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1. INTRODUCTION

1.1 Objective

Recently, there has been a considerable growth of interest in the solution
of automobile transportation problems using modern control theory and system
methodologies [1]. This reflects an increasing concern with urban traffic con-
gestion which has become one of the most difficult and urgent problems facing
our society. Environmental concerns and intense competition for limited re-
sources make it imperative that more efficient use be made of the existing
transportation infrastructures, such as the highway systems and the urban
street networks, and of vehicles. Conventionally, the objective in most trans-
ﬁortation control systems has been to ensure smooth vehicular traffic flow.
There is a growing consensus that consideration must also be given to attain-

ing broader national goals such as energy conservation.

The purpose of this report is to demonstrate the relationship between two
important problems in automobile transportation: signal optimization, the
choice of traffic éignal control settings; and assignment, the distribution of
vehicles in a network. It is clear that these problems affect one another and
that they should be considered together. This report also demonstrates how
properly treating them together has important payoffs in reducing congestion

and energy consumption.

1.2 Background

The problem of real-time computer control of a transportation system can
be viewed as a large-scale stochastic dynamic optimal control problem [2}, [3],
[4]. Such problems cannot be solved exactly, and some approximate solutions
must be sought. For example, in a study of dynamic stochastic control of free-
way corridor systems [2], the problem is decomposed into estimation, incident
detection, and confrol activities. Control actions are then further subdivided
into static and dynamic strategies. Static network optimization is shown to

play an important role in this type of real-time control strategy.

Static approximation of network parameters and traffic flow variables also






play an important role in area traffic control systems in urban street networks.
Most area traffic control systems use fixed-time signal plans because these
strategies are efficient and easy to implement [5-9]. Fixed-time coﬁtrol strat-
egies are based on observed daily patterns of traffic flows. Given any traf-
fic situation characterized by flow volumes, link capacities, and vehicular
arrival rates which are assumed approximately constant in time, a-set of traf-
fic control variables such as cycle times, green splits, and offsets which are
optimal in some sense, can be calculated by a signal-optimizing program: e.q.,
TRANSYT [10], MITROP [11], SIGOP [7]1, [12]. Fixed-time signal plans are calcu-
lated in advance for a number of characteristic situations, such as morning

and evening rush hours, and are implemented when such a situation arises.

In all the control strategies considered, the role of drivers as indepen-
dent decision-makers in choosing among different available routes has not been
incorporated in the process of analysis and synthesis. A remark due to Beck-
mann provides motivation for the research presented here [13]:

+..a closer view of affairs shows that even in the most perfectly

planned system the public retains certain freedoms, and that it may

choose to ignore the intentions of the planners and play games of

its own. Transportation analysis cannot afford to lose sight of

how people use transportation.

Thus, there is a need to incorporate a behavioral model of drivers' route
choice in the design, operation, and assessment phase of a transportation sys-
tem. In the above calculations of optimal fixed-time signal plans, it is im-
plicitly assumed that the route choice of the drivers is fixed and ihdependent
of the control parameters. In other words, it is assumed that the traffic
volume on any particular link in the network is constant, regardless of the
level of service offered by that link. This assumption is false since an
individual driver cannot be prevented from taking an alternate route which‘may
have been made more desirable (i.e., faster) by the implementation of a new
control policy. In fact, the redistributional effects of traffic resulting
from the implementation of an area traffic control policy have been studied
and confirmed in a series of field experiments conducted in the city of Glasgow.

See [14] and references cited therein.

It is observed [14], [15] that the new traffic pattern induced by some
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"optimal" traffic control policy destroys the original optimality. It thus
seems desirable to reoptimize periodically the controls based on new survey
information on the traffic distribution [9]1, [14], [15). However, this process
of updating controls has seldom been carried out more than once or twice in

practice due to the amount of effort and resources involved in the surveys [9].

In this report we consider the role of the driver's route choice behavior
in the context of the steady-state network traffic control problem, the impor-
tance of which cannot be overemphasized. We attempt to provide some answers

to the following questions:

Given the fact that the system has little or no control over the route
selection decisions of individual drivers, how can it achieve a flow distribu-
- tion which is optimal from the system's point of view, using the available con-

trois? To what extent can control variables be used to influence drivers'
‘route choice by exploiting the interdependence between the signal timing plan
and the flow pattern?. Given all the resources and effort, does the iterative
reoptimization procedure mentioned in [14] lead to an optimal solution? Or
more generally, given a certain predictive model of drivers' route selection
behavior, how should one go about choosing a set of controls which, together
with the eventual induced traffic pattern, is optimal with respect to a certain
system cost criterion? We believe that this is a class of problem of fundamen-
tal importance in the various phases of decision making in transportation sys-

tems.

This is referred to as the Hybrid Optimization Problem (HOP) in this report.

It has the following essential features.
a) The objectives of the traffic authority and the drivers are different.

b) On the systeh level, the problem for the traffic authority is to min-
imize some overall cost in the network, e.g., total travel time or total fuel

consumption.

c) On the other hand, the individual driver wishes to minimize his trip

cost in traveling through the network.

4d) Individual drivers are independent decision-makers. This means that

it is beyond the powgi of the traffic authority to specify traffic flows on all

=
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links. The capability of the traffic authority is limited to the command of
traffic control devices only. In most cases, the capability of the traffic
authority is further restrained because practical limitations dictate that the

traffic authority can exercise control only over a subset of the network.

1.3 Literature Survey

In the literature of transportation system planning, the problems of flow
assignment and static control optimization are treated separately and are
fairly well understood in terms of analysis and computation. Traffic flow as-
signment is the problem of computing flow configurations for a fixed set of
network parameters, including control values such as signal settinés and ramp
metering rates, according to the two principles enunciated by Wardrop [16] on
the distribution of vehicular traffic in a network. The static control opti-
mization problem chooses appropriate values for control variables, assuming

link flows are fixed and independent of the control variables.

1.3.1 Assignment

Traffic assignment is an indispensable part in the various complex phases
of the transportation planning process [17], and has been an area of extensive

research [18], [19], [20]. 1In system optimization, the traffic volume on any

particular link in the network is assigned by a central traffic authority so
th;t a certain system-wide cost is minimized. The resultant flow pattern has
been referred to by different names in the literature: system-optiﬁiziqg flow
(18], efficiency flow [19]), normative flow [20]. System~-optimizing flow rep-
resents an optimal allocation of traffic and as such it should serve as a goal
for any traffic control scheme. Studies on the properties of system-optimizing
flow (e.g., existence and uniqueness) and computation methods can be found in
many other disciplines also. This type of problem has been broadly classified

as multicommodity minimum cost network flow problem (MFP) in the literature of

management science and operations research [21]. A special class of problems
in MFP with nonlinear link cost function has the same structure as the system
optimization problem in traffic engineering. Research on computer network com-
munication is also of the same nature [22], [23], [24). A general discussion

and analysis on system optimization can be found in a number of sources {183,
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(19}, [20]. Assad [21] presents an excellent survey of the literature to date
on computation methods for MFPs. The propagation of perturbations of the sys-

tem optimizing flow pattern due to disturbances has been investigated for a

special class of networks [4].

The user optimization formulation of traffic assignment attempts to pre-

dict the flow distribution when a set of network parameters, including the
controllable ones such as signal settings, and origin-destination (0-D) input
flows are specified. This is a frequently encountered, critical problem in
the planning and assessment phases in traffic engineering. The basic assump-

tion is that each driver chooses his path in such a way as to minimize his own

travel cost. Travel time is commonly used to represent travel cost [171, ({25},
[26]. Wardrop's first principle, or the principle of equal travel time, charac-
terizes the equilibrium flow distribution which is the aggregate result of indi-
vidual decisions. At an'equilibrium, no single driver can reduce his own cost
by unilaterally choosing an alternative route in the network. In the literature,
terms such as equilibrium flow [19], descriptive flow [20], and user-optimized
flow [18] are used interchangeably. 1In most of the large-scale transportation
étudies, a variety of henristic methods have been traditionally used to deter-
mine equilibrium flow patterns. They include the "all or nothing" method

[271, the "incremental loading method" [28]. The "all or nothing" method,
applicable only to the.case of constant-link cost (i.e., link cost per unit

flow is independent of link flow) without link capacity constraints, assigns

.all traffic demand aiong the shortest (i.e., least costly) path for each

6rigin—destination pair [27]. Modifications of the "all or nothing” method
for the more realistic case of nonlinear link cost involve incrementally load-
ing the network on the current shortest route and iteratively adjusting the
link cost {28]. Heuristic rules are used to reallocate flows to "balance the
system” [28]. Although this class of solution procedures has by far dominated
the field in actual applications due to its conceptual simplicity, it is ad-

hoc in nature and it has convergence and stability problems [29].

Attempts to formulate the equilibrium problem (the calculation of a

user-optimized assignment) as an optimization problem are motivated by two dif-

ferent observations: Equilibria in many other fields, e.g., electrical circuit
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theory [30], have been successfully formulated as solutions to some extremal
problems; the necessary conditions for the multicommodity minimum cost f£low
problem bear a remarkable similarity to the equilibrium conditions stated in
Wardrop's principle of equal travel time. Thus, it has been shown [18], [20],
[31] that under certain mild restrictions on the link cost function, the deter-
mination of the equilibrium flow pattern is equivalent to the solution of a
convex minimization problem. This equivalent minimization problem is in fact a

multicommodity minimum cost flow problem, which has been discussed above.

Applying recent results in mathematical pProgramming theory, coupled with
successful exploitation of the special structures of the problem, several ef-
ficient algorithms, with the capability of solving medium-to~large scale net-
work equilibrium problems, have been developed in recent years. See, for
example, Nguyen [32], Leventhal [33], and LeBlanc [34]}. More recentiy, appli-
cation of nonlinear complementarity theory to traffic equilibrium problems rep-
resents a new and promising area of research [35]1. Hall [36] has investigated
a crucial, if not somewhat neglected, question in the study of traffic equili-
brium concerning the sensitivity of equilibrium flow to variation of input
flows. However, the area of sensitivity due to variation of control variables

such as signal settings is still an unexplored area of research.

1.3.2 Signal Setting

Urban traffic congestion has motivated a great deal of research-devbted
to the synthesis of effective control of traffic signals. Fixed-time signal
control policies have been widely used due to their simplicity in implementa-
tion and satisfactory performance {51, [61, (71, 81, [9]. a large number of
mathematical techniques with traffic models of different degrees of sophisti-
cation have been developed [7]. May [7] provides an excellent survey on the
fixed-time signal optimization methods that were developed and implemented in
various parts of the world. Among the better known methods (e.g., TRANSYT
[101, SIGOP [1], MITROP [11]) the optimization of control variables (which
include green split, cycle time, and offset for coordination of neighboring

signals) can be carried out for networks having on the order of 100 nodes.
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1.3.3 Redistributional Effects

Until very recently, there has been very little attention paid to the sig-
nificance of the relationship between traffic assignment and signal optimiza-
tion, which have been studied as two mutually independent activities in traffic
engineering. Recent investigations have led to the recognition of the inter-
dependence of signal timing plans and network flow patterns [14]}, [151, [37],
[38], [39]. For example, it has been established that "redistributional effects
of an area traffic control policy are a possibility (that) can hardly be de-

. nined.™ [14]. It is also observed [14], [15] that in some cases the new traf-
fic pattern indirectly induced by some "optimal" traffic control policy destroys
the original optimality. There are several important implicdtions as a con-

sequence of these new findings.

It has been concluded [14] that the relative merits of alternative signal
timiné plans should be evaluated together with their redistributional effects.
In addition, it seems desirable to reoptimize periodically the controls based
on new information on the traffic distribution [15], [14]. Allsop {37], recog-
nizing the interdependence between signal timing plans and flow patterns, sug-
geéted the idea of using control schemes to influence drivers' route choices.
However, there exists no tﬁeoretical formulation for this problem. Such a

formulation is the main contribution of the research reported here.

1.4 Contritubions and Main Results of This Report

The main contribution of this report is the introduction of the concept
of explicitly incorporating the role of individual drivers as independent
decision-makers in optimization of traffic control by the traffic authority.
The Hybrid Optimization Problem (HOP) formulation provides a general theoret-
ical framework for the study of this problem. In traffic engineering, the
problems of system optimization, control optimization, and assignment have been
studied independently of one another. The formulation of the Hybrid Optimiza-

tion Problem can be viewed as a unified approach which combines these problems

in - transportation systems.

A Generalized System Optimization Problem is introduced, which extends

the notion of system optimization to the case where the traffic authority






treats both traffic control parameters and flows simultaneously as decision

variables in order to optimize some system-wide cost.

We have found a way to state the user optimization Principle as a set of

equations and inequalities. This is essential for the HOP formulation.

Our studies also show that the system cost, such as total travel time
and total fuel consumption, may not be differentiable at some points in the
space of traffic control variables when traffic is distributed according to
user optimization. This is significant because it can make the construction
of algorithms difficult. For example, numerical differentiation of the cost
with respect to traffic control variables must be done with care in the neighbor-

hood of a point where the derivative fails to exist.

Necessary conditions for the optimal solution of a specific HOP which as-
sumes user optimization as the flow distribution principle, are derived. A

physical interpretation of these conditions is summarized in the Extended

Equilibrium Principle, which bears a remarkable similarity to the Equal Travel

Time and Equal Marginal Cost Principle [19] of user and system optimizations.

An important contribution is a study of the iterative reoptimization
brocedure, which consists of successive alternations between control optimiza-
tion and equilibrium assignment programs. This procedure has been proposed
[14], [15], [27] as a solution algorithm for the problem addressed here, and
which has also been described as a control strategy (9], [14]. We show:that

it leads to incorrect solutions.

Practical difficulties in solving large-scale Hybrid Optimization Prob-
lems are discussed. These are the necessity of a priori enumeration of all

paths and the high dimensionality of the resulting optimization problem.

1.5 Outline

Most of the notation and terms used in this report are defined in Section

2. We first introduce A Generalized System Optimization Problem (GSOP) which

extends the conventional system optimization problem to the case where the
central traffic authority chooses controllable network parameters, such as

signal settings, in addition to assigning link flows. We discuss various phys-






ical considerations and limitations imposed on the traffic authority in the

real-life situations. The Hybrid Optimization Problem (HOP) is then formulated

and stated in general mathematical terms.

Section 3 presents a discussion on the different behavioral models on the
route selection process and the resulting overall network flow distribution
principles. We discuss the flow distribution according to Wardrop's First
Principle in considerable detail since this is used primarily as a flow distri-
bution principle in this study. However, it should be emphasized that the HOP
formulation presented in this report is not restricted by any particular flow
distribution principle. A new mathematical characterization of the user-
optimized flow pattern is presented. This characterization, which is a set of
equalities and inequalities,can be incorporated as constraints in an optimiza-

tion problem. (An alternative flow distribution model is also discussed.)

In Section 4, we devote our attention to specific HOP which assumes user
optimization as the flow distribution principle. Necessary conditions for the
optimal solution of the HOP are derived. A physical interpretation of these

conditions is summarized in the Extended Equilibrium Principle, which bears a

remarkable similarity to the Equal Travel Time and Equal Marginal Cost Principles

of user and system optimization in traffic engineering.

To demonstrate and verify the concepts and formulation of the HOP and the
Extended Equilibrium Principle, numerical examples using small networks are
discussed in Section 5. Two different approaches are used in solution strate-
gies. The solutions obtained are described and compared, and the two solution

approaches are evaluated.

In Section ‘6, we address the issue of solving HOPs involving large-scale
networks. Some practical difficulties are pointed out. They include the gen-
eration of considerable path information and the large number of variables.
Two algorithms are proposed in an attempt to alleviate these problems. 1In
these proposed algorithms, we show how some of the special structures of the
HOP may be exploited; however, there are still some problems associated with
these algorithms. 1In one algorithm, we are able to avoid the generation of
all the paths a priori. Instead, paths are generated when required. Although

we are able to reduce the size of the problem, it is still too cumbersome for






large networks to be solved on a computer. In another algorithm, we encounter
the nondifferentiability of the cost function with respect to the independent
variables. We also provide a procedure for computing the upper and lower
bounds of the optimal cost of the HOP. Based on previous results in the liter-
ature of network flow patterns, we present a conjecture on these bounds, and-

an approximate solution to the HOP is proposed.

