides important cost benefits. Effi-

cient computer models are needed to provide both economy and

flexibility in all analytical simulation efforts. In particular,

it is of value to be able to simulate a specific crash situation

with a minimum of software. This should lead to simplicity of oper-

ation by engineers, and also aid in engineering judgement regarding

prediction and design.

The Calspan-Shieh two dimensional frame program, the Battelle

FMCCM lumped mass program, together with the 3 -dimensional programs

under development at Lockheed, the University of Michigan and TSC

have been studied as to their feasibility and effectiveness for

general usage by engineers.

The Battel le - FMCCM program^ is essentially a large simplified

spring-mass model which is restricted to unidirectional motion.

This model handles collinear vehicle-to-vehicle as well as vehicle-

to-barrier impact conditions. It can include four masses and up

to 35 nonlinear resistances in the form of elasto-plast ic springs,

hydraulic energy absorber elements, and viscous dampers. The load

deformation characteristics are obtained from theoretical and/or

experimental data. The crash data must, of course, be interpreted

carefully. This model provides the ability to predict overall

vehicle response, and is useful in making parameter and design

trade-off studies.

7
In regard to the frame models, the Calspan model which

represents the earliest development in this regard, is applicable

to 2 -dimens ional frame structures. It is essentially a finite

element model with straight -beam elements, lumped masses at nodes,

and localized plastic hinges at pre-selected nodes. The program

is operational, and at present, can be useful for simple front

frame and bumper configurations.
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The 3-D TSC/DOT model 3 presently being developed at the Trans-

portation Systems Center can be regarded as a three-dimensional

extension of the Calspan model, in the sense that the assumptions

on ideal plastic hinges and lumped masses at nodes are the same as

in Reference 2. The analysis and computer implementation of the
4-6

TSC/DOT model is more heavily based on finite element techniques.

Another three-dimensional frame model, developed by Lockheed and
7

referred to as KRASH has been installed on TSC equipment. It is

a 3 -dimens ional extension of the FMCCM model, consisting of mass

connected straight "beam" elements. Forces and moments are deter-

mined from a linear elastic stiffness matrix which is adjusted for

plasticity by multiplying by a stiffness reduction factor. The

stiffness reduction factor concept is theoretically incorrect in

three-dimensional problems, since the stress vector can move on

the yield surface having one component increase and another com-

ponent decrease in the same loading step. However, under some

deformation mode, if the proper factor is used, it could produce
g

a reasonable result. CRASH is a more general three-dimensional

frame model which uses plasticity theory. It has been used to

model the vehicle to barrier impact of a Mustang. The data in-

dicated that the simulation gave too stiff a result. The work at

the University of Michigan falls in the general category of 3-

dimensional frame models using the plastic hinge concept, and is

discussed in Ref. 9. Reference 9 has also proposed a kind of

modular concept to model major components of a vehicle.

Additional features which would produce more complete simula-

tion should, for instance, include the ability to unite a rigid

body element (such as the engine block) with a deformable structure,

and the ability to allow an optimum mix of several finite elements

(i.e., plate, beam and specialized spring elements) to represent

vehicle components. Such features can be incorporated conveniently

by means of a modular approach. Such an approach can provide both

computer efficiency and detailed accuracy in a specific situation;

hopefully, to avoid the need for large, cumbersome software.

The main purpose of this report is to describe a unified

modular approach for vehicle structural simulation. Such

1-2



an approach will provide the flexibility to model different

parts of a vehicle with different degrees of sophistication, de-

pending on the type of information one is seeking. For example,

in the frontal or oblique impact of a vehicle, detailed modelling

of the front end may be necessary; however, the passenger compart-

ment and the rear end can be modelled as a rigid body of finite

size. In the case where more detailed information is required for

the passenger compartment, such as differences in acceleration at

several passenger locations, the elastic motion of the passenger

compartment may have to be considered. In this case, a simple

modal approximation can be used for the passenger compartment it-

self.