There are several outstanding problems requiring further research which
are discussed in Section 7. Several problems in traffic engineering to which

the HOP formulation appears to be applicable are identified.
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2. GENERALIZED SYSTEM OPTIMIZATION AND HYBRID OPTIMIZATION PROBLEMS

The main purpose of this section is to provide a precise mathematical for-

mulation of the Hybrid Optimization Problem (HOP). To do this, we define

the various terminologies and notations to be used throughout this report
in section 2.1. A list of symbols used in this report is provided in Appendix

A. 1In section 2.2, we discuss a related problem, the Generalized System Opti-

mization Problem (GSOP) . GSOP extends the conventional System Optimization

Problem (SOP) to the case where the central traffic authority chooses control-
lable network parameters, such as signal settings, in addition to assigning link
flows. It chooses these parameters and flows to optimize a certain system-

wide cost. GSOP is, of course, a highly idealized abstraction of the

real-life traffic control problem. In section 2.3, we discuss various practical
limitations imposed on the traffic authority. Taking into consideration these
additional constraints, we formulate the Hybrid Optimization Problem in general

and precise mathematical terms amenable for analysis in section 2.4.

2.1 Terminology and Notation

We represent a transportation network by a directed graph G. G consists of
a pair (N,L), where N is a collection of elements which will be called "nodes", and
L is a set of elements called "links" or "“arcs." A node in N represents an inter-
section of streets in the network. Every road or street segment is represented

by a link in L, which can also be viewed as an ordered pair of nodes in N.

For example, link i, which goes from node 0.(i) to node B(i) can be repre-
sented by the'ordered pair [o(i), B(i)]. Nodes a(i) and RB(i) are called the ini-
tial and terminal nodes of link i, respectively. In this report, we use the
notation |S| for the total number of elements in the set S. Let NN = INL i.e.,
the total number of nodes and NL = ILI; i.e., the total number of links. Associ-

ated with a .network, there is a node-arc incidence matrix, A,* of dimension

* Underlined upper-case and lower-case letters represent matrices and column vec—
tors, respectively.
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NN by NL. The (i,j) element of matrix A, aij' is defined as follows:

+1 if node i is the initial node of link 3

1]
1]

{5 =1 if node i is the terminal node of link j; (2.1)
i
0 otherwise,

The node-arc incidence matrix contains all the topological information of

the network under consideration.

For every link i in [, there are several quantities of interest: fl, el, t
The amount of traffic flow (in veh/hr) on link i is denoted by f . The )
quantity t Yepresents the total amount of time each vehicle spends in traveling
through llnk i; t includes the transversal time and possibly the waiting time
due to queuing atla signalized junction. Similarly, e, is the total amount of
fuel in gal/veh each vehicle consumes in traveling through link i. We
let £ ERNL, g;RNL, E;RNL* be the link flow, link fuel consumption, and link

time vectors, respectively.

Suppose there are K 0-D (origin-destination) Pairs in the network under con-
t
sideration. For the k N 0-D pair, let Hk be the total traffic requirement, or
3 i, k : i 3 k
the input flow, to go from the origin node, 0 » to the destination node, D . We

denote the set of all loop-free paths connecting the kth O-D pair by Pk A loop-

free path in Pk is defined as a sequence of nodes 1n N leadlng from Ok to Dk with

the restriction that every node in the sequence is dlstlnct. For each path i in

k
P, we define Ri as a set of links on the 1th path of the Kth 0-D pair. Let I#

th
th

’

h (each of dimension IP [) be the path time and path flow vector for the k

. k k §
O-D pair. Tl and h are, respectively, the path time and path flow on the i
path of the k e O~ D pair. From the path flow vecto§s of all O-D pairs, EF, k=1

«++s X, we form a vector h, which is of dimension z |Pkl. Associated with the
k=1

kth O-D pair, we designate gkeRNL as the link flow vector of the kth O-D pair.

The ith element of gf, denoted by f&, is the amount of the traffic flow of the

kth O-D pair on link i. The link fiow vector, f#, and path flow vector, Ek, are

related by the following equation:

R represents the a-dimensional Euclidean space.
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k k
£ = g%, (2.2)

k . . . . A i .
where B, of dimension NL by |Pk|, is the link-path incidence matrix for the kth

O-D pair. The (i,j) element of g#, b:;, is defined as follows:

t
1 if link i lies on the j h path of the

h .
" k 0-D pair;
b,. = (2.3)
ij i
0 otherwise.
With this definition, path and link time vector can also be related by
NL
T]f= ) bf,t,,
L = e
or : (2.4)
k k!
T =Bt

' k
where B denotes the transpose of matrix B .

The total link flow vector, £, is the sum of the link flow vectors of all

O-D pairs.
K K
: k k k
£= £ = Y Bh (2.5)
k=1 k=1
or, written component-wise:
K
k
£.0= Y £ .
i 2 1

The foliowing example is used to clarify the difference between link flows
and path flows. Consider the network shown in Figure 2.l1. A list of paths for
each 0-D pair is shown in Table 2.1. We observe that there are two paths for
the first O-D Pair going from node 1 to node 5. The path flows hi, h; are, res-
pectively, the flows along the first path, (1,4,5), and the second path, (1,3,4,5),
of the first O-D pair. From Figure 2.1, it can be seen that hi passes through

links 3,5 and h% passes through links 1,4,5. The arc-chain incidence matrix for
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1.5 MILES

Figure 2.1 Network for Examples 2 and 3
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. . 1 . . A
the first O-D pair, denoted by B”, can then be written according to the defini-
tion (2.3)

1
|

w
n

o O O + O + O O
o O O H H O O

—

L

Of the two paths of the first O-D pair, only the second passes through
links 1 and 4. Therefore,the amount of flow between the first 0-D pair on
links 1 and 4,_denoted-by f% and fi are both equal to h;. On the other hang,
both h% and h% pass through link Skand hence,fé is equal to h; + h;. The 1link
flow vectors from each O-D pair, £ , are listed in Table 2.2. They can also be
computed using (2.2). The total amount of flow on any particular link i, fi' is
the total amount of path flow of all O-D pairs passing through link i. For

example, it can be observed from Table 2.1 that hl, h;, h2, hz, h3

4
1 3 1’ hl all pass

through-link 5. Hehca
1 1 2 2 3 4
=h + h  +h + + h +h
f5 1 2 1 h3 1 1
The total flow on all links are listed in the last column of Table 2.2.

2.1.1 Feasible Flows

A basic principle governing network flows is the Principle of Conservation
of flow: in steady state, the total amount of flow entering a node equals the

total amount of flow leaving the node. Mathematically, for each 0-D pair,

At =X, k=1, , (2.6)

A . th . . .th
where y& is the traffic requirement vector for the k O-D pair with the i

component definéd as follcws:
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. k
Hk if node i is the origin node 0 ;
k A . B k
w, = -H if node i1 is the destination node D ; (2.7)

0 otherwise.

Using Eq. (2.5), conservation of total link flow can be written as

Af =w (2.8)
where
K F
k ;
w= ] w. (2.9)
k=1
Conservation of flows may also be written in terms of path flows:
o onf -k, (2.10)
iep t
k
In addition, link and path flows are required to be non-negative:
£ >0, (2.11)
K ;
f >0, k=1, ..., K« (2.12)
k
h 0, k=1, ..., K . : (2.13)

Finite link capacity also requires that the total amount of flow on every

link be less than or equal to the saturation flow,
£<c, ' o (2.14)

NL | 5 : . S .
where ce&R 1s a vector of link saturation flows, or link capacities. Equations

(2.5) and (2.14) imply

K
] £5<c, , (2.15)
k=1
K
) g?g# < c. (2.16)
k=1
Definition: A set of path flow vectors {EF} is a feasible path flow if and

only if {g}} satisfies Egs. (2.10), (2.13), and (2.16).
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Definition: {f}} is said to be a set of feasible link flow ﬁectors for all
O-D pairs if and only if Egs. (2.6), (2.12) and (2.15) are
satisfied. The resultant total 1link flow, £, is called a

feasible total link flow vector.

2.1.2 Control Parameters

Let gﬁRU be a vector of control parameters which includes green splits,
cycle time, offsets, and ramp-metering rates in the most general formulation.
Ramp metering rates are excluded from consideration here since in this study we
focus our attention on urban grid network. Furthermore, we assume a fixed-
cycle time of one minute and ignore the effect of offsets. Thus, we consider
only the green splits as control parameters. This simplifying approach is
taken to avoid mathematical complications without losing the important concep-
tuél qualitative features of the problem. G denotes the set of feasible con-
trols which defines the physical constraints on g. Specifically, gi, which is

. i .th | A
the green split on the i signal expressed as a fraction of a cycle, must

satisfy
0<g, 209 i=1,... 0, (2.17)
The upper limit of 0.9, instead of 1.0, accounts for the lost time in

every cycle due to reaction time at the beginning of the green phase [l11]. Thus,

G = {_g_ERU | 0<g, £0.9; i=1, ..., v} (2.18)

Throughout this report, we assume that there are two competing streams of
traffic entering each signalized junction i. The green split facing one of the
streams is 9; while the green split facing the opposing stream is (0.9—gi).

Which split is called gi and which is called 0.9—gi is arbitrary.

2:1.3 Cost Function

The appropriate’ cost function often chosen in transportation system deci-
sionmaking is total travel time or total fuel consumption [11], [15]. 1In the

case of travel-time minimization, the cost can be written as

NL

Jg= ) £t - (2.19)
. 11
. i=]1
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If the concern is total fuel consumption, then the cost is
L
J= ) fe, . (2.20)
. ii
i=1

The average transit time on an unsignalized link is modeled by the conventional

fourth~order polynomial in link flow
s o fi 4
t, =t |1 +0.15(—) , (2.21)
i i ci

where t: is the average free flow speed on link i. This model has been used by

the Federal Highway Administration {40] and widely adopted in various transpor-
tation studies [17], [32], [40], [41}.

For links entering a signalized intersection, the additional component of
average waiting time is modeled by Webster formula [15]
2
CYC(1-g ) c, £
| 1

0.45 + 1
A .C. - £,
t:(fi,g) = ¢ i 95 1(gjci 1)

); for g,c. > £,
ji i
(2.22)

for g.c, < £,,
joi~—"1

where gj is the green split facing link i; CYC is the cycle time in hours; ci

is the link capacity.

Thus, the total time spent on link i is

s w . A 0, . .
ti(fi) + ti(fi,g) if link i is 51gna11z§d,

e (f,9) = (2.23)

t?(f.) otherwise .
i

Recent studies have shown that ei, the fuel consumption on link i, is a

linear function of the link distance di' and link time, ti.

ei(fi.g) = kldi + kzti(fi,g) . (2.24)
where k1 and k2 are known constants [42], [43].

Since the time and fuel consumption functions on each link i can be written
as functions of link flows and control barameters as shown in (2.23) and (2.24),

the total system cost can also be expressed as a function of link flows and
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controls.

J=J(£ 9 . (2.25)

Using Eq. (2.5),

£= )Bhn , (2.26)

which relates link flow vector to path flow vectors, the total system cost can

also be expressed in terms of path flows and controls.

J

J(£,9), (2.37)

K
=a3C] 5% 9.

k=1
It is also important to recognize that there is an implicit constraint in
the cost function that prevents flow on signalized links from exceeding the ef-
fective capacity g,Ci. Since 0.0 < g, £0.9, flows on signalized links are
also prevented from violating the capacity constraint (2.14). For unsignalized
links, the fourth-power time function (2.21) serves as a penalty function to

brevent excessive violation of the capacity constraints since the fourth-power

time function rises steeply for flows exceeding the capacity.

2.2 Generalized System bptimization Problem (GSOP)

Consider the following Generalized System Optimization Problem (GSOP) :

Minimize J(f,g),

£.9
subject to

égk =-£‘ k=1,...,K , (2.28)

g# >20. . k=1,...,K , (2.29)
£

k

£= ) £,

. L 2.30
k=1 (2.30)
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gjci if link i is signalized;
£, < (2.31)

c, otherwise ,
i

gEG . _ (2.32)

Constraints (2.28)-(2.32) constitute the requirement that f is a feasible

flow. 1In (2.32),g is restricted to the set of feasible controls, G.

The GSOP is an optimization problem faced by the traffic authority: to
choose a feasible traffic control vector and a feasible network flow such that

a certain sytem-wide cost function is minimized.

Throughout this study, the following assumption is made on the input flow
vectors {y#}. We restrict our study to those {!F}s with the property that
there is at least one 9gEG such that there exists a feasible flow. From now
on, we drop the capacity constraints (2.31) since there is an implicit con-
straint in the cost function which prevents the flow from exceeding the effec-
tive capacity, gjci, for signalized links. For unsignalized links, the fouxrth-
power link time function (2.21), with a steep gradient in the region fi z_ci,
serves as a penalty function to prevent excessive violation of the capacity
constraint. In addition, our assumption on the requirement flows which guaran-
tees the existence of a feasible flow also indicates that if there are some
violations of the capacity constraints, the violation will not be excessive.
From a practical point of view, a slight violation of the capacity constraint
is tolerable because the practical capacity of a link is onlf a very rough

estimate [44],

The GSOP is a generalized problem of the conventional System Optimization
Problem in the following way. The System Optimization Problem assigns flows
in an optimal way, given a set of fixed control variables, whereas in GSOP,
both flows and controls are considered as decision variables. In GSOP, the
traffic authority chooses feasible controls in addition to assigning a feasible
network flow to minimize a system-wide cost. Hence, GSOP extends the
scope of decisionmaking of the conventional System Optimization Problem to

include traffic controls as decision variables.
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2.3 Limitations

The GSOP formulation assumes that the traffic authority possesses the power
of arbitrarily assigning any feasible flow to the network in addition to the
capability of regulating the traffic-control devices, i.e., traffic signals.
There are important reasons why this assumption does not hold in practical
situations. First, individual drivers are independent decisionmakers who
autonomously choose among different available paths to reach their respec-
tive destinations. Second, traffic control devices do not allow the traffic
autﬁority to enforce link flow to any arbitrary volumne. They can, at most,

limit the access of vehicles to certain links in the network.

To achieve a traffic distribution from the optimal solution, it is neces~
sary to have all users of the system fully cooperative with the central traffic
.authority, so that each dfiver is required to surrender his freedom of route
choice to the central control agency even though in so doing he may be subjected

to higher personal cost.

Following the consideration of these practical limitations, it may be con-
‘cluded that the GSOP formilation is a highly idealized characterization of the

traffic'control problem. However, the GSOP formulation has some value in the

understanding and analysis of the traffic control problem in spite of the failure
to incorporate the constraints of drivers' route choice behavior. The optimal
solution of GSOP represents what can be achieved in the best of all possible worlds.
Therefore, the optimal.cost of GSOP is a lower bound for the cost achievable by any
feasible controls. From this point of view, the solution of GSOP can be used to

serve as a standard against which different control strategies may be compared and

evaluated.

2.4 Hybrid Optimization Problem (HOP)

With the recognition of the limited capability of the traffic authority, it
is necessary to reformulate the problem to take into consideration realistically
the role of individual drivers as independent decisionmakers in choosing among
the different routes available to them. Thus, an important characteristic in

this formulation is that there is no one single decisionmaker in the system
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anymore. The traffic authority and the drivers are two different sets of

decisionmakers, each with a different collection of control or decision vari-
ables and different objectives; both are capable of affecting the overall sys-
tem performance. The traffic authority directly controls the traffic control

devices, while the drivers choose among different routes. An 1mportant and

subtle point to be emphasized is that the route choice among dlfferent drivers

depends on the traffic control imposed by the traffic authority. Therefore,

the traffic authority does bossess some control over the flow varlables. How-

ever, this control is indirect and possibly limited.