In the present study, an

integration. A beam element

rotations and plastic hinge acti

take tension or compression, a f

an element using modal approxima

this report.

it scheme is used for numeric

Hows large three-dimensional

spring element which can on

inite size rigid body element and

tions are presented in detail in

exp lie

which a

on , a

al

iy
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2 . MODULAR FORMULATION AND TIME INTEGRATION OF A DYNAMIC SYSTEM

Consider a vehicle consisting of a finite number of components,

such as bumpers, chassis, engine, passenger components, wheels,

etc. A schematic sketch is shown in Figure 1. A component itself

may consist of one or many individual elements. The behavior of

a component (or an element) is expressed in terms of the generalized

coordinates at a finite number of points of the component (or the

element) in the form of component (or element) mass matrix m^

,

damping matrix c. and stiffness matrix k. . Some or all of these

points are connected to adjacent components and the discussion of

the appropriate matrices will be given in Section 3.

The component matrices can, in general, be functions of the

generalized coordinates and/or their rates of change. At the com-

mon nodes of all different components one should use the same type

of generalized coordinates. Then, all the component (or element)

fro:..

BUMPER
WHEEL

Figure 1. Vehicle Schematic Sketch
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matrices can be assembled to yield the following system of equa-

tions of motion.

Mq + Cq + Kq = F ( 2 . 1 )

where M, C and K are the assembled mass matrix, damping matrix, and

stiffness matrix respectively; q is the vector and unconstrained

coordinates and F is the loading vector due to external applied

loads or prescribed constraints.

Equations (2.1) comprise a second order system. With given

initial values of q and q the time histories of q can be obtained

by numerical integration. There are many numerical integration

schemes; implicit or explicit. To choose a particular scheme to

perform numerical integration one will have to be concerned with

the possibility of introducing artificial damping and numerical

instability (i.e., introducing artificial energy to the system in

the integration process). For a linear dynamic system, how these

numerical problems are related to the integration stepsize is well

understood. In most cases, the implicit schemes introduce

artificial damping and are unconditionally stable, while the

explicit schemes introduce energy if the stepsize is too large,

and are only conditionally stable. However, these assertions have

not been established and cannot be considered true for a nonlinear

system. An unstable scheme can be made conditionally stable only.

In general an implicit scheme will take much longer computer time

for each integration step than that of an explicit scheme of com-

parable truncation error. This is because for a nonlinear system

certain matrices must be redefined at each time step. In the

implicit scheme, the updated system of equations would have to be

resolved, while the explicit scheme only involves updating the

right hand side of the system of equations. For large systems this

can be very time consuming. Therefore, the explicit integration

scheme is used in this study.

The simplest scheme is the central difference method, which

allows us to write (2.1) in the form,

2-2



“n (
A
9 n*l

A9n)
+

Sn (
A
9n+1

+ A
9n)

*
( ~n 9n - En) At * = 0 C 2 ' 2 >

or

(M + ^lc\Aq ,=fM - ^cWq\~n 2 -n) -Jn+l
\ ~n 2 ~n )

an

- (?n 9n - En) C 2 - 3 >

where

9n
=

9n+ 1
* A

9n C 2 ' 4 )

and

Sn+1 Sn-1
.

•• _ Sn+1 ^ Sn
+

Sn-1
9n - A2 t qn "

At
2

The subscript n denotes the value of the quantity at time step n

and At is the step size. From the given initial values q Q
and q Q

we have

Aq = q At + T (At) a
-Jl ~o 2

^ 1 ~o
(2.5)

where a
Q

is the initial acceleration which is evaluated from (2.1)

M a
~ ~o ( 2 . 6 )

The subsequent q's and Aq ' s are evaluated from (2.3) and (2.4).

For a problem where M and C are independent of time and q itself,

or are block diagonal matrices, Aq
,

of each integration step can

be determined very rapidly.

It is noted that in (2.3), one will only need the product of

and q^ . Thus, in actual computation, there is no need to

assemble
,

That is, at a given time step, if we let q
1

and k^

be the generalized coordinates and the stiffness matrix of the

i
t ^1 component (or element) respectively, then f* = k^ q^ will be a
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generalized force vector of the element due to the deformation q .

In order to obtain K q at this time step, one only has to assemble

f^ for all the elements. In this way, there is no multiplication

of K and q. The actual multiplication is performed at the element

level between and q
1

. The advantage of assembling f. instead

of is the saving in core storage in the computer. Generally,

larger core storage is required to store K (roughly number of

degrees of freedom times the average semi -bandwidth) . In some

instances, f^ can be generated directly without even having to

compute k^. Detailed discussion of the computation of f^ will be

given in the next section.
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3. ELEMENT MATRICES

Several kinds of elements are discussed which can be used in

the dynamic simulation of vehicles. It should be possible to

combine them in a variety of ways to simulate vehicle components or

groups of components

.

3.1 BEAM ELEMENTS

Consider a beam element with local coordinate axes (X^
, X~ ,

X_) and global cartesian coordinates x ^ » x^) a s shown in

Figure 2. The two coordinate systems are related by a 3 x 3 matrix,

say L which is defined in Appendix A, so that

r x ^A
i

< X
2

X,

^ J
i

x ^X
1

~ni <
(i = 1,2)

L .

(3.1)

The subscript i denotes the 1 or node 2. The element stiffness

matrix for small elastic strains or small elastic incremental

strains with initial stress N (positive for tension) is given by

k where

AE
£

0 a

'

0 0 a

0 0 0
GJ
£

0 0 -b 0 c

k
0

AE
£

b'

0

0

0

0

0

0

0

c '

0
AE
£

(5.

0 - a

'

0 0 0 -b' 0 a

'

0 0 -a 0 b 0 0 0 a

0 0 0
GJ
£

0 0 0 0 0
GJ
£

0 0 -b 0 d 0 0 0 b 0 c

0 b' 0 0 0 d' 0 -b' 0 0 0 c'
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Figure 2. Beam Orientation; Local and Global Axes
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in which

„ _ N 2b
a " T " T
b = (cosh 6 - 1)/D

c = ^cosh 6 - ^
sinh gj/D

d = (
S
-
1
-
n

-g—
3

- l)/D (3.3)

and where

D - linh-i (sinh_e
. ^ „ (cosh g . 1}

2
/N

and similarly for a'
, b

' ,
c' and d' with 1

^
being replaced by 1^

in the values of 6 and D given in (3.3). The generalized coordin-

ates associated with the element stiffness matrix given by (3.2)

are given in incremental form as

which are the three displacements Au^ followed by the three rota-

tions A B of node 1 in the local directions shown in Figure 2;

then followed by the corresponding quantities of node 2. The

element stiffness matrix given in 3.2 is an exact representation

of the beam equation given below. The matrix 3.2 yields values

which are equal to those of the closed form solutions at the nodes.

It is derived by using the homogeneous solution of the straight

beam equation with initial stress as the interpolation function

(Ref. 10). In our case the interpolation function is

w = C-^ cosh V
N_
El

s inh l/-T El
+ C

3
s + C

4
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which is a solution to

El d^w/ds^ + N d^w/ds^ = 0

and N is the initial stress.

For small increments of elastic deformation, the incremental

generalized forces of the element, in correspondence to the gen-

eralized coordinates in (3.4), are

(3.5)

and (AF)^ is the force resultant vector at node i while (AM)^ is

the moment resultant vector at node i, as shown in Figure 3. Note

that AF^ = - AF
^

for equilibrium.

For increments involving plastic deformation, Af must be

computed differently. The detailed procedure will depend upon

the type of plasticity theory used. In the present report, we

shall only use the incremental theory of the plastic hinge concept.

The yielding surface 0, is assumed to be expressible in the form

$ (M., N, K) = 0 (3.6)

where K is a harden ing parame

history

,

M. (i = 1, 2, 3) and

respectively. If 4 < 0 or 4> :

A$ = 3$
9M

AM.
l

+
ft AN *

3_$

9K

on the strain

stress resultant

variation

there will be only elastic deformation,

deformation occurs. However, A4> > 0 is

determine the portion of total deformat

When 4> = 0, A<f> > 0 plastic

not permitted. We must

ion that is plastic to

3-4
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insure A$ = 0. Let Ay denote the total incremental strain due to

the incremental deformation associated with Aq so that

r Ae
1 ^

Ay = <

AK.