In this report, the term "hybrid" is used to describe this special class
of transportation network optimization problem. It can be viewed as a speciali-
zation of the Generalized System Optimization Problem. More specifically, it is
a GSOP with additional constraints on the flow distribution in the nétwork;
these constraints reflect driver behavior and decisions. It is hybrid in the

sense that the objective function to be minimized is a certain system-wide cost,

but the flows are constrained to distribute according to some behavioral model,
e.g., individual minimization of personal trip cost. The Hybrid Optimization
Problem can now be stated as follows:

HOP

Minimize J(f,g),

f.g
subject to
Af_k=gk, k=1,...,K, ' (2.33)
k
£ >0, k=1,...,K, (2.34)
K
£ =7 £, - (2.35)
k=1
geG (2.36)

f satisfies traffic distribution laws under some (2.37)

behavioral assumptions on drivers' route choice .

An explicit mathematical description of (2.37) is presented in Section 3.
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The difference between the GSOP and HOP formulations is the flow distri-
bution constraint (2.37). Without the constraint (2.37), the HOP formulation
is equivalent to the GSOP formulation. In the HOP formulation, the traffic
authority is not allowed to assign any arbitrary feasible flow, as in the GSOP
formulation, to minimize the system cost. Instead, the flow is required
to satisfy some distribution principles under certain assumptions on the
drivers' route selection behavioral model. In the HOP formulation presented
"here, the constraint (2.37) on flow distribution is intentionally left as
general as possible because there exists in the literature several different
behavioral models on'thé drivers' route selection process. This is the sub-

ject to be discussed in the next section.

Conceptually, the HOP formulation can be viewed in a more general setting.
It is a system-wide network optimization in an environment where flows cannot
be arbitrarily assigned, but are distributed in a prescribed way which is in-
fluenced by the decision variables chosen by the traffic authority. Hence for
this class of problems, it is necessary that decision variables be chosen in

anticipation of the reaction of the drivers.

We quote the Equilibrium Network Design Problem considered by aAbdulaal
et al. [4]1] as an example which illustrates the generality of the HOP formula-
tion. 1In the Equilibrium Network Design Problem, one is faced with the problem
of determining the practical capacities of a set of links in a network to be
constructed or improved, 'so that a certain system-wide cost is minimized, e.g.,
total: fuel consumption, with the assumption that flow is distributed in the
improved network according to User Optimization. In this case, the control
parameters {gi} are the link capacities under consideration. The maximum
available budget for expenditures on construction and improvement imposes a

constraint on the control parameters and must be properly incorporated in the

set of feasible controls, G.

The dependence of the system cost on the decision variable appears in the

link travel-time function (2.21),

£
s = 40 i 4 (2.38)
ti(g,g) .ti(l + 0.15(—g ) ),

i
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where gi, capacity on link i, is one of the decision variables.

The Network Equilibrium Design Problem can then be stated as follows

NEDP

Minimize J(f,g),

£.g9
subject to
k k '
Af =w , k= 1,...,K, (2.39)
k
£ 20, k=1,...,K, . (2.40)
K
k
£ =1 £, (2.41)
k=1
geG ' (2.42)
f is an equilibrium flow. (2.43)

Comparing the NEDP (2.39)~(2.43) and the HOP (2.33)-(2.37), it is clear
that the NEDP can be formulated as another HOP.

2.5 Conclusion

In this section, we have defined the notation and terminology used in this
report. A Generalized System Optimization Problem was introduced as an exten-
sion of the conventional system optimization problem in traffic engineering. We
have pointed out several practical issues which are not incorporated in the GSOP
formulation. A Hybrid Optimization Problem has been formulated as a modifica-
tion of the GSOP to take into account realistically the role of drivers' route

choice behavior in the traffic control problem.
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3. USER OPTIMIZATION: FLOW DISTRIBUTION PRINCIPLE

An important and perhaps one of the most complicating issues in the study
of the traffic control problem is the role of individual drivers as independent
decisionmakers when they choose among the routes available in the network.

This section is devoted to the discussion of user optimization, the flow dis-

tribution principle to be used in this study, and its underlying behavioral

assumptions on the process of route selection of individual drivers.

The objective of this section is to derive a mathematical representation
of the user-optimized flow pattern which in turn can be incorporated as con-
straints to the Hybrid Optimization Problem. User-optimized flow pattern is
usually characterized mathematically in ways that are not convenient for our
purposes: either as a solution to an optimization problem [20], or as a system
of logical statements of the form "If a, then b." Section 3.2 provides a mathe-
matical characterization of the equilibrium flow pattern expressed as a set of
equalities and inequalities. This representation can then be conveniently
posed as constraints to the Hybrid Optimization Problem. In section 3.3, we
present the probabilistic assignment models which are commonly used in the

literature as alternative models for flow distribution.

3.1 Principle of Equal Travel Time (Wardrop's First Principle) on

Traffic Distribution

The way traffic distributes itself in a transportation network is a compli-
cated process which depends primarily on the drivers' route selection behavior
and the intersections among the drivers in the network. The choice of route
varies among individual drivers and depends on a large number of factors,
including the traveling time, the distance along the route, and the number
of stops. For this reason, it is a very complex task to formulate a mathe-
matical model which describes precisely the drivers' route choice behavior.

Therefore, some simplifying approximations are necessary.
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In this study, we adopt the Equal Travel-Time Principle, or Wardrop's
First Principle, which is frequently used in traffic assignment to describe
network flow distribution [14], (15}, (171, [18], [19], [20]. The underlying

behavioral assumptions on drivers' route selection processes are:

a) Every driver has a perfect knowledge of the prevailing traffic
condition, ' '
b) Each individual driver chooses his route so as to minimize his

personal trip cost, which is assumed to be the travel time. That is, he

chooses the shortest (in time) available path.

Neither of the hypotheses is grossly unrealistic in a long-term avefage
situation. Through travel experience in the network and traffic broadcasts,
a fairly good knowledge of the traffic condition can be acquired. The hypo-
thesis of individuwal trip-time minimization can be regarded as a close approxi-
mation since it has been shown that trip time is the most important determining

factor in the drivers' route selection decision [26].

The model of link travel time as an increasing function of flow, which
models the congestion effects, together with the two hypotheses of drivers'
route choice behavior, results in an equilibrium situation described by War-.
drop's First Principle [16], which states that the “journey time on all routes
actually used is equal and less than that which would be experienced by a

single vehicle on an unused route".

3.2 Mathematical Characterization of Equilibrium Flow

In this section, we express the Equal Travel-Time Principle in mathemati-
cal terms. This results in a set of logical mathematical statements qf the
form, "If a, then b." Unfortunately, a mathematical statement of this form
cannot be conveniently posed as constraints to the HOP because a standara
mathematical programming problem formulation admits constraints in the form of
equality and inequality only. To meet this requirement, we show that it is
possible to characterize mathematically the equilibrium conditions in Wardrop's
First Principle by a set of equalities and inequalities. Mathematical charac-
terizations of the equilibrium flow in both link flow and path flow formulation

are presented. These mathematical characterizations of equilibrium flow are
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believed to be an original contribution to the study of traffic network

flows.

3.2.1 Path Flow Formulation

It has been shown by a number of studies [45], [36], {31}, [18?201, that

Wardrop's First Principle can be expressed mathematically as follows:

a) Every path flow must be non-negative. Mathematically,
k .
hi > 0; 1ePk: k=1,...,K, (3.1)
b) All path flows of the same O-D pair sum to the requirement flow.
-k
)) ht=H; k=1,...,K, (3.2)
ieP
1€k
c)

Utilized paths have the same trip time, which is equal to the minimum
trip time. Mathematically,

ht > 0 implies that T#(h,g) = min Tk (h,g);ieP_ ;
i= . -

!

JEP

k (3.3)
k=1,...,K.

d) Paths having greater trip time carry no flow.
TE(h,g) > min T#(h,g} implies that h# =0,
b A j€P 3 - 1
k
(3.4)*

iEPk, k=1,...,K.

Definition: A set of path flows {g#} is an equilibrium flow if,and only if,

{E#} satisfies Egs. (3.1)-(3.4),

The mathematical characterization of equilibrium flow in (3.1), (3.2), (3.3).
and (3.4) cannot be conveniently posed as constraints to the Hybrid Optimization
Problem because (3.3) and (3.4) are logical statements. We show in Theorem 3.1

a transformation that can be used to overcome this difficulty.

* Conditions (3.3) and (3.4) are of the form "If a, then b."
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Theorem 3.1

k o e . .
{h"} satisfies (3.1)-(3.4) if, and only if, {gk} satisfies (3.1), (3.2), and

The > 1] w5 mg 1k P k=1,...K. (3.5)
i jep, 33 |

Proof:

For clarity and notational convenience, we suppress the arguments of T?(E,gp

in this proof.

A. To show that (3.1), (3.2), (3.3), (3.4) imply (3.5)

Let Tf = min TF; k=1,...,K. (3.6)
jE:Pk

(3.3) and (3.4) imply

k, _k k .
hi(Ti . T*) = 0, for all 1EPk; k=1,...,K. (3.7)
. . k , k k
Summing (3.7) over all lEPk, T, can be expressed in terms of h and 17,
k k_k k
r*=(2 hjrj)/n; k=1,...,K. (3.8)

jEP
&%
From (3.6), it follows that

k ) k k
T, >min T, = T, =( z h% T%) / Hk for all ieP ; k - 1,...,K,
i—. j . Jj k

Jst jst v

which is the desired result, (3.5).

B. To show that (3.1), (3.2), (3.5) imply (3.3), (3.4)

Let 'r]:= ( ) h]frlf)/ﬁk; k=1,...,K.

(3.5) can be rewritten as
k

k .
Ty - Ta20, forall ieR, k = 1,...,K, (3.9)

which also implies
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Kemin ©% kx=1,....k (3.10)
jer,

T

Since, by (3.1), h# > 0, it follows that
i

k
h (T# - Tk) > 0, for all iep , k =1,...,K, (3.11)
i i Sk — k

Let us examine the quantity

k
s= 1 nf -,
jep,.  *+ %
k

= 7 h: r? - () 5 rf,

i€eP, i€R 1

k k

. 2 hiTt - (Hk) (( Z h?T?) / H ) R

%EPk jEPk
= 0.

Since every individual term in S is, by (3.11), non-negative, and since S equals

zero, it follows that

k k k ,
. hi (Ti - T,) = 0 for all 1ePk, k=1,...,K, (3.12)
[+
hk > 0= ae Tk for some ieP k=1 K (3.13)
N Ti" x? SO Ekr =1l,...,K, .
‘and that
k k
T, > 1T =9hk = 0, for some i¢P , k =1,...,K, (3.14)
i - i k

It remains to be proved that

k . k
T, = min T_.
jEPk
We show this as follows. The flow conservation constraints (3.2) states
2 k k
iePk

which implies there exists some iePk for all k= 1,...,K such that (3.13) is true;

: . k
2 i.e:, there is at least.one ieP_ for every k = 1,...,K such that T# =T,
i

k
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But, by Eq. (3.10),

k ; k
T, Smin T,
JEP

k
Hence,
k . k
T*'—'mln T, k=l,...,K.
jeP
Je Xk
Q.E.D.
3.2.2 Link Flow Formulation

In the study of large-scale networks,it is often desirable to avoid the enu-.
meration of all available paths {33]1. This can often be done if we work in the
space of link flows. In this section, a mathematical characterization of equi-
librium flow in the link flow formulation similar to that obtained in section

3.2.1 is derived.

. k . . . c s .
We introduce a vector, v , of dimension NN, in association with each O-D

. .t

pair k, k=1,...,K. The i 3 element of g# is defined as

k A . . k s -

v, = the minimum time taken to go from O, the origin

node of the k% 0-D pair, to node i.’ (3.15)

We note that

k .

v, >0 for all i = 1,...,NN; k =1,...,K,

i = 2

and (3.16)

v? = 0 if and only if i = Ok.

In addition, it can be deduced from the definition of v? in (3.15) that all
o k .
O-D pairs k with the same origin node Ok have the same -value of v, for all i.

The quantity v? can be viewed as a potential.

It has been shown [46] that Wardrop's First Principle can be expressed

mathematically in link flow formulation as follows:
£ >0, (3.17)

Af = w, (3.18)
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k k

ti(ﬁ,g_) > V(i) " Va(i)- (3.19)
k k
> =
18589 > Ve " Vaw”
(3.20)
then fz =0 i=1,...,NL; k=1,...,K,
£ £ > o,
1
(3.21)

k k

then ti (E:Q) = VB(i) - Va(i)

i=1,...,NL; k = 1,...,K,

where a(i) and B(i), as defined in section 2.1, are the initial and terminal

nodes, respectively, of link i.

By making use of the node-arc incidence matrix, A, (3.19) can be written

more compactly.in vector form:
. k
t(f,g) +A'v >0, k=1,...,K. (3.22)

The system (3.17)-(3.21), with further manipulations, can be shown to be

equivalent to the following

g? >0, (3.23)
k

Af = y#, (3.24)
; k

rif,9) +Aa'v > 0, (3-25)
k k k

(£)'t(f,9) + (w)'v = 0. (3.26)

- Definition: A set of link flow vectors {gr} is an equilibrium flow if and

. . k
only if there exists {v } such that (3.23)-(3.26) are satisfied.

In this section,we have presented two mathematical characterizations of the
equilibrium flow. They consist of equalities and inequalities, and therefore,
can be used as constraints in a standard mathematical programming problem formu-
lation. The systém (3.1), (3.5) is in path flow formulation, while (3.23)-
(3.26) is in link flow formulation. The link flow formulation has an advantage

that no path information (i.e., the arc-chain incident matrices {g#}) is required.
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However, this is possible only with the introduction of new variables {y#}.
Consequently, the HOP in link flow formulation is a much larger problem in terms
of the number of variables. Thus, there is no clear-cut advantage of using the
link flow formulation when computation time and on-line storage involved in

solving the HOP are taken into consideration.

3.3 Alternative Flow Distribution Models

In this study, it is assumed that traffic distributes itself according to
Wardrop's First Principle. It will be shown that this is a reasonable assump-
tion in later sections. However, there are a number of other models for flow
distribution, and the HOP formulated in section 2 is general enough to admit

alternative models.

We present in this section a class of probabilistic models cosidered in
[471, [48]. These models differ from that of User Optimization in that they
attempt to account for (1) the random characteristics of the different percep-

tions of the traffic condition,and (2) the non-uniformity in preferences among

individual drivers.

These models are developed on the following premises. Due to the fact that
drivers do not have a perfect knowledge of the traffic condition, and different
drivers may have different criteria in the route selection process, for a given
0-D pair, paths which are less desirable, say,in terms of travel time, may still
carry a positive amount of traffic. The flows on these paths are less than that
on the most desirable path. This is the feature distinguishing these models
from the User Optimization model, where such less desirable paths carry no
flow at all. Empirical equatinns are hypothesized for flow distribution in a
network to capture these qualitative features. In words, these models state that
the fraction of drivers taking any particular path between a given O-D pair de-
pends on how attractive that path is as compared with all other available paths.
The degree of attractiveness of a particular path is assumed to be a function of
the path characteristics, usually the total travel time or the total distance or
a weighted linear combination of both. The longer the travel time or the dis-
tance of a path, the less attractive it is to the drivers. Parameters are intro-
duced in these models to account for the random nature of the route selection

process. These parameters are usually calibrated using observed traffic data.
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In the model of diversion curve assignment, the following functional form
is hypothesized [47].
k -2
Lo V. (1a, + 8 t.(hgl} 5;ier; k=1 K, (3.27)
kK- ko LAk MY TR d ’ Pt )
H JER,
i
where the summation is taken over all those link j's belong to RF, the set of all
t i
links on the ith path of the k 3 0-D pair; dj and tj(E’g>' as we recall, are the
distance and travel time on link j; lk, Zt, ls are parameters to be explained

below.