AK.

^ AK
3 ^

(3.7)

where Ae^
,

is due to stretching, AK^, is due to torsion and A^
and AK^ are due to bending which can be expressed in terms of

incremental displacements. For example, AK, is the bending strain
2 ^ 2

about the y^-axis, which is equal to EI^ d (Au^/dx^ where AU
2

is

the incremental displacement in the X£ direction. The total incre-

mental strain can be separated into a part due to elastic deforma-

tion and a part due to plastic deformation, namely

Ay = Ay
e

+ AyP

The incremental stresses will be computed from Ay
e

,
the elastic

incremental strain as follows,

rAN ^

AM,
Aa = <

AM.
>

= E Ay

v.
AM3>

or

Aa = E Ay - Ay^ = A a' - E Ay 1

where

Aa ' = EAy

AE 0 0

0 GJ 0

0 o ei
3

0 0 0

0

0

0 Ay

(3.8)

(3.9)

(3.10)
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in which A a is a function of distance along the beam element.

When evaluated at an end point, Ao' will yield exact values by

virtue of (3.2), and contribute to corresponding components in

(3.5). (Ao' is equal to the incremental stresses Ao
,

if this

increment due to Aq is elastic.) We shall evaluate Ayp
,
the in-

cremental strain vector based on incremental plasticity theory.

According to the flow rule, AyP is normal to the yielding surface

given by (3.6), i.e., (a schematic diagram is given in Figure 4).

AyP = X <

9$/9N

9$/ 9M
]

90/ 9M-

90/9M,
V. 3 j

where X is a proportional

that the total cumulative

surface. The total cumul

sum of a
,
the stress vec

~o ’

Av, i.e.,

evaluated on the y

ity factor, which i

stress vector
,

a

,

ative stress vector

tor just before the

(3

ield sur face

s to be determined

lies on the yield

can be written as

pres ent increment

11 )

so

the

and

a =

When the

equation

r N
9

r 94/9N >

Mi 94/9M
1

m
2

>
= o + A o = o + Ao ' - X E <

~0 ~ ~0
90/9M

2
r

M
3

9 $/ 9M_
L 5 J L 5 J

expressions given by (3.12) are substituted

is obtained which allows determination of X

• (3.12)

on yielding

surface

into (3.6) an

A simple example of a possible yield criterion is

0 = v a
l
M

l
+ ,.2

a
2
M
2

. .2
a
3
M
3

- K„ = 0 (3 . 13)

where the a's

cross-section

the square of

plastic mater

are constants which depend on the geometry of the

of the beam, and Kg is another constant related to

the yield stress. In the case of elastic perfectly

ial, Kg is independent of strain history. To
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Figure 4. Schematic Diagram of the Stress Vector
and the Incremental Plastic Strain Vector
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determine A in this case, we suppose that o
q

lies within the yield

surface given by $ = 0 (Eq. 3.13), while o
q

+ A o' lies outside.

The next step is to determine the values of the M's and N on the

yield surface. To do this let

o’’ =0 + A ' Ac
'

(3.14)
~o

and determine the factor A' so that a 1
' just falls on the yield

surface (i.e., A 'A o' is an elastic increment). Substituting

(3.14) into (3.13) get

A(A '

)

2
+ 2BA ' + C = 0

where

3

A = a
4

( AN
'

j

2
+ £ a

A
(am!)

2

i = l

B a
4
N
0
AN '

(Mi)

(3.15)

(3.16)

3

C = a
4
N
0

* I a
i <Mi’o

• K
0

i=l

Then

A' = — C
- -

s,
(3.17)

B ( 1 + y^i - AC/B 2

)

With A' defined by (3.17), c" will be on the yield surface.,

whose components are N”
,
M”

,
M”

,
and M” . Now in order to compute

A given in (3.11) the following partial derivatives are needed
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(3.18)

r 3$/3N > r 2a
4
N" >

9$/3M, 2a Ml
"

J = < >
3$/3M

2
2a

2
M

2

"

c
3 */ 9M3. L

2a
3
M3”>

On substituting (3.12) (also using (3.18)) into (3.13), an equation

of the same form as that of (3.15) is obtained to determine A.

Once A is determined, Aa within the element can be evaluated from

(3.9) and (3.11).

In the present paper we are restricting our consideration to

the plastic hinge concept with hinges limited to the end nodes

only. In the finite element theory of beams, N and are constant

throughout the element while and , in general, vary. In order

that internal equilibrium always be maintained (i.e., N and

remain constant throughout the element even if yielding occurs at

both ends)
,
the yield surface at node 2 must be modified to the

form given by Eq. (3.19) if node 1 has already yielded.

$ = a
2
M^ + a

3
M^ - K = 0 (3.19)

where the constant K is given by

K = K
0

- a
4
N

2
- a lM

2

The stress resultant, N, and the twisting moment are the values

at node 1, and fall on the yield surface at node 1. The same

remarks hold when node 2 yields first, in which case node 1 and

node 2 interchange roles.

Now, when a hinge appears at a node, all plastic deformation

is assumed to be concentrated at that node, and the rest of the

elements still deforms elastically (i.e., the matrix in (3.2) still

applies just outside the plastic zone) . For the node which becomes

a plastic hinge the moment increments and the stress resultant

increments at such a hinge are determined according to Eqs. (3.8)-

(3.12); then one can determine the incremental displacements and



rotations at the hinged node that are associated with such incre-

mental moments and forces. For example, if node 1 yields and node

2 does not we can solve for A0^ at node one by making use of the

three equations implied by the fourth through sixth rows of (3.2).

The following expressions are easily derived

(A0, )
= £ (AM, ) /GJ + (A0 )

1
1

1
1

2

(a q
2

)

i
= |{cam

2 )^
+ b [(Au

3 )

2
-

(Au
3)J

+ d (A0
2)\

(A6
3 )

i
= + b' [(Au

2 )
- (Au

2 ) J
+ d’ (A6

3 )
}(3.20)

where the subscript of a parenthesis denotes the node while the

subscript of a quantity denotes direction or sense. The AM's

given in (3.20) are the incremental moments at node 1, which have

been calculated using the flow rule as discussed in relation to

Eqs. (3.11) through (3.18), so that plastic deformation has already

been accounted for. Subsequently, the AM's and AQ ' s at node 2

should be recomputed utilizing the equations implied by the eight

through twelvth rows of (3.2), where values of the rotations A0,

as computed in (3.20) for node 1 are used. It is clear, then, that

the incremental changes in quantities at node 1 due to plastic

hinge action will affect the quantities at node 2.

The total cumulative forces and moments are the sum of those

existing at the last time step and those of the present increment.

In these computations the forces and the moments are expressed in

the local beam coordinate system. They must be transformed to

global coordinates before they can be assembled properly. First,

the matrix L which relates the global coordinates to local

coordinates, as defined in Appendix A, must be updated using the

results in Appendix A, namely

1 i*
3

-Ab
2

-Ab
3

1 A (j)

1
(i = 1,2) (3.21)

A ^
2

-A(J)
1

1

1
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where (L.) is the value of L- at the previous step, and the sub-
~ i

g
~ 1

script i denotes node 1 or 2. The A<j)'s are rotation increments

with respect to global axes. (Note that the vector Ac(k as defined

previously is given by A0
^

= (A6
1 ) i

(e
]L

) i + (A©^ (?2^i
+

^ A0 3^i
(e,) . = ( A 4>

)

• i + (A<J> 7 ) . j + (Ac)),). k where the local base

vector e^, and e^ are defined in Appendix A.)

It we let f denote the vector of cumulative values of the

forces and moments for an element in the local coordinate system,

then the corresponding values in the global coordinate system will

be

L
x

0 0

0 L-^ 0

0 0 h
0 0 0

(3. 22)

where and are the matrices defined by Eq. (3.1).