Briefly, the model of diversion curve assignment, expressed in Eq. (3.27),

states that the fraction of traffic flow of the kth 0-D pair taking the ith path;
k

i.e., i, is inversely proportional to the route characteristic on that path raised
: % .

to thz power ls. The.routé characteristic considered in the drivers' route selec-
tion is assumed to be a weighted combination of the total travel distance and total
travel time. The tradeoff between distance and travel time in the decisionmaking
of the drivers is expressed by lt. The degree which drivers are sensitive to route
characteristics when choice is made between alternative routes is parameterized

in & . This reflects in part the quality of information the drivers have on the
traf?ic condition, and the strength of preference of the drivers. Given two models
with different values of 25, the one with a larger value will have less traffic
flow on the less desirable paths. The constant lk is a normalizing factor which
may be obtained by sﬁmming (3.27) over all paths available between the kth O-D

pair, i.e., over all i such that iePk. This results in

2
Lo= ¥ L) ta,+ 2t (g} % k=1,...,K, (3.28)
k . ok J t. 3"
ieP JER,
k. i
In the multipath probabilistic assignment model considered by Dial [48],

the following functional form is assumed for flow distribution.

e

: k k
=&, exp {-2 [T (g - T, (gl

o]

(3.29)

for all iEPk; k=1,...,K,
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where

k . . .
Ti(E'ﬂ) is the total travel time along the 1th path of the

kth 0-D pair;

k A k .

T*(E,g) = I?lln T, (h,q) (3.30)
jEPk J .

: . . th :
is the path travel time along the fastest route connecting the k h O-D pair;

lk and ls are parameters to be explained below.

The multipath probabilitic assignment model states that the fraction of
traffic of the kth O-D pair taking the ith path is a function of the excess
travel time of that path over that of the fastest path. The functional form
exp (°) is chosen to capture the qualitative feature that paths having longer
travel time carry less flow. The parameter { measures how sensitive the
drivers are to the total travel time in choosin: among alternative paths. - The
normalizing factor, Zk, can be obtained explicitly by summing (3.29) over all

paths in Pk as in the case of the model of diversion curve assignment ,

Rk = kl " i k=1,...,K . (3.31)
I expl-L_[T[(h,@) - Ty(h,g)1}
iep
k
Because of the particular functional form chosen in this model, the multi-
path probabilitic flow assignment model as expressed in (3.29) and (3.31) can be

further simplified to the following form:

~

by  exp{-% ™(h,q)}

= s 2 B ; ieP , k=1,...,K - (3.32)
] exp{-2 Ti(h,g)} k
jEPk s J

"

ta

H

3.4 Discussion and Summary

In this section, we have presented different models for network flow dis-
tribution. Two mathematical characterizations of the equilibrium flow pattern
are presented. These characterizations are in the form of inequalities, and can

be used as constraints in the HOP formulation in Section 2. Alternative models,
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broadly classified as the probilistic assignment models, which include the diver-
sion curve assignment model and the multipath probabilistic assignment model are

also discussed.

In the remainder of this study,we restrict our attention to a user optimiza-
tion model for a number of reasons. In modeling, the fact is appreciated that
any mathematical behavioral model, no matter how complicated or sophisticated,
can only be an approximation to the real system. User optimization is among
one of the most commonly used and better understood models in the area of traf-
fic assignment. Another important justification for using user optimization as
a flow distribution model is that equilibrium flow has been shown [49] to be a
reasonably good approximétion of the actual traffic distribution. Because of
these considerations, much emphasis has been given to the formulation of equi-
librium flow. 1In this section,the equilibrium flow pattern has been mathematical-
ly characterized in a useful way in the sense that it can be conveniently posed

as constraints to the HOP.
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4. NECESSARY CONDITIONS AND EXTENDED EQUILIBRIUM PRINCIPLE OF
HYBRID OPTIMIZATION PROBLEM

The general formulation of the Hybrid Optimization problem in ‘Section 2,
together with the mathematical representation of flow distribution models in
Section 3, comprises a precise mathematical statement of a specific HOP which
assumes Wardrop's First Principle as a model for the flow distribution. In
section 4.1, we present the derivation and analysis of the necessary conditions

of this problem. From the analysis, we obtain an Extended Equilibrium Principle

for the HOP. It is an interesting fact that the Extended Equilibrium Principle
bears a remarkable similarity to the Equal Marginal Cost Principle in the system
optimization problem (20). This seems quite intuitive since the HOP combines
features of the user optimization problem and the system optimization problem.
This is discussed in Section 4.2. We defer the presentation of the specific
numerical examples to illustrate the Extended Equilibrium Principle to the

next section.

4.1 Necessary Conditions for Hybrid Optimization Problem in Path

Flow Formulation

4.1.1 Problem Statement

-By using the general formulation of HOP in Section 2 and the results on
equilibrium flow representation, a precise mathematical statement for the HOP
may be written. However, before doing so,we rewrite the inequalities in (3.5)

in vector form for the sake of compactness,

Hk k

™E,9) > 0 ), | (4.1)

k. . ; . N
where u is a vector of dimension |Pk[ with all elements having a value of 1.

. Jd_ . k .
By using the arc-chain incidence matrices, B, (4.1) can be rewritten as

Brg > (£ e m) o (4.2)
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k- Problem Statement of the HOP

HOP: minimize J(f,9)

123 E’i
subject to
k k
I ni=H, k=1...K (4.3)
iep,
k
h >0, k=1,...,K, (4.4)
k' k' k k
B t(£,9) _>_(£ t(£,9)/H )3, k=1,....K, (4.5)
0'92_9130' i=1,...,U0, (4.6)

In this problem statement of HOP, the decision variables are h and g. Recall
that h is a vector of path flows and g is a vector of control parameters, the
. green splits. The link flow variables, {fi}’ are not independent decision

variables, They are related to the path flow variables, hk, by

k k.
B'h . (4.7)
1

£=
k

| 1R

4.1.2 Necessary Conditions

Let L be the Lagrange function of the minimization problem of the HOP.

R X '
Ledeg ¢ LA (L i -w)- ] T
k=1 iepP k=1
k
v ok ' k\ k
- Z Y [E t(£.9) '(Ek t(£,9)/H )g]
k=1 .
U U
- .2. ngw, - .2 Ui(O.9 - wi), (4.8)
i=1 i=1

where {)\k}, {Ek], {lk}, .{ni}, {Oi} are the Lagrange multipliers of constraints
(4.3), (4.4), (4.5), and (4.6), respectively, with {Xk}, {ni}. {Gi} scalars and

k
{g#}, {y"} vectors of dimension |Pk‘.
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2pplying the results of optimization theory on the necessary conditions
for the optimal solution of a constrained optimization problem (see, for

example, Theorem 3.9 in Avriel [50]), we obtain the following theorem.

Theorem 4.1: Necessary Conditions of HOP

Suppose (h,g) is an optimal solution of HOP. Then there exists a set of
Lagrange multipliers {Ak}, {EF}, {1#}, {ni}, {Gi} such that the following

system of equalities and inequalities is satisfied.

K ' 9t afk
Jl kl U 1 2 2 3 3 — —
2L 3 e e ] W P osy | SV
k of - - . L = = = of k
oh, = i=1 = ) on;
1 1
+ A, - k—O'iEP'k=l K (4.9)
Xk l—ll = ' k' Fecyg ’ *
cv e s s '3t
oL 8J [ 3' 3,3, 0 i 3 =
3a- "5 * | I oumhe -y | - o, =0,
g, dg; j=1 39, i
i=1,...,U (4.10)
) hik = ; k=1,....x, (4.11)
1€Pk
. ;
h >0 i k=1,...,K, (4.12)
k! ' k. k .
B t(g,9) > (£ e, k=1,...x, (4:13)
0.9 Z-gi >0, i=1,...,u0, (4.14)
k
g >0, k=1,...,K, (4.15)
EF g? =0, k=1,...,K, (4.16)
k
Y >0, k=1,...,K, (4.17)
1 1 ]
1# [g} t - (g# E/Hk)E#] =0, k=1,...,K, (4.18)
n, >0, i=1,...,0, (4.19)
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nigi =0, ' i=1...,u0, (4.20)
Ui-z 0, i=1,...,U0, (4.21)
oi(0.9 - gi) =0, i=1,...,0, (4.22)
g 2% gy
whexre == , —— , 5= + = + =— in (4.9) and (4.10) are defined as follows:
of ahk of Bgi Bgi
i

9 . . . R . .
5%- is a vector of dimension NL, the number of links. The 1th element is

the partial derivative of the system cost with respect to fi' the total flow

on link i.

o - th 3 2]
—— is a vector of dimension NL. The j element,(—k—) = (—%-) '
_ahi ahi Bhi

s t t]
which has a value of 1 if 1link j is on the i h path of the k h 0-D pair, and

k

zero otherwise, i.e., (afg /Bht ) = bji from (2.2) and (2.3).

ot
3F is a matrix of dimension NL by NL. The (i,j) element equals Bti/afj.
In the case of separable-link time function; i.e., the travel time on link i

ot
does not depend on flows on any other links, 3F is a diagonal matrix; i.e.,

at
(E)- N =0, j#il i=1,...,NL, j=1,...,NL,
=74i,3 (4.23)
dt
(3t i 5
(E) =#, i=1,...,NL. (4.24)
i,i i
%%— is a scalar which denotes the partial derivative of the system cost with
i

.th .
respect to the i control variable.

ot th ot ot,
55— is a vector of dimension NL. The j element, 55—) , 1is —~1,
i i
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Theorem 4.1 simply states the set of Kuhn-Tucker necessary conditions that
characterize the optimal solution of the Hybrid Optimization Problem. We will
show that there is a more comprehensible and physical interpretation of these
conditions in the next section. Equations (4.9) and (4.10) state that the

partial derivatives of the Lagrangian function with respect to the decision

variables, {h? }, {gi}, equal to zero. Conditions (4,11), (4.12), (4,13), and
(4.14) are the constraints of the HOP which must be satisfied by any feasible

solution, and hence by the optimal solution.

The group of conditions (4.12), (4.15), (4.16) is the complementarity con-
dition of the inequality constraints (4.4). Similarly, (4.13), (4.17), (4.18)
are complementarity conditions for the inequality constraints (4.2), and the

same is true for (4.14), (4.19), and (4,20), as well as (4.14), (4.21), and (4.22).

4.2 Extended Equilibrium Principle for HOP

In this section we examine the necessary conditions more closely in an

attempt to find a physical interpretation of these conditions. To do so,
let

kA k'K :
8 2 yS u = ) Yik/Hk_>__0 r o k=1,...,K, (4.25)
igp
k
K

S z (XF'EF/Hk)EF _ EFI# -

Kok gk gk
k=1 k=1 o

(Eu /H - B (4.26)

([

In Egs. (4.25) and (4.26), Bk is a scalar, and T is a vector of

dimension NL. It is clear that both 9k and T are linear functions of the

Lagrange multiplier {Yk}. It can be shown that

T't =0, (4.27)
Equation (4.9) can be rewritten as follows:
k
ot 7 of
aJ" k = =
—_— ] | —_— oS
[Bf I Bf] X A ¥
e =Jd 3h;
i
1eP,k=1,...,K, (4,28)
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Let

gkéa—J+ekt+

3F < %II’_ ’ k=l'l"'IKl (4.29)

k . R .
where g is a vector of dimension NL.

Equation (4.25), when written component-wise, becomes

NL Btj
A (4.30)
i

where the subscript, i, stands for the index for the link number, 1 < i < NL,

and the superscript, k, stands for the index of O-D pair number, 1 < k < K.

In the case of separable link-time cost, i.e., where

ot.
a—fl=0,forj7£i, (4.31)
i
we have
ot
k oJ k i
b =gt OE +m _Bfl . (4.32)
i i
Let us define
k
v of
z: =ik T . (4.33)
Bhi

We can now rewrite Eq. (4.28) as

k
x _ k' of
zi =1£ X ’
ahi
NL 3k
= 2 11)]? "'—]_ ’
j=1 1 3nk
1
NL
= ¥ ouk opS =+ (4.34)
j=1 3j ji k i
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Using the definition of b?i in Eq. (2.3), we observe that z? is a summation
- . . ) d th
of the quantities w? over those link j's which are on the ith path of the k

O-D pair.

Equations (4.12), (4.,15), (4,16) imply that:

k k : )
> =
If hi 0, then ui . . (4.35)

i
o

k
If u.k > 0, then h,
i i

]
o

. (4,36)

Consequently, (4.34), (4.35), and (4.36) imply that

k k ‘ )
If hi > 0, then z, = - Ak ’ (4.37)

If z,k > -\, then h.k =0 .
k h

i (4.38)

In words, statements (4,37) and (4.38) say fhat those paths carrying
positive flow have the same value of z? which is equal to -Ak. Any path
having the value z? greater than —Ak carries no flow. This is a statement
of the equilibration of the quantity z? over utilized paths. In addition,
the optimal solution must also satisfy the Equal Travel Time Principle, as
expressed in constraints (4.3), (4.4), (4.5)., We summarize this result in

the following theorem.

Theorem 4.2: Extended Equilibrium Principle

Suppose (241) is an optimal solution of HOP. iThen there exists some
scalars {687, k = 1,...,K} and a vector EgRNL, which are related to the Lagrange
multipliers {IF} by (4.25) and (4.26) such that the following statements are
true.

1) The trip times along all used paths of the kth O-D pair are the same
and equal to TE. Any path belonging to Pk having a trip time greater than

k .
T, carries no flow.

.th
2) Let z; defined as in (4.34) be called a pseudo-cost along the 3j

th th
path of the k 0O-D pair. The pseudo-costs along all used paths between the k

. k .
O-D pair are the same and equal to some value, say, Z,. Any path having a

pseudo-cost greater than zE carries no flow.
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Further Discussion

In (4.34), the pseudo-cost on the ith path of the kth 0-D pair is the
. k . .
summation of wj 's over those links along the 1th path of the kth O-D pair.

R . k )
Notice that in Eq. (4.32), wj has three parts:

ot
k _3ag k 3
wj = 5;;-+ 5} tj + ﬂj afj . (4.39)

Along all utilized paths, travel times are equalized; i.e.,

Yt s
3 3

are equal along all utilized paths of the same O-D pair. However the Extended

Equilibrium Principle also states that

are equalized over all utilized paths of the same O-D pair. We deduce from

(4.39) that the quantity,

12 L, ;1
£, j o
J 0 J ] J

is also equalized over all used paths of the same O-D pair.

In a special case, where T is zero, then the Extended Equilibrium Principle
reduces to the statement that both travel time and marginal cost are equalized.
In this case, the optimal control is chosen such that the resultant flow dis-
tribution is both system-optimal and user-optimal. This is rather a rare case,

and we do not expect this for practical problems.

4.3 Summary

In this section, we derived the Kuhn-Tucker necessary conditions for the
optimal solution for a specific Hybrid Optimization Problem which assumes user

optimization as a model for flow distribution. We also provide a more physical
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interpretation of these necessary conditions. This is summarized in the Ex-
tended Equilibrium Principle, which extends the conventional Equal Travel-
Time Principle: not only is travel time equalized over utilized paths, but
also a pseudo-cost which is related to the gradient of the system cost and

the Lagrange multipliers.
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5. NUMERICAL EXAMPLES

The preceding sections have been devoted to theoretical discussions of the
Hybrid Optimization Problem. 1In this section, we divert to a discussion on some
specific numerical examples. The main purposes of this section are to illustrate
the concept of the Hybrid Optimization Problem and to demonstrate the validity

of the mathematical formulation presented.

In Section 5.1, a general nonlinear constrained minimization problem to be
used in salving the HOP is described. Section 5.2 presents a discussion of an
algorithm which has been proposed and applied to traffic control problems of the
same nature as the HOP [9], ([14], [15). We will refer to this algorithm as the

Iterative Optimization-Assignment Algorithm in this report. Although this seems

reasonable, it is shown that in the examples considered in this section, the
algorithm converges to wrong solutions. In sections 5.3 to 5.5, we describe several
numerical examples together with their solutions obtained by the two different

methods. A comparison of the solutions is also given.

5.1 Augmented Lagrangian Method [50-54}

The HOP formulatiom in Section 2 can be viewed as a nonlinear constrained

optimization problem expressible in the following general form.