This section will now be completed with a discussion of the

mass matrix. It is clear that a consistent element mass matrix

can be derived in a straightforward manner by means of well known

methods in finite element theory (Refs. 4-6). However, based on

considerations involving questions of numerical instability

(Ref. 2), we shall use a lumped element mass matrix herein, given

by

m =
0

0

0

0

m,

0

0

0

0

m.

0

0

0

m.

(3 . 23)
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where

m _ IA
?1 p

2

1
0

1

o
P&A
2
~ 0

1

o

0 1 0
~2 0

£
3
A

p 12
0

o

J
0 1 0 0

£
3
A

P 12
_

(3.24)

where p, l and A are the density, length and cross-sectional area,
respectively, of the uniform element. The above element mass
matrix is associated with the local coordinate system, where the
m
2
matrix which is concerned with rotations is based on local

principal axes. When transformed to global coordinates,

m = ~ 1 ~ 2~1

0

0

0

m.

~ 2 ~ 2~2

(3.25)

the part of the mass matrix due to rotary inertia is a function of

time, (since the matrices and are functions of time). How-

ever, it is felt that the rotary inertia of the beam type structural

elements will not affect greatly the dynamics of the system. In

the numerical integration we shall treat the element mass matrix as

a constant in the form of (3.25), after it is updated for each time

step. This approach is correct for the translational inertia por-

tion depicted by m.. . However, for the rotary inertia portion, de-
T ^ Tpicted by and m

2
the changes from constant values are

of the order 02/0 with respect to unity, which is deemed small in

crash situations.

3 . 2 SPRING ELEMENTS

Spring elements can be regarded as special cases of the beam

element with = 0, and can be handled as such computationally.
There are, however, certain special springs which arise naturally

in vehicle crashworthiness studies, and so are worthy of
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discussion here. In what follows some computational features of

such springs will be developed.

(a) Ground spring - This is used to simulate a wheel support-

ing the vehicle on the ground. The force transmitted through a

wheel is always assumed to be in the vertical direction and is

either zero or in compression. Let us assume that the point where

the wheel touches the ground is node 1 and the point where the

wheel supports the vehicle is node 2. In local coordinates, with

the -axis pointing from node 1 to node 2, and considering the

order of components in the force vector given in (3.5), all the

components in f will be zero in this case except f^ and fy which

are

f
1

= max [0, (£
1 )

0
+ k (Aq

x
- Aq

? )J
= -f

y
(3.26)

where (£2)0 is the value of f^ at the previous time step, Aq-^

and Aqy are defined in (3.4) and k is a spring constant to simulate

the wheel. It is usual to lump the mass of the wheel at node 2.

(b) Tension spring - This is used to simulate a cable re-

straint system such as a seat belt. Again using local coordinates

the only non-zero force components are f^ and fy which in this case

are given by

(3 . 27)

with similar definitions for quantities as in (3.26).

3.3 RIGID BODY ELEMENTS

We may simulate the engine block, or a portion of the vehicle

which does not involve significant deformation in a crash by a

rigid body which is connected at a finite number of points to the

deformable part of the vehicle. This rigid body will be referred

to as a rigid body element.

The motion of a rigid body can be computed as follows. Con-

sider a rigid body of mass m, and moments of inertia 1^, I^ and I^

= mm [0, C £ f) 0
+ k ( Aci

1
Aq, >]--
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with respect to its principal axes. Let u and
<J>

denote the linear

and angular displacement vectors, respectively, of its center of

gravity with respect to global axes. Then the equations of motion

can be written as

m u F

d
dT

where, as

L

r
I
1

0 0

T

1
'

0 1
2

0 L <j>

0 0 I,
- o

>

shown in Appendix A

0 *3
"
^ 2

L -4>
3

0 + 1

2
0

= M

(3 . 28)

(3 .29)

(3.30)

and where F and M are the total force and the total moment on the

rigid body element; L is the matrix relating the global cartesian

coordinates to the principal axes, and is defined similar to that

in Eq
. (3.1).