NLP
Minimize J(x)

n
XER

subject to
wi(g) > 0. i=1, ..., M, (5.1)

9, (x) =0, i=1, ..., N, (5.2)
where x is an n-dimensional vector of decision variables,and {wi}, {¢i} are the
inequality and equality constraints, respectively. The notation used in this

section is defined strictly for this section,and is independent of that used

in other parts of this report.
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In this section,we describe a general optimization algorithm to be used as
a solution method for the numerical examples in Section 5.3. The particular

optimization algorithm to be considered is the augmented lLagrangian method. The

study of the augmented Lagrangian method is an area of extensive research in
optimization theory in recent years. It is believed {50] to be one of the most
flexible and efficient general algorithms available for constraintéd optimiza-
tion [51]. Rigorous theoretical discussions on convergeﬁce and methods of ad-
justment of parameters of the algorithm are published in several papers. Con-
vergence has been proved elegantly using duality theory. The surveys by
Bertsekas [52], Fletcher [53], Rockafellar [54], and Powell [51] afe recommended
as references for this subject. Detailed discussions on the various theoretical
aspects of this method is omitted here since it is not the main theme of this

report. Only a brief outline is provided in this section.

The augmented Lagrangian method resembles the classical penalty function
method in the basic approach of transforming a constrained minimization problem
into a sequence of unconstrained ones by incorporating the constraint functions
in the objective function of the unconstrained problem. 1In the classical penalty
function method, various penalty functions have beéq defined for the uncon-
strained problem. A commonly used [54] penalty function is

@(i,pk) = J(x) - pk lflog lwy (X)] + lT Ig [¢.(§)IJ2 . (5.3)

i=1 - o i=1 4
where Dk > 0,and a sequence of unconstrained minimizations of § is performed
with respect to x € R" for {pk} + 0. Let 5}* be the unconstrained optimal

solution that minimizes @(gjpk).

The main advantage of the penalty function method is that, in constrast
to other methods such as the gradient projection method [55] that explicitly
treat nonlinear constraints, penalty methods avoid the time-consuming and often
difficult task of moving along nonlinear boundaries of the feasible set, or
trying not to cross them. The efficiency of the penalty method depends heavily
on the existence of a very efficient unconstrained minimization algorithm such
as the variable metric algorithms [50]. Another attractive feature of the pen-
alty function method is the availability of the Lagrange multipliers at the
optimum point. This is particularly useful for sensitivity analysis in general

problems, and in Section 6,wé show that this can be used to verify the global
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optimality of the solution of a subproblem of the HOP. The sequences

k* 2 k* k
{pk/[“&(g )1°} and {2¢j(§_ ) /o } can be shown [56] to converge, under some
mild assumptions, to the corresponding Lagrange multipliers Li and Ej associated

with constraints (5.1) and (5.2), respectively.

However, it is also known [50] that the major problem of this method is
that the Hessian matrix of ¢ becomes increasingly ill- conditioned as {pk} + 0.
Ironically, the variable metric methods for unconstrained minimization which
makes the penalty function method so very efficient is particularly vulnerable

to this main disadvantage of the penalty function method.

The augmented Lagrangian method avoids this problem without losing any of
the nice properties of the penalty function method by defining a new objective

function called the augmented Lagrangian function, for the uncontrained problem.

Define

Aty B max (+,0) . (5.4)

The augmented Lagrangian function for the constrained minimization problem NLP
is:

u 2 2
LA (@ - 2pw N1 - €7}

1
Qx,L,E) = J(x) +
P i

N o N 5
) &9, @+ 5 ) CINET) (5.5)
j= =1
. s a k gs k* . .
For a given p > 0 and multipliers (7, &), let x be the optimal solution of

the unconstrained optimization problem (UPk)

UPk

EFRP .

; s as k .k
- geveral methods have been -developed for the updating of the multipliers (g ,£).

For example, [50]:

k+1 - k “ k* .

= AT - 20w (x )1, 451, o, M, (5.6)
R S T S O (5.7)
J ] 3
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Several properties of the augmented Lagrangian method are known. It has
been shown [50] that for sufficiently large but finite values of p, the
sequences {EF*}, {£$}, {;F} tend to x*, ¢*, ¢*, which are the optimal solution
and Lagrange multipliers of NLP under some mild conditions. It is also known

that the rate of convergence is linear.

5.2 1Iterative Optimization-Assignment Algorithm

The Iterative Optimization-Assignment Algorithm is én iterative procedure
consisting of successive alternations between a signal-optimizing program and
a flow assignment program as shown in Figure 5.1. 1In the flow assignment phase
of the procedure, an equilibrium flow or user-optimized flow is computed assuming
the control parameters such as the green splits_aré fixed. The determination
of the equilibrium flow vector, under the assumption of separable link time

functions, has been shown [18], f{19], [20] to be equivalent to the following

minimization problem.

Equivalent Minimization Problem for Equilibrium Flow Computation

NL £,
Ml:lmlze izl of t, (x,9) g fixed dx ,
{n"}
subject to

non-negativity of path flows:

X
h >0 ,k=1,..., K , ; (5.8)

path flow conservation:

] =6, x=1,...,x , (5.9)
1ePk

k . .
where the link flow, £, is a known function of the path flows {E_} defined in
Section 2, and is given by

K
£= ) 8%° . (5.10)
k=1

The signal-optimizing program computes a set of optimal signal settings

with respect to some system cost, e.g., total travel time, assuming flows
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TEST
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NO

SYSTEM OPTIMIZED
SIGNAL SETTINGS

Figure 5.1 1Iterative Optimization-Assignment Algorithm
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to be fixed.

Signal Optimization Problem

Minimize J(h,q)

gﬁRU h fixed
subject to

feasibility of controls:

ge G. (5.11)

The procedure is initiated by a guess of the optimal control parameters,
g*, and continues by iterating between the two programs until a certain.stopping
criterion is satisfied. For example, it is reasonable to stop the procedure
when the change in the magnitudes of successive control vectors is smaller

than some small threshold value, €

This algorithm has been proposed by Allsop [37] as a sqQlution method for
a traffic control problem similar to HOP. Applications of this algorithm have
been documented in (141, [38], [58]. This algorithm is intuitively appealing
since it simulates the real-life situation if the authority periodically updates
the optimal signal-timing plan. This process of periodically reoptimizing
signal-timing plans has also been considered as a control strategy to account

for the changing steady-state traffic pattern due to the redistributional effects
of traffic [9], [14].

As a computational algorithm, the iterative optimization assignment algorithm
is potentially very attractive for large-scale network applications. This is
due to the fact that both the components; i.e., the signal-optimizing program
and the assignment program, have been under extensive résearch, and de-
veloped computer software for large-scale networks are available: for example,

MITROP {11}, TRANSYT [10], SIGOP [12],and TRAFFIC [59].

However, various aspects of this algorithm have not been closely examined.
For instance, does the algorithm converge to a solution? If it does converge,
what are the properties of the result? Most importantly, is the solution

optimal in a specific sense?

It is not the purpose of this report to answer all these questions. In
this section, we establish the fact that the optimization assignment algorithm
does not necessarily converge to the optimal solution of the HOP by using

some numerical examples.
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5.3 Numerical Example 1

5.3.1 Description of Problem

Consider the network in Figure 5.2 with link travel time assumed to be a

linear function of link flow:

€ (£) =15 + 28, (5.12)
£, (£,) = 15 + 26, (5.13)
£,(£,) =50 + £, (5.14)
tg(£) =50 + £, - (5.15)

Link 2 is under the control of the traffic authority, and for simplicity, we
assume that the control is in the form of delay imposed on the traffic passing

through link 2. Therefore the travel time function on link 2 is
ty(£,0W) =10 + £, +w, (5.16)

whexe W is the imposed delay. Ten units of traffic flow are required to go
from node 1 to node 2. It is assumed that the traffic authority wishes to

minimize the total travel time by choosing an appropriate value of w.

From Figure 5.2, there are three paths available for drivers to go from node

1l to node 2. -Let hl' hz, h_, be the path flows along routes (1,4,2) (1,3,2),

3I
and (1,3,4,2), respectively. The link flows are related to the path flows by

the following equations:

fl = h2 + h3 v (5.17)

f2 = h3 ’ (5.18)

£,=h +h, (5.19)

f4 = h1 ' (5.20)

£ =h, - ’ (5.21)
5.3.2 . Solution Obtained by Application of General Nonlinear

Constrained Algorithm

The Hybrid Optimization Problem for this example may be stated as follows:
. 5
(P1) Minimize J = | £, t,
. . i7i
i=1
{hl,hz,h3,W},

-53-






LINK 1 — L|INK 2 LINK 3
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subject to

hl + h2 + h3 = 10, (5.22)
hy >0, (5.23)
h, >0, (5.24)
h, >0, (5.25)
5
o=t o+t > = ] £t (5.26)
1 3 4 = 10 , i :
i=1
5
o=t vt > o= )l £t (5.27)
2 1 5 — 10 , ii’ .
i=1
. 5
T, = 2
3=t bt e > 5 ] £ (5.28)
i=1
w>0 , (5.29)

Let A, ul, u2, u3, Yl' Y2' Y3, n be the Lagrange multipliers to constraints
(5.22) to (5.29), respectively. The Lagrange function for Pl may be written as

5
1
L= I1+35 (Y +7, +Y,)] iZlfiti + An, +h, +hy - 10)

THiRy TGy TRy T Yy (By H ) - Y, (8 )

-Y3(tl + t,. + t3) - . (5.30)

2

Listed below are the Kuhn-Tucker necessary conditions for Pl.

oL _ -
5Ei 1+ (Yl Y, + Y3)/10] (t3 + 2f3 + t4 + f4) + A Hy
- 3'Yl - 2'Y3 =0, (5.31)
L _ S )
- 1+ (yl +tY, t 73)/10] (tl + Zfl + t5 + fs) + A Y,
2 (5.32)
i 3)(2 - 2Y3 =0
a—L=[1+('\(~+Y + v.)/10)(t, + 2, + £, + £, + £, + 2f)
8h3 L 2 3 1 1 2 2 3 3
(5.33)
+ A - My - 2Y1 - 2Y, - SYé =0,
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oL

5 1+ (Y1+Y2+Y3)/10] (fz) -~ Y¥;-n=o0,

1

U, 20,
u,h, =0,

5
g, =t + t4—(i§

, =t e -(.
i

Q
[l

h. + h2 + h3 = 10,

i= 1,2,3r

>
tifi) /10 > 0

1
5
£ >
Elti i) /10 > 0

95 = t1 + t2 + t3 -(; tifi)/lo >0
i=1
Y; >0, i=1,2,3,
Yigi =0 , i=1,2,3,
w >0,
n>ao0,
™ = 0.

The Augmented Lagrangian Method has been used as a solution algorithm

to the HOP Pl.

h; =h, =
A=-95
W =Wy =
n=0 .

Verification of Extended Equilibrium Principle

The following optimal solution is obtained.

0, w=20

(5.34)

(5.22)
(5.23)
(5.24)
(5.25)
(5.35)
(5.36)

(5.26)

(5.27)

(5.28)

(5.37)

(5.38)

(5.29)

(5.39)

(5.40)

(5.41)

Computed below are the trip travel times {Ti} and pseudo-costs {zi} using
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the optimal solution (5.41) along the three available paths from node 1 to node

2 in example 1.

T1=

From

Principle

t3 + t4,

15 + 2f3 + 50 + f4 '

15 + (2)(5) + 50 + 5

80 , (5.42)

t1 + tsr

15 + 2f, + 50 + £

1 5 '

15 + (2)(5) + 50 + 5 = 80, (5.43)

t1 + t2 + t3 ’

15 + 2fl + 10 + f2 +w+ 15 + 2f3r

15 + (2)(5) + 10 + O + 20 + 15 + (2) (5) ,
80 - ' (5.44)
1+ (Yl- + Yz + Y3)/1o] (1:3 + 2f3 + t4 + f4)
- - = Of

3yl 2Y3 9g, (5.45)
1+ (Y1 + Yz + _Y3)/10] (tl + 2fl + t5 + f5)
- 3y - 2Y3 = 95, (5.46)
1+ (Yl +Y, + Y3)/10] (t1 +2f, + t2 + f2 + t3 + 2f3)
-2y, -2y, - 5y, = 100 . (5.47)

Egs. (5.42) to.(5.44), the first part of the Extended Equilibrium

is satisfied; namely, the Equal Travel-Time Principle.

Paths 1 and 2, each carrying a positive amount of flow (five units),

have equal time, T, = 80. Path 3, which has no flow, has a travel time not

less than

T,

The second part of the Extended Equilibrium Principle; i.e., the principle

of equalization of pseudo-costs, is also satisified by (5.45) to (5.47). Paths

1 and 2, each carrying five units of flow, have the same pseudo-cost 2z, = 95.
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Path 3, which has a pseudo-cost of 100 > z, = 95, carries no flow.

The solution in (5.41) shows Yy = Y, = Y3 = 0. This implies that [using
(4.25) and (4.26)]

8

1]
(=]
.

Consequently,
_ oJ ,
wi = afi , using (4.30).

That is, this is a special case where the Hybrid-Optimal solution has a flow

distribution which is both system-optimal and user-optimal.

5.3.3 Solution by Iterative Optimization-Assignment Algorithm

x =h N (5.48)
Because of the symmetry,

hl = h2 = (10 - x)/2 . (5.49)

Assignment Program:

Without going through all the algebraic manipulations, the minimization
problem in the assignment phase of the iterative optimization reaction algorithm
is
(P2)

Minimize J(x) = 725 + (w - 20)x + 1.25x2
X
subject to 10 > x 2 0.

w fixed

The solution of P2 can be shown to be

(5.50)

{8—0.4w, 0<w<20,
X =

o, w > 20 .
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Control Optimizing Program

The optimization problem faced by the traffic authority is one of optimizing
over the control parameter, w, assuming x to be fixed. Again, we skip all in-

termediate steps of algebraic manipulations.

(P3).

Minimize xw + 2.5 [(x-3)2 + 311} .
x fixed

subject to w >0 .

The solution to this problem can be shown to be

= >
w 0, for x o (5.51)
2. 0, forx=20

The iterative optimization assignment algorithm consists of the following

steps:

Initialization

Set 1 =1 .

Guess w .
u 1

Assignment Program (Reaction Phase)

Pexrform the optimization problem P2 with w = w

Lt
Let the solution of P2 by x; -

Control Optimization Problem (Optimization Phase)

Perform the optimization problem P3 with x = w,

Let the solution of P3 be w, -
i+l

Stopping Criterion

If ||wi+l - will > g, go to step 5 ,
stop.
Update
i<« i+ 1.
Go to Step 2.
We apply the iterative optimization assignment algorithm to this example

with initial guess w = 10. The result of this procedure is shown in Table 5.1,

which is constructed using Egs. (5.50) and (5.51); the converged solution is
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w =20,

hl = (10-x)/2 = 1, (5.52)
h2 = (10-x)/2 = 1, ’

h3 =x=8.

The solution (5.52) is not the same as that obtained by the HOP formulation!

TABLE 5.1. Result of Iterative Optimization-Assignment
Algorithm Applied to Example 1

Step System (w) . . Driver (x)
Initialization 10
Assignment 4
Control optimization 0
Assignment 8
Control optimization 0

Converged Solution: w = 0, x = 8

We can show that the solution (5.52) is nonoptimal by applying Theorem 4.1:
Since hi >0 for i = 1,2,3, therefore by (5.36),
u, =0, k=1,2,3. ' (5.53)

The set of necessary conditions (5.31) to (5.34) can be simplified:

1+ (Yl +y, + 73)/10] (103) + A - 3y1 - 2Y3 =0, (5.54)
1+ (Yl + Y, + Y3)/10] (103) + X - 3y2 - 2Y,3 =0, (5,55)
1+ (v, +v, + Y3)/10]1 (128) + A - 2Y; = 2Y, - 5Y, =0, ' (5.56)
1+ (w/l +Y, + Y3)/10] (8) - Y3 - N=0. (5.57)

Equations (5.54) and (5.55) imply
Yl =Y,

and with further simplifications,

— ’

<
= >
Yy = 8Y; + 50 >0,
A = -84y, - 518,

n=-2,
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which violates the necessary condition

n>o. (5.39)

Therefore, we can conclude that the solution (5.52) obtained by the iterative
optimization assignment algorithm is not optimal from the system's point of view.
The nonoptimality of (5.52) can be more explicitly demonstrated by Figure 5.3
which shows the system cost as a function of the imposed delay, w. It is clear
that the lowest cost is achieved with w > 20, and (5.5) implies that the optimal
flow on link (3,4) is x = 0. That is, it is best not to use this link, and there
should be a sufficiently large control delay imposed so that all drivers are
discouraged from traveling on it. This is thus an example of Braess' paradox
[20]. The optimization assignment algorithm, however, has done the opposite

and converged to the worst possible solution.