If there are N
r

nodes in common between the deformable struc-

ture and the rigid body, the total force and moment (F and M) are

obtained by summing over all N
r

nodes the forces, f^ and torques

which act on the rigid body at the ith node, so that.

where r^ is the position vector measured from the center of gravity

to node i.
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The central difference explicit scheme used earlier will also

be used here to integrate (3.29) and (3.30), namely.

Au , = Au + — p
~n+l ~n m ~n

(3 .32a)

q 0 o
rH

1
—

1

1 0

r

o

0
Ov]

1
—

1

0 L A<(> = L
T

,

~n ~n+l ~n-l 0 1
2

0

O
1

0 q 0 0 q_

L -i Ad>~n-l yn

+ (At) M (3.32b)

~n+ 1
= L

n

l Aq - A cf)

-Acf>3 1 A cj>

A4
2

-Ad
1

1

n+

1

(3 .32c)

Where the subscript n denotes the value of the quantity at the nth

step, and Au , = u L

n

- u . Now, the incremental rotations atr ~n+ 1 ~n+ 1 ~n ’

all the N nodes on the rigid body are also Act
,

, and so the
r tn+1

incremental displacements at node i are given by,

( A“n + lL ' AlVl + A
ti*l x li

(3.33)

in which r is the same as that in (3.31).

3.4 MODAL ELEMENT

During a crash, a component or a part of the vehicle may

experience only a small elastic deformation. In such a case one

could probably approximate this component as a rigid body. If,

however, for one reason or another more detailed response informa-

tion is desired within this component, it is possible to obtain

adequate engineering accuracy by approximating the response using

a few natural modes.

In what follows, the procedure of deriving the component

matrix using natural modes is briefly described. Let the mass and
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stiffness matrix of a given component be denoted by m^ and k
,

respectively. The generalized coordinates associated with these

matrices will be denoted by q c .
Now, these matrices may be

determined either by detailed finite element modelling of the

component itself or by other well established methods. For com-

plex components the size of such matrices can be very large. This,

of course, will depend on how extensive the original modelling is.

In such cases, to reduce m and k to what will be referred to as
~c ~c

a modal form, we may either use assumed modes to approximate the

response, or more rationally, derive the modes by solving the

natural vibration eigenvalue problem associated with m
c

and k
c

.

The number of modes required, will, or course, depend on the

degree of accuracy desired.

Consider the eigenvalue problem

Am x = k x (3.34)
~ c ~ ~c ~

We can easily determine the first few, say r eigenvalues, A^ and

eigenvectors, x (j = 1, 2,...r) [Refs. 3]. The number r should

be sufficiently large or at least equal to the number of rigid

body degrees of motion. The generalized coordinate vector, q is

then approximated by a combination of the eigenvectors or modes,

namely

q = X a
2c ~ ~

(3.35)

in which

The quantity a can be called the vector

using a as generalized coordinates, the

stiffness matrices can be made diagonal

of modal amplitudes [when

corresponding mass and

To insure compatibility between the

the vehicle, it is not convenient to use

partition q ,
X and a such that

component and the rest

a directly. We shall

of
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q c

X
~aa

>
= (3.36)

X D X n3ot 3y

where the conponents of and are the generalized coordinates

associated with nodes connected and not connected respectively to

the rest of the vehicle. By expressing ao i n terms of q^ we have

a

~aa

(3.37)

(note that X may have to be reordered to assure that X isv 1 —aa
nonsingular) . The vector q and a can be used as the new general-

~ ot ~ Y
ized coordinates. Accordingly, the associated reduced mass and

stiffness matrices are then given by

m = A
T

A
~r ~

k
r = AT D A

(3.38)

where D is a diagonal matrix of order r with the elements on the

diagonal being the first r eigenvalues Xj (j = l,2,...r) of

(3.34). It can be seen that the order of m and k can be much

less than that of m
c

and k
c ;

therefore, the total number of degrees

of freedom for the final system of equations is reduced.
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4. CONCLUSIONS

The basic concept of a modular approach and the procedure of

numerical integration for crashworthiness prediction has been

developed in the present report. In addition, several elements

have been examined which are useful for this purpose. One of the

important advantages of using the modular approach in vehicle

structure simulation is that it provides great flexibility in

modelling specific dynamic behavior economically. Depending on

the degree of accuracy desired, one may use simplified spring-mass,

or detailed finite element modelling for part or the entire

structure

.