5.4 Example 2 )
5.4.1 Problem Description

Consider the network as shown in Figure 2.1, Node 3 is a signalized inter-
section. We denote the green split facing link (1,3) by g. The link travel
time is modeled as a fourth power polynomial of the link flow as discussed

in Section 2.

The capacity is taken to be 1500 veh/hr per lane. All links except
link (4,5) are assumed to be single lane. We use the Webster formula (2.22)
with fixed-cycle time of 1.0 minute for the waiting time at the signalized
intersection. The traffic demands are 800 veh/hr for each of the
following O-D pairs: 1 to 5, 1 to 6, 2 to 5, and 2 to 6. Table 5.2 lists all
the routes available between these 0-D pairs. It is assumed that the cost to

be minimized is the total travel time in this example.

TABLE 5.2. All Available Routes for Example 2

O-D Pair 1 2 3 4
Origin node 1 1 2 2
Destination node 5 6 5 6
TotalNo. of Path 2 3 2 3

) 2 3 4
Ri = (1,4,5) |Ry = (1,4,5,6) |R) = (2,3,4,5)|R,=(2,3,4,5,6)
1 2 3 _ 4_
Paths R2 = (1,3,4,5) R2 = (11316) R2 - (215) R2— (21516)
2 4
R3 = (1,3,4,5,6) R3= (2,3,6)







}

total travel time (VEH-hr/hr)
840

800 |-

| | l | |
o) S 10 15 20 25

DELAY W (time units)

— =

Figure 5.3 Total Travel Time {at Equilibrium) of Example 1 as Function of w
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5.4.2 Solution by HOP Formulation and Augmented Lagrangian Method

As in the previous e#ample, we have treated this network by two different
approaches. First, it is solved using the HOP formulation by the Augmented
Lagrangian Method. The optimal solution obtained is g* = 0.215 with the mini-
mum cost (total travel time) equal to 880.72 veh-hr/hr. The optimality of g*
is verified using the results of a series of user-optimized flow patterns com-
puted at various values of g, the green split. The associated system cost in

Figure 5.4, demonstrates the optimality of g*.

Listed below are the optimal solution and the Lagrange Multipliers of the
HOP. '
g* = 0,215,

0-D Pair Number 1
Flows: hl = 800.00, h1,= 0.00 .

1 2
Lagrange Multipliers:
Al = -0.255205,
yi = 0.056212, y; = 0.0 ,

ui = 0.0 . ué 0.0181421 .

0O-D Pair Number 2
2

Flows: hi = 505.72, h; = 294.28, h3 = 0.0 .

Lagrange Multipliers:

Az = -0.44’
yi = 58.0864, yi = 47.5195, y§ = 0.0,
2 2 2
' ul = 0.0, u2 = 0.0, u3 = 0.041376 .
O~-D Pair Number 3
Flows: hi = 222.30, h; = 577.70 ,
Lagrange Multiplier: :
A; = -218.417 ,
- ]
Yi = 1.5203 x 10° |, yg = 3.9139 x 10
3 : 3 _
W = 0.0 K My = 0.0 -
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Figure 5.4 Total Travel Time (at Equilibrium) of Example 2 as Function of g
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O-D Pair Number 4

Flows: hi = 0.0, h

N b
>

Lagrange Multipliers:

14 = -0.3349 .

= 0.0, yg = 0.0, yg =2.346 x 10>,

4 4 _
uy = 0.01814, 1, = 0.01814, Wy =0.0.

The link travel times, ti, and the link pseudo-costs, W?: for each O-D

pair are computed and summarized in Table 5.3 below:

TABLE 5.3. Link Times and Pseudo-Costs for Example 2

Travel

Link Time Pseudo-Cost

(£,9) | € (nin) "’i,j "’i,j wz,j ‘Pi,j

(1,3) 4.80 8.84187 x 10 2| 1.41757 x 10° 1| 5.44463 x 10%| 8.84131 x 1072

(2,3) 8.37 1.47846 x 10°1| 2.40787 x 107 1| 9.48651 x 1ol | 1.47837 x 107t

(1,4) 3.91 9.02578 x 10 2| 1.33694 x 1071 | 4.43567 x 107 | 9.02532 x 1072

(3,4) 1.20 1.99820 x 10 2| 3.33136 x 10 1| 1.36064 x 107 | 1.99806 x 1072

(4,5) 9.70 1.64946 x 10~ 1| 2.72668 x 10 1| 1.09946 x 10%| 1.64935 x 107t

(2,5) | 19.26 3.32775 x 107 | 5.46769 x 10| 2.18417 x 10% | 3.32752 x 107t
1(3,6) | 10.01 1.87067 % 107> | 2.98243 x 107| 1.13488 x 10%| 1.87055 x 1071

(5,6) 1.20 2.02808 x 10°2| 3.36372 x 1072| 1.36321 x 10" | 2.02793 x 1072

' In Table 5.4, we show the total travel time and pseudo-cost along every
path for all O-D pairs.

. The results in Table 5.4 clearly demonstrate the validity of the Extended

Equilibrium Principle.

In obtaining the results in Figure 5.4, we also have computed the associated
total fuel consumption for each equilibrium flow pattern at different values
of g. This is shown.in Figure 5.5. It is clear that the optimal value of g is
0.0 if fuel consumption is the system cost to be minimized. A comparison of
Figures 5.4 and 5.5 also suggests the conclusion that a set of control parameters
optimal with respect to a system cost of total travel time may not be optimal with

respect to a system cost of total fuel consumption, and vice versa.
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Figure 5.5 Total Fuel Consumption (at Equilibrium) of Example 2 as Function of g
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TABLE 5.4. Path Times and Pseudo-Costs for Example 2

0-D Pair Path Flow Time (min) Pseudo-Cost
1 800.00 13.61 2.55204 x 10~ !
2 0.0 15.70 2.73347 x 10T
1 505.72 14.81 4.39999 x 10t
294.28 14.81 4.40000 x 10t
2 3 0.0 16.90 4.81376 x 10T
1 222,30 19.26 2.18417 x 10°
3 2 577.70 19.26 2.18417 x 102
1 ) 20.47 3.53031 x 10T
2 0 20.47 3.53032 x 10°%
3 800.00 18.37 3.34892 x 107 %

'Figures.5.4 and 5.5 exhibit several interesting and illuminating points.
Valuable insights into the behavior of system cost of a function of the control
paraméter can be gained from a close examination of these results. Tables 5.5
to 5.8 show the equilibrium flow patterns and system cost (total travel time)
at various values of g. Figure 5.4 exhibits two interesting features: the rapid
incréase and nondifferentiality at around g = 0.36. We divide the g axis into
three regions for the purpose of discussion. In region 1, for g = 0.0 to g = 0.35,
we notice that the set of active paths (i.e., paths carrying positive flows)

3 .3 th

consists of R R1 R A R . R2,where R? denotes the jth path of the k O0O-D pair.

In region 2, (O 35< g < 365), path R1 disappears, and path Rg is introduced.
In region 3(0.365 < g < 0.6), the active paths are Ri, R1 Rj R2, g, and Ri.
In each region, the system cost is a function of the flows on the active paths,
and depends solely on the path cost characteristics of these paths. Consequently,
the system cost is not the same function in different regions, since the sets of
active paths are not the same in different regions. Therefore, it should be no
surprise that the systgm cost is not differentiable at the transition points

where some active paths disappear and new paths are introduced.

The rapid increase in the system cost at around g = 0.36 can also be ex-
plained if we examine closely the equilibrium flow patterns in this interval.
Tables 5.5 to 5.8 show the equilibrium flow patterns in detail from g = 0.36 to

g = 0.3644. The equilibrium flow pattern is shown to remain almost constant
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in this interval. However, the path time on Rg rises rapidly from 18,95

to 20.64 minutes in this very short interval, resulting in a rapid increase in
system cost. The reason behind this lies in the fact that link (2,3), which
faces the signal, is heavily congested. The effective capacity on this link
around g = 0.36 is (1500) (0.9-g) = 810, while the link flow is 800. The degree
of saturation is 800/810 = 0.988. With this level of flow so close to saturation,

the waiting time in the Webster formula, which has a term,

1
1500 (0.9 - g) - £ !

is in a region of rapid increase in magnitude. This explains the behavior of

the system cost at g = 0.36.

5.4.3 Solution by the Iterative Optimization Assignment Algorithm

In the second method, we have applied the iterative optimization assignment
algorithm. An initial value of 0.6 is assumed for the green split, g. Figure
5.6 shows the values of g from iteration to iteration. The final converged
solution is g = 0.0, which is not the optimal solution of the Hybrid Optimization

Problem; this is clearly shown in Figure 5.4.

5.5 Example 3

5.5.1 Problem Description

In this example, we consider the same traffic network used in example 2.
The traffic demands for O-D pairs 1 to 5 and 1 to 6 are increased from 800 to

1200 veh/hxr. All other parameters remain the same.

Both the Energy optimization and travel-time optimization problems are

solved using two different approaches, as in the previous examples.

5.5.2 Solution by HOP Formulation and Augmented Lagrangian Method

Table 5.9 shows the optimal solution of the HOP using total travel time as
the system cost. The optimal solution of the HOP with total fuel consumption
as the system cost is displayed in Table 5.10.

The Optimality of the results shown in Tables 5.9 and 5.10 is verified by

Figures 5.7 and 5.8, where the total travel time and total fuel consumption are
evaluated at each user-optimized flow at various values of g.
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Figure 5.7 Dependence of Total Travel Time on Green Split for Example 3
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Figure 5. 8 Dependence of Fuel Consumption on Green Split for Example 3
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TABLE 5.9. Optimal Solution of HOP of Example 3
with Total Travel Time as_System Cost

Path Fiow Time (min) ’ P;eudo-—Cost
1 1200 14.73 0.36688
2 0 16.47 0.37079
1 671.444 15.93 0.57675

528.556 15.93 0.57675

0 17.67 0.60127

1 0 19.44 0.74265
2 800 19.43 0.67709
1 0] 20.64 1.17241
2 0 20.64 1.17240
3 800 18.90 1.10690

Optimal Total Travel Time = 1124.3244 vehicle—hour/hour..
Optimal Green split, g* =0.3636.
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TABLE 5.10. Optimal Solution of HOP of Example 3
with Total Energy as System Cost

0-D
Pair Path Flow Time (min) Pseudo~Cost
1 1 : 1200 14.96 0.59554

"2 0 16.92 0.65313

2 1 731.164 16.17 0.77979
2 468.836 16.17 0.77979

0 18.13 0.85453

3 1 62.83 19.37 1.01776
2 737.17 19.37 1.01776

4 1 0 20.58 0.71078
2 0 20.58 0.71080

3. 800 18.62 0.65326

Optimal Energy Cost = 2082.229 gallons/hour.
Optimal Green Split, g* =0.3216.
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Figures 5.7 and 5,8 further strengthen our previous observations on the
behavior of the cost as a function of the control parameters; namely, the non-
differentiability and rapid increase. Figure 5.7 reveals yet another feature
of the behavior of the cost: there may be more than one local minimum. Figure

5.7 shows that there are two local minima: at g =0.36 and g =0.55.

5.5.3 Solution by Iterative Optimization-Assignment Algorithm

In the second method, we have applied the iterative optimization assignment
algorithm. Note that the problem is independent of whether total travel time

or total fuel consumption is used as the system cost.

This is due to the fact that the system cost function only appears in the
phase of control parameter optimization of the algorithm. We recall from Section

2, for the cost of total travel time optimization, the cost can be written as

NL
3, = 1 £t (£,9). (5.40)
i=1

For the cost of total fuel consumption, the cost is

NL

o izl £, (kid, + kb, (£,9))

J

NL

NL
k, 1 oaf; + £ ._2 £t (£,9) - (5.41)
i=1 i=1

]

However in the control optimization phase of the Iterative Optimization-Assign-
ment Algorithm, link flows, {fi}, are assumed fixed. Hence, the system cost

of total fuel consumption, Ty r is an affine function of J

e’ i.e.,

J, = (constantl) + (constantz)Jt .

Hence in the control optimization phase, minimizing Je is exactly the same as

minimizing Jt'

We have applied the iterative optimization assignment algorithm for example 3.

An initial value of 0.6 is assumed for the green split, g. Figure 5.9 shows the
value of g from iteration to iteration. The final converged solution is

g = 0.0, which is not the optimal solution of the HOP with either total travel
time or total fuel consumption as the cost; this is clearly shown in Figures

5.7 and 5.8.
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5.6 Conclusions

In this section, we have employed three simple numerical examples to illus-
trate the concept of hybrid optimization in transportation systems. We also have
studied an intuitively appealing algorithm, the optimizatiqn—assignment algorithm,
as a possible algorithm that may be applicable to solution of Hybrid Optimif
zation Problems for large networks. From the results of these examples, it

is shown that this algorithm leads to very wrong solutions in all cases.

A practical implication is that if this procedure is actually implemented
as mentioned in [9], [14], and [15], the amount of excess cost accrued over a
long period of operation can be substantial. The main problem with the opti-
mization assignment algorithm is that, in the control optimization phase, controls
are chosen without anticipating the reaction of the drivers. More generally,
this section demonstrates that proper evaluation of any control policy cannot

be made without taking into consideration the drivers' reactions.

The results of the three numerical examples also demonstrate that the formu-

lation of the Hybrid Optimization Problem is indeed well defined. However, it
must be cautioned that the optimization method used for HOP in this section is
not practically applicable to large networks. Although the augmented Lagrange
multiplier method has been shown to be an efficient algorithm, problems of
higher dimension have seldom been solved successfully by straightforward appli-
cations of this method to date. In the next section,we consider a special struc-

ture of the HOP that may be exploited in developing algorithms for large. networks.
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6. PROPOSED ALGORITHMS FOR LARGE-SCALE NETWORKS

In section 5, we have presented three numerical examples and their solu-
tions obtained by two different approaches. We have shown that the Iterative
Optimization Assignment Algorithm leads to wrong solutions in both cases. On
the other hand, the approach of using the HOP formulation and the Augmented

lLagrangian Method is shown to yield the correct solutions.

However, the examples considered so far are relatively small in size. It
is not apparent at this stage that such an approach can be applied to problems
involving larger networks. There are several reasons that such an approach
cannot be directly applied to these cases. In the HOP formulation, it is
assumed that all paths between all O-D pairs are available. Therefore, it is
required that all paths be generated before the problem can be solved by the
Augmented Lagrangian Method. However, this step in itself is nontrivial even
for small networks, and prohibitive for large networks, since the number of

paths grows rapidly with the size of the network.

Furthermore, even if all paths are available, the resulting HOP would,
most likely, be intractable because of the large number of variables. There-
fore, for algorithms to be applicable to large networks, it is necessary that
no a priori generation of all paths joining each origin-destination pair is
required. Furthermore, the resulting optimization problem must be relatively

small in size.

In this section, we propose several algorithms which satisfy these re-
quirements by exploiting the special structures of the Hybrid Optimization
Problem. In section‘6.1, we consider an algorithm which iteratively generates
paths by making use of'the Extended Equilibrium Principle; in each iteration,
the minimization of the HOP is carried out over a subset of paths only. In
section 6.2, we consider a solution method similar to that used by Abdulaal,
et al. [42] in solving'the Equilibrium Network Design Problem. In this method,
only the traffic control parameters are considered as decision variables. The

flow vector, which is constrained to be an equilibrium flow, is considered to
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be a function of the control variables. Using this approach, the dimensionality

of the problem is greatly reduced to the number of conﬁrol parameters.

In section 6.3, we provide a procedure for computing the upper and lower
bounds of the optimal cost of the Hybrid Optimization Problem. We also con-
jecture that the optimal control parameters in the solution to the Generalized

System Optimization Problem can be used as an approximate solution to the HOP.

6.1 Algorithm That Makes Use of Extended Equilibrium Principle

This algorithm is motivated by the observation that in large-scale net-
works, the number of active paths; i.e., paths carrying positive flow, in an
equilibrium flow pattern is quite small relative to the total number of paths.
See, for example, Gershwin, et al. [15). This observation is also corroborated
by Leventhal, et al. [33], on equilibrium flow patterns in large-scale networks.
In that study, it is shown that for a network of 16 nédes, 48 links, and 10 O-D
pairs, the number of active paths is less than 0.1 percent of the total number
of paths; and for another network with 64 nodes, 224 links, and 5 O-D pairs,

the number of active paths is less than 0.01 percent of the total number of
paths. '

Let Qﬁ be the set of active paths for the kth O0-D pair in an optimal solu-
tion of the HOP. That is,

Qi B {iliePk, h: > 0 in a given optimal solution of the HOP},

k=1,...,K: (6.1)

Let 5* be the complement of Q* relative to P Clearly, if {Q*} is known,
k k k

it would be sufficient to solve the HOP over pathskin {Q;} only. In the algo-
rithm proposed in this section, at every iteration i, the minimization of Hoﬁ
is carried out over all paths in Qi, where Qi is a subset of Pk. At the end
of iteration i, we make use of the Extended Equilibrium Principle to verify
if Qi ) Q;. If this is not true, new paths are generated by making use of the

Extended Equilibrium Principle. This is described in detail as follows.
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The Algorithm

STEP 1.

STEP 2.

For

i

HOP

Initialization

Start with an initial guess {Q;}. Let i = 0.

Restricted HOP

.th | . .
the i iteration, solve a restricted HOP.

Minimize J(f,g)

h.g
subject to
k
] nt=d, k=1,...,K, (6.2)
i
jeQ
X >0 el k=1 K (6.3)
j z ) J kl =1,...,K, .
k' k' - k. k
B t(f,9) > [f t(f,9)/H Ju, k=1,...,K, (6.4)
0-9zgj20 , j=1,...,U. (6.5)

. k i
Let (h,g) be an optimal solution and Y be the Lagrange multipliers of (6.4).

STEP 3. Verification of Optimality

3.1

W
.
8]

w
w

Compute the. shortest path for every O-D pair using the link travel
time,tj(g,g),as the length of arc j, for every j.
i

Let T be the shortest path for the kth O-D pair.

Compute the shortest path for every O-D pair using the link pseudo-
cost, w? (f,x#,g), as the length of arc j, for every j and k.

i t
Let s;'be the shortest path for the k h 0-D pair.
i
k
satisfied. Stop.: Otherwise, proceed to Step 4.

If r;E:Qi and s E:Qi for all k, then the necessary conditions are
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STEP 4. Updating of Active Path Set

i =i i+l i i

Iif rkE:Qk , then Qk < Qk U rk,
Otherwise, Q;+1+ ;, k=1,...,K, (6.6)

i 71 i+l i+l i

Iif skE:Qk ;, then Qk Qk U sk,
Otherwise, Q;+l+ Qlfl k=1,...,K, - ' (6.7)

i<+i+ 1. Go to Step 2.

, i
At the end of Step 2, since (h,g) is an optimal solution of HOP, then

the Extended Equilibrium Principle is satisfied for all paths in Q;

Step 3, we check to see if the Extended Equilibrium Principle is satisfied

. In

for all paths Pk. If both r; and s; are in Q; , then we observe that the
Extended Equilibrium Principle is satisfied for all paths in Pk. This can be

be shown as follows.

Since (h,g) is an optimal solution of HOPl, therefore the Extended Equili-

. 'y . . . . l .
brium Principle is satisfied for all paths in {Qk } . fThat is,

hjk > 0 implies that

k kA '
Tj (h,g) = x = min Tnk(EJi)' : (6.8)
i .
ner
k k k4 k
25 (h,g,Y') =y = min z (Q,g,x#), (6.9)
i
nEQk
and
Tjk(g,g) > xk implies that hjk =0, (6.10)
k k k
2y (h,g,¥") > y implies that hjk =0, (6.11)

for all jeQ}i s k=1,...,K .
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k . \
We recall that Tjk and zj are, respectively, the time and pseudo-cost

. t . . i .
along path j of the k h O-D pair. But T, and sk are in Q; . This implies that
k k A . k
X =T.p = min T (h,q) , (6.12)
nep
k
and
k k A . k
Yy =z, =mninz “(hg). (6.13)
nep
k
Now let
' k - . =i
hj = 0 for all jeQ , k=1,...,K. (6.14)

Equations (6.12) and (6.13) imply that the Extended Equilibrium Principle holds
for all paths in Pk, k =1,...,K. Therefore, it may be concluded that the solu-

.tion obtained by this algorithm satisfies the necessary conditions of the HOP.

In addition, it can also be shown that this algorithm terminates in a

finite number of major iterations.

This is explained as follows. Tt is known that the total number of paths
inla network is finite. Also, in the method of updating of the active path
set (6.6), (6.7), no path is ever thrown out. Therefore, the number of elements
in the actlve path set ingreases as i increases, and there exists some finite
i* such that Q*C:Q for all k. Since the solution obtained minimizes the
restricted Hybrid Optimization Problem, HOP , it is at least a local minimum

over the restricted path sets Q r k=1,...,K.

However, there are still some practical problems that have to be resolved
before this algorithm can be implemented. The step of verifying the optimality
condition requires both the solution as well as the multipliers to be fairly
accurate. However, our numerical experience shows that the solution of the
HOP obtained by the Augmented Lagrangian Method is sufficiently accurate, but
the multiplier obtained may not be as accurate. Special actions which require
more computations have to be taken to obtain more accurate multipliers. More-
over, the restricted HOPs at each major iteration may grow too large as i

approaches i*.

The dimensionality of the restricted HOP at i* is at least as big as
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K
u + z ]Q;l. For a network of 10 O-D pairs, 10 control parameters, and
k=1

assuming there are 2 actiwve paths in Q; for each k, this dimensionality is
30, which is still large, The restricted HOP at every iteration is a
nontrivial problem to be solved; even if we can make use of the solution of
the previous iteration as an initial guess solution. Ndfe that this guess

solution is not feasible; however, it satisfies most of.the constraints.

6.2 Algorithm with Reduced Dimensionality

In this algorithm, we make use of the fact that the equilibrium flow
pattern is a function of g, the traffic control parameters, and under some
assumptions on the link time function, it is uniquely determined by g- This
is so because, under the assumptions of separability in link travel-time func-
tion, the computation of equilibrium flow pattern has been shown [32] to be
equivalent to solving the following optimization problem, the Equilibrium
Assignment Program.

EAP (Equilibrium Assignment Program)
NL fa

Minimize E f t (x,g)dx ,
a=1 S

£

subject to
A £ = _ ‘ (6.15)
£ 50, (6.16)
K
£= 7 £. (6.17)
k=1 '

If the link time function is further assumed to be an increasing function of

the link flow at a fixed value of g; i.e.,
" v = " > 1 .18
fa > fa ta(fa'-g-) ta (fari) ’ (6.18)

then the cost of EAP is strictly convex in f. The feasible region defined by

constraints (6.15) and (6.16) is a convex polytope. Therefore, EAP is a






strictly convex program. It has been proved that the solution to this type of

problem exists and is unique (see, for example, [50]).

This observation allows us to consider only the traffic control variables
as decision variables in the HOP. The flow variables are then considered as
dependent variables which are uniquely determined by g. The advantage of
taking this approach is that the number of decision variables in the HOP is
greatly reduced to the number of traffic control variables, and no enumeration

of paths is required at all.
The HOP is now written as

HOP2 min J[£{g),q9] ,
geG

where f(g) is an equilibrium flow for controls g.

Note that, when solving HOP2, for each functional evaluation of J{£f(g).,gl.,
we must solve an Equilibrium Assignment Problem (EAP) to find £(g). Moreover,
because the functional form of £(g) is unknown, the derivatives of £(g) with
respect to g are not explicitly available in closed form. This implies that
optimization algorithms that require gradient information such as the Augmented
Lagrangian Method cannot be applied directly. Consequently, we must resort to
one of the two alternatives available: approximate the gradient by finite
differences, or make use of solution techniques which do not require deriva-

tives.

However, optimization algorithms which require derivative information are
still not applicable even if we attempt to compute the derivatives by finite
difference approximations. This is due to the fact that these algorithms
assume at least first-order differentiability. However, we have observed that
J[£(g),g] may not be differentiable in g at some points as shown in example 2

'

in section 5.4.

There exist in the literature several minimization algorithms that do not
require derivatives. Powell [60] provides an excellent survey and discussion.
Abdulaal, et al. {41] have successfully applied two different algorithms of this
class, Powell's Method [61] and Hooke and Jeeves' Method [62], to the Equili-

brium Network Design Problem. It seems such an approach is worth further in-
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vestigation for solving large-scale HOPs. However, it should be noted that
because of the nondifferentiability of the cost, algorithms which approximate

gradients should not be used.

This approach enables us to reduce greatly the dimensionality of the
problem, and hence, large-scale problems can be treated. However, this advan-
tage is not without cost. The disadvantage is that the algorithms are compara-
tively slow and functional evaluation of f(g), which involves solving an Equili-

brium Assignment Program, is required; hence, it is time consuming.

6.3 Approximate Solution

In this section,we outline a method of computing the upper and lower
bounds on the optimal cost of the HOP. Using this result and previous results
in the literature, we conjecture that the differences between these bounds are
small, and propose an approximate solution to the Hybrid Optimization Problem.
Suppose we solve the following sequence of Generalized System Optimization

Problems and Equilibrium Assignment Problems:

GSQP
Minimize J(£f,q)
t.g
k k
Af =w ,k=1,...,K, (6.19)
k
E io, k=1,--o,K, . (6020)
geG, : (6.21)
where K .
£= 7 £ . ' (6.22)
=1

Let the optimal solution be (f*,g*) and
L
Joo= J(£*,g*) . (6.23)

Note that f£* is also a system optimized flow for g = g*. ©Now, solve the

following Equilibrium Assignment Problem at g = g*.
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EAP (g*)

NL £,
Minimize ) f "t (x,g¥)ax,
k i=1 [3}
{£}
subject to
k k
Af =w , k=1,...,K, (6.24)
k
£ >0, k=1,...,K , (6.25)
where K 1
£= ] £. (6.26)
k=1

Let the optimal solution be £** and

3% L iger,gh. (6.27)

We have the following lemma
Lemma 6.1

H .
Let J be the optimal cost of the HOP. Then,

L H U
J<J <3 : (6.28)

Proof

The lower bound has already been proved in Section 2, where we have shown that
the optimal cost of GSOP is the best cost achievable if the system has control
over both link flows and traffic control parameters. Now, we show the upper
bound.

Since f** solves EAP(g*), then by definition, f£** is an equilibrium flow

vector at g = g*. It follows that

(f£**,g*) is a feasible solution of HOP,
Hence ,

JHiJ(E**I *) =JUI QED
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Computationally, the determination of these bounds involves solving a
GSOP and an EAP. The computation of GSOP is not as difficult as solving the
HOP because it is possible to decompose the GSOP into two studied problems.
If we fix g, the GSOP becomes the conventional system optimization problem

which is a min cost multicommodity network flow problem.

If flows are fixed in the GSOP, we obtain a control optimization problem.
Since both of these problems have the same system cost, the GSOP can be solwved
by an iterative procedure consisting of successive alternations between the
system optimization and control optimization problems. Note that the compu-
tation of the bounds now involves three problems, (a) the conventional system
optimization problem, (b) the control optimization problem, and (c) the
Equilibrium Assignment Problem, which have been under intensive research and
are understood. Efficient algorithms and software are available for networks
of relatively large scale. Therefore, the computation of the bounds is not
as difficult as the problem of solving the HOP, especially in cases involving

large-scale networks.

The bounds allow us to have an approximate solution to the HOP if their
difference, JU - JI'l is not too large. Practical experience by previous re-
searchers [40], [63], seems to indicate that this is indeed the case. Note
that f* and f£** are, respectively, the system optimized and user optimized
flow at g = g*. Numerical experiments on flow patterns according to system
and user optimization have been conducted by different researchers; e.g.,
Yagar [63) and LeBlanc et al. [40]. Both of these studies have arrived at
the same conclusion: the difference between the system optimized and the user
optimized flow patterns is not significant. Both the studies assume total
travel time as the cost in the system otpimization problem. Since energy cost
is a linear function of the travel time, we suspect that the same is true for
the energy optimization case. 1In addition, our limited computation experience
seems to indicate that flow distributions which are energy- and time-optimal,
are not very different. In the work of LeBlanc et al. [40] a network of 76
arcs and 24 nodes with 528 O-D pairs is considered. It has been found that
the average percentage difference in link flows between the system and user
optimized flow patterns is 6 Percent and that of the total travel time (sys-

tem cost) is 2 percent. Based on these numerical results, we may conjecture
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that, in most practical cases, J - J is small; therefore (£**, g*) can be
used as an approximate solution to the HOP, This approximation has also been

suggested by Murchland [64].

6.4 Conclusion

In this section, we have pointed out two practical difficulties which
must be treated by any algorithm to be applicable for the solution of Hybrid
Optimization Problems in large networks, Since enumeration of all paths in
a large network is nontrivial, it must be avoided. 1In addition, the dimen-
sionality of the resulting optimization problem must not be too large to
be solvable on computers within reasonable time limits. Two algorithms are
proposed to satisfy these requirements. We also have outlined a procedure
for computing the upper and lower bounds of the optimal cost of the Hybrid
Optimization Problem. It is shown that this procedure involves solving
undersfood.problems with developed computer software, and is not as difficult
as solving the HOP. It is conjectured that the difference between the bounds

is small, -and approximate solution of the HOP is proposed.
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7. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Summary and Conclusions

In this report, we address a class of traffic control problems which takes
into account the role of individual drivers as independent decisionmakers. The
Hybrid Optimization Problem is formulated to provide a general theoretical frame-
work for the analysis of this problem. The formulation of the Hybrid Optimization
Problem (HOP) can be viewed as a unified approach which combines the system optimi-

zation, control optimization, and assignment problems in traffic engineering.

System optimization and signal control optimization contribute to the concept
of a system-wide cost function, such as total travel time (traveler-hours per hour)
or total energy consumption (gallons of gasoline per hour). The HOP has the selec-
tion of values for control parameters (such as green splits) in common with the
traffic signal control optimization problem. The third element is the concept of

assignment which predicts the distribution of vehicles in the network.

In Section 3, two behavioral models on the route selection process and the
resulting overall network flow distribution principles are discussed. We devote
a major part of this report to the study of a specific HOP which assumes user

optimization as a flow distribution principle.

Conventionally, user-optimized flow is mathematically characterized by a set
of logical statements of the form, "If a, then b," and in the case wﬁere the link
travel-time function is separable, it can also be characterized as an optimal solu-
tion of a certain minimization Problem. These mathematical characterizations are
not in a form convenient for use as constraints to tﬁe HOP. In Section 3, we pre-
sent a new mathematical characterization of the user-optimized flow which consists

of equalities and inequalities. They can then be incorporated as constraints.

In Section 4,we derive the necessary conditions for the optimal solution of
the HOP. We show that it is possible to have a physical interpretation of these
conditions. This is summarized in the Extended Equilibrium Principle which gener-
alizes the notion of the conventional Equilibrium Principle in user-optimization:

not only are travel times equalized over utilized paths, but also some guantities
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involving the marginal system cost and marginal link travel times. It is in-
teresting to note that the Extended Equilibrium Principle bears a remarkable
similarity to the Equal Travel-Time Principle of user-optimization and the Equal
Marginal Cost Principle of system optimization in traffic engineering. This is
intuitive since the HOP combines features of user optimization and system op-

timization.