A computer program based

developed at TSC. Many exampl

numerical results will be repo

on the modular concept

es are being run, and

rted in a separate rep

has been

extensive

ort
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APPENDIX

EVALUATION OF L IN EQ, ( 3 . 1 ) AT TIME = 0

The matrix L relates the global coordinates to local coor-

dinates. It can be defined either in terms of Euler angles or in

terms of the position vectors of three noncollinear points in

space. The former approach requires less information, while the

latter is easier to visualize. In what follows, L shall be

defined using the latter approach. Let (x^, x
±2’

X
i3^

coordinates of point i, (i = 1,2,3). The local coordinate frame

will have the first base vector e^, pointing from point 1 to

point 2; the second base vector, e^, lies in the plane spanned

by the three points and is normal to the first base vector. The

third base vector, e^, is normal to base vectors e^ and an^

satisfies the right hand rule. Therefore, from these definitions,

we have

x
2 1 - x ll

>

1

?1 l
1

x 2 2
- x 1 2 r

(A • 1

)

x 23 " x 13^

F = —
~2 i

2

(A. 2)

e 9 = (e^ x E
2 ) x = ^2 - (E

2
' e^) e^ (A. 3)

0 ^
x 0 ^

(A. 4)

in which
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and

£
2 [(

x3

1

Then

L -

i.e., the ith row of L is the ith base vector of the local frame

having its components expressed in terms of the global coordinates.

For a beam element, the three noncollinear points are taken as

the two end nodes which are chosen as the first two points; a

third point is a point in space to indicate the direction of one

of the principal axes of bending.

(A. 5)

Evaluation of AL, and the updating of L

The matrix L is

L =

si
L
11

L
1 2

L
13

si
= L

2

1

L
2 2

L
23

(A. 6)

T
?3

_

L
31

L
3 2 K)

To determine L, find e^ (i = 1,2,3) where the base vectors e^ are

defined in the discussion leading to (A. 5). The following rela-

tions yield the desired results.

e • = co x e

.

~ i ~

where

co = co^ i + co 0 j
+ C0

j
k (A. 7)
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Then

e .
=

~ 1

L
il

k

2
u
3

LL
i2 i3

( '

2 ^i 3 ^3^12) i
+

(
^-)Ij • 7 -

co .7 L - u,L • 1
3 ll

w
l
L
i3 ) i

+

(
w
l
L
i2

' w
2
L
il)

So that

L =

2
L
13

‘ “3 L
12

W
3
L
11

- *o
1
L
13

w
1
L
12

(o
2
Lh

2
L
2 3

' “3 L
22

W
1
L
21 “l

L
23

U
1
L
22

u
2
L
22

2
L
3 3 “3 L 32

U3

3
L
31 “l

L
33 “l

L
32

- W
2
L
31

or

"

Ln L
1

2

L
13

_ 1

O w
3

w
2

1

O ^3 ~^2

1
1-

1
11 L

2

1

L
2 2

L
23

“3 0 W
1

= L '*3 0 *1

,

L
31

L
32

L
33. _

“2 0
.

*2 "*1 0

where

= co

.

1

(A. 8)

Equation (A. 8) implies

0 <1 • A*2

AL = L - 4 +3 0 A4,j

a*
2

- A cf>

2
0

Then L at the n+1 time step is given

at the nth time step as
- n

A- 3

1



0 A^ -Acf)

in+1
= L + AL =

~n ~n in
+

in
-A*

3
0 At})

a *2
—

- A
<f)

1
0

1 A4,
3

-A<t>
2

‘

in+ l
'= L

~ n
- A ^3 1 A4>2

A<))

2
- A4>

1
1

I
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