A Generalized System Optimization Problem (GSOP) is defined to extend the
notion of system optimization. It is shown that the GSOP is useful in two ways.
In Section 2, we show that the optimal cost of the GSOP is a lower bound for any
traffic control strategy, independent of the behavioral assumptions on route
choice among the drivers. In Section 6, we conjecture that the optimal traffic

control parameters of the GSOP can be used as an approximate solution to the HOP.

Three numerical examples are presented in Section 5 to demonstrate and verify
the concepts and formulation of the HOP and the Extended Equilibrium Principle.
Several important conclusions are made from these examples. The Iterative Opti-
mization Assignment Algorithm is studied for two important reasons. First, it
has been proposed [14], [15], [37], as a solution method for traffic control prob-
lems (similar to those the HOP is intended for). Second, it simulates the real-
life process if optimal traffic controls are periodically updated, based on new
information about the flow distribution in the network. This process has also
been described [14] as a control strategy to take into account the redistribu-
tional effects of traffic after implementation of some optimal signal timing
plans. The numerical results in Section 5 show that the Iterative Optimization-
Assignment Algorithms converge to wrong solutions, and in a contrived example,

the worst possible solution.

The approach of using the Hybrid Optimization formulation with the Augmented
Lagrangian Method as a solution method is shown to lead to the correct control and
assignment. The optimality of the results obtained in this way is verified by
direct evaluation of the system cost at different values of the control parameters.
The Extended Equilibrium Principle is also shown to be valid for the examples

considered.

These results point to the following conclusions. The HOP formulation is a

useful approach for treating the class of traffic control problems considered

~93-






here, while the Iterative Optimization-Assignment Algorithm may lead to wrong

solutions, and therefore, is not recommended.

In addition, valuable insights are also gained from these simple examples.
A close examination of the variation of the system cost as a function of the
control parameters shows that the system cost may not be differentigble. This is
due to the fa;t that the set of active paths i.e., paths carrying positive flows,
is not the same in different regions in the space of traffic control parameters.
The points at which the cost is nondifferentiable are the transition points whére
some active paths disappear and some new active paths are introduced. This is

attributable to the assumption of user optimization as the flow distribution prin-

ciple.

In Section 6, we present some practical considerations for solving large-scale
Hybrid Optimization Problems. It is pointed out that the enumeration of all paths
in large networks is a difficult task, hence it should be avoided. So that
the computation be performed in reasonable time, the dimensionality of the opti-

mization problem must not be too large.

Two algorithms that exploit some of the special structures of the HOP and the
Extended Equilibrium Principle are proposed to satisfy these requirements. How-
ever, there are still some difficulties associated with these algorithms. 1In one
algorithm, it is required to have the solution and multipliers of the restricted
HOP sufficiently accurate. Moreover,the dimensionality of the restricted HOP is
still quite large despite all the efforts taken to reduce the dimensionality.

In the second method, evaluation of functions is extremely time-consuming.

Nevertheless, they can be viewed as possible directions for the development
of algorithms for large-scale HOPs. In Section 6, we also present a procedure
for computing the upper and lower bounds of the optimal cost of the HOP. ‘This
procedure is shown to be decomposable into system optimization, control optimiza-
tion, and user optimization problems, which are relatively easy to solve compared
with the HOP. Using previous results on traffic flow patterns [40], [63], we con-
jecture that the difference between these bounds is small, and that an approximate

solution of the HOP can be obtained from the procedure for computing the bounds.
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7.2 Future Research

The purposes of the research reported here have been to formulate the Hybrid
Optimization Problem and to demonstrate its importance. Future research should
be directed toward (1) understanding the consequences of this concept for traf-
fic control and network planning, (2) further clarifying its technical aspects,
(3) developing practical algorithms for larger networks than those described here,
and (4) studying the game theoretic aspects of the problem. 1In the remainder of

this section, these research goals are discussed at greater length.

7.2.1 Traffic Control and Network Planning

To extend the concept of Hybrid Optimization to network planning, the vector
of control parameters must be augmented to include the capacities of links that
are under consideration for construction or improvement. The criterion function
J must be modified to inélude the construction cost. The solution to the resulting
problem will yield the optimal link capacities as well as the signal control

strategy and the distribution of flow in the resulting network.

It should be emphasized that this is not the existing network planning formu-
lation [20], [41], since we include signal parameters. Since only a small number
of links are likely to be considered for improvement at any one time, this is a

small extension to the HOP discussed in this report.

Before the hybrid concepf is useful for network planning, and possibly even

for traffic control, there are two kinds of issues that should be understood.

Macroscopic phenomena include choices made by travelers or potential travelers
throughout the network, such as whether or not to travel, when, to and from what
points, and by what modes. In this report, we have assumed that these choices
have been made. We restrict our attention to those that have chosen the auto-
mobile, and we focus on the last remaining choice: what route to take. We have
demonstrated that when control policies favor one part of the network over another,
there will be important consequences for that last choice,and thus,for the distri-

bution of wvehicles.

There may also be important consequences on the other choices as well. 1In

particular, if an important commuting route is made substantially more attractive
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by a change in control policy or by link expansion, it may attract additional
traffic during rush hour, not just from other parallel routes, but from other

modes, and even from other hours of the day.

These considerations would appear to be important, at least for large changes
in the network. If so, their inclusion would require some additional degrees of
freedom. However, they might also require that the whole urban region be treated
simultaneously. This implies that networks of great complexity must be treated,

or that a reliable method of network aggregation be used.

Microscopic phenomena require more detailed, more accurate models of delays
on links or at intersections. For example, the best open-loop traffic signal con-
trol strategy involves values of cycle times, green splits, and offsets at each
intersection. Existing techniques for calculating these quantities take network
flows as fixed and specified. To extend the Hybrid Optimization concept to this
kind of control strategy, models of link delays must be incorporated into the
problem formulation. A difficulty that this will create is that signal offsets
are constrained by equations involving integers. That is, the HOP becomes a

mixed integer-continuous variable nonlinear programming problem.

Improved vehicle detection hardware and software and improved on-line micro-
processor-based computational facilities are making closed-loop traffic control
strategies increasingly attractive. Typiéally such devices can have considerable
local autonomy. That is, the value of the signal (red or green facing a given
link) at each intersection depends largely on local conditions (e.qg., the current
estimate of the number of vehicles in queues on each link facing the signal).

A limited amount of information may be available from a central computer such as

when to switch to an open-loop strategy.

Here again, if a part of the network is favored by the control policy, it
will tend to attract drivers. Further, if the closed loop policy is such that
more heavily used links are favored, then such a policy is likely to result in
the undesirable behavior observed with the heuristic iterative assignment optimi-
zation in Section 5. Therefore, this is a Potential application of the hybrid

concept.

It is also important to investigate methods of extending the HOP formulation

to include multiple vehicle classes such as cars, carpools, buses. One important
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point is that buses are scheduled to travel along fixed routes, and thus, must

be treated differently.

The Electronic Route Guidance System [65] is a proposed traffic control
system in which every vehicle follows the routing instructions given by the
traffic authority in traveling in a network. A traffic system completely con-
trolled by the Electronic Route Guidance System may be a bit far-fetched. A
traffic system where only some of the vehicles are under the control of the
Electronic Route Guidance System seem more probable. This kind of situation
seems to have some important ingredients of the HOP. Research should be carried

out to investigate how the HOP formulation can be extended to this situation.

7.2.2 Technical Aspects

Sensitivity Analysis

The numerical examples in Section 5 reveal the fact that the system cost
of the HOP may not be differentiable at some points in the space of traffic
control parameters. These numerical results and intuition seem to indicate
that the cost is continuous. More theoretical analysis on the behavior of
equilibrium flow and system cost is required. Sensitivity analysis of equili-
brium flows with respect to input flows is reported in Hall [36]. The sensi- l
tivity analysis of equilibrium flow with respect to the traffic control para-
meters is still an unexplored area. It is important for theoretical network

flow analysis, evaluation of alternative control strategies, and it can possi-

bly be used in algorithms for large-scale Hybrid Optimization Problems.

Hybrid Optimization Problem with Alternative Flow Distribution Prinicples

The nondifferentiability of system cost has been attributed to the assump-
tion of user optimization as the flow optimization model. Therefore, it is
important to study Hybrid Optimization with alternative flow distribution prin-
ciples such as probabilistic assignment models. It is of interest to investi-
gate the sensitivities of cost, controls, and flows with respect to different

behavioral assumptions.

A study on the-HOPs with the probabilistic assignment model as the flow
distribution can provide some answer to the following questions. How sensitive
are the optimal cost and controls of the HOP with respect to the quality of the

drivers' knowledge of the traffic conditions? How are the system cost, flow
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distribution, and controls influenced by the sensitivity of the drivers with

respect to the time differences among different routes?

Theoretical Study on the Bounds of the Optimal Cost of HOP

It has been conjectured that the difference between the upper and lower
bounds of the optimal cost of HOP is small enough to justify using the optimal
values of the control parameters in the GSOP as an approximate solution to the
HOP. More theoretical study is needed to investigate the conditions under
which this conjecture is true. This knowledge is important because, under

these conditions, the more difficult task of performing the HOP can be-avoided.

7.2.3 More Detailed Developments on Proposed Algorithms

Two algorithms are outlined in Section 6 to alleviate some of the problems
in solving large-scale HOPs. There are still some fractical difficulties asso-
ciated with them. For example, research on the first algorithm should be di-
rected at the methods of updating the active path set to prevent the restricted
HOP from growing too large. 1In the second algorithm, functional evaluations
(complete network assignment calculations) are time-consuming, and some method
of approximation must be devised to avoid functional evaluations at every

intermediate step.

7.2.4 study of Game Implications of HOP

It has been pointed out [66] that the equilibrium flow is a Nash equili-
brium point in the sense that no single driver can improve his trip cost by
unilaterally changing his route. Miller et al. [67] suggests the name "super-
vised noncooperative game" for a traffic control problem which is similar to
the HOP. The drivers are considered to be engaged in a noncooperative game,
each trying to reach his/her destination as fast as possible by making a
choice among different, available routes. The "supervisor" in this case is
the traffic authority who uses the traffic control parameters to manipulate the

noncooperative game.

The HOP can also be viewed as a Stackelberg game [68], [69] in the follow-
ing sense. The traffic authority is the leader who tries to minimize a system

cost, using available traffic control parameters. The follower in this game
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is an aggregated player who represents the drivers, The minimization problem
faced by the follower is the Equilibrium Assignment problem, where the cost
function is the sum of the integrals of link time (Section 6.3), and the
decision variables are the flow variables. The traffic authority (the leader)
minimizes his cost with the knowledge of the reaction of the drivers (the

follower) to his action.

In addition, if the Iterative Optimization Assignment Algorithm converges,
it does so to a Nash equilibrium point. In this case, the two players in this
noncooperative game are the leader and follower of the Stackelberg game just

described.

The solution, if it exists, has the property that neither of the plays can
improve his cost by unilaterally deviating from his current strategy. An inves-
tigation using game theory methodologies in greater depth is appropriate to

study the interactions between the various players.

In conclusion, we view the research results presented in this report as
being very important contributions to improved operation of urban traffic net-
works. We have demonstrated that an intuitively appealing method, the Itera-
tive Optimiation Assignment Algorithm, can lead to erroneous results. On a
more constructive ﬁote we have developed in detail a new Hybrid Optimization
method that overcomes the shortcoming of not fully taking into account driver
behavior. The research reported in this report is a necessary first step;
long-range theoretical, algorithmic, and simulation research is needed before
this method can have -a practical impact upon important problems in traffic

engineering, both with- respect to planning and traffic control.
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APPENDIX A: LIST OF SYMBOLS

Section
the node-~arc incidence matrix of a network, of dimension
NN by NL [2.1]*
the (i,j) element of A [2.1]
the initial node of link i [2.1]
the link-gﬁth incidence matrix, of dimension NL by kal'
for the k 0-D pair [2.1]
the (i,j) element of g} [2.13
the terminal node of link i [2.1]
the link capacity vector, of dimension NL {2.1.1)]
the ith element of c; represents the capacity of link i [2.1.3)
the cycle time on a traffic signal [2.1.3]
the destination node of the kth O-D pair [2.1]
distance of link j [2.1.3]
the 1link fuel consumption vector, of dimension NL [2.1]
the i} element of e; represents the total amount of fuel
each vehicle consumes in traveling through 1link i [2.1]
Equilibrium Assignment Program [6.2]
the Lagrange multiplier (scalar) associated with
inequality constraints (4.5) {4.1.2]
the link flow vector of dimension NL [2.1]
the ith element of f£; represents the amount of traffic
flow on 1link i {2.1]

. th .

the link flow vector of the k 0-D pair [2.1]

* number in brackets is the section number where the symbol is first defined.






Symbol . Section

ft the ith element of fk represents the amount of traffic
flow of the kth g-p; pair on link i {2.1]
£* optimal link flow vector of GSOP [6.3]
£rx solution of EAP with g = g* [6.3}
G the set of feasible controls : [2.1.2]
g the vector of traffic control parameters, of dimension U [2.1.2]
G a directed graph {2.1]
k
X the Lagrange multipliers (of dimension lPkI) of the
constraints (4.2) [4.1.2]
GSOP Generalized System Optimization Problem [2.2]
g* optimal control parameters of GSOP [6.3]
K
h the augmented path flow vector of dimension z |Pkl,
k=1
formed from all h#, k=1,...,K [2.1]
k . . th .
H the total traffic requirement of the k O-D pair [2.1]
k th
h the path flow vector, of dimension IP |, of the k
O-D pair . [2.1]
k .th k . A
hi the i element of h™ and regresentlng the traffic flow
of the kth o-p pair on the i*" path between the kth
O-D pair [2.1]
HOP Hybrid Optimization Problem : [2.4)
J the system-wide cost to be minimized . [2.1.3]
Je total fuel consumption [5.5.3]
JH the optimal system cost of the HOP [6.3]
JL a lower bound on system cost J, defined in (6.22) [6.3]
Jt total travel time [5.5.3]
Jv an upper bound on system cost J, defined in (6.26) [6.3]
X the total number of origin~destination (0-D) pairs [2.1]
L the Lagrange function of the HOP f4.1.2]






NEDP

NL

NLP

a collection of links in a network
non-negative maximum function defined by (5.4)
the Lagrange multiplier (a scalar) of the constraint (4.4)

parameter used in the probabilistic flow distribution
models in section (3.3)

parameter used in the probabilistic flow distribution
models in section (3.3)

parameters used in the probabilistic flow distribution
models in section (3.3)

total number of inequality constraints in NLP
multicommodity minimum cost network flow problem

the Lagrange multipliers (of dimension IPk|) of
the constraints (4.3)

total number of equality constraints in NLP

total number of decision variables in NLP

a collection of nodes in a network

Network Equilibrium Design Problem

the total number of links in a network

a general nonlinear constrained optimization problem
the total number of nodes in a network

the origin node of the kth 0-D pair

the augmented Lagrangian function defined in (5.5)

inequality constraint of a general nonlinear mini-
mization problem (NLP)

the set of all loop-free paths connecting the kth

O-D pair

the tgﬁal number of available loop-free paths connecting
the k 0-D pair

a penalty function defined in (5.3)

Section

[2.1]
[5.1]

[4.1.2]

[2.2]

[3.3]

[3.3]
{5.1]

{1.3.1]

[4.1.2]
[5.1]
[5.1]
[2.1]
[2.4]
[2.1]
[5.1]
[2.1]
[2.1]

[5.1]

[5.1]

(2.1]

[2.1]

(5.1]






Symbol

heg

et
[N

o

0 e

Ho£ P

equality constraint of a general nonlinear minimization
problem (NLP).

a vector of dimension NI defined in (4.25)

a vector of dimension N (defined in éﬁ.ZB)) denoting
the link pseudo-cost vector of the k O-D pair

t¥ﬁ ith element of j}, denoting the pseudo cost of the
k .

O-D pair on link i

set of active paths used in the ith iteration of the
proposed solution procedure for HOP in section (6.1)

set of active paths for the kth 0-D pair in an optimal
solution of the HOP, defined in (6.1)

complement of Qﬁ relative to Pk
. .th th .

the set of links on the i path of the k O-D pair

the shortest travel time path for the kth 0-D pair

in the i iteration of the proposed solution algo-

rithm for HOP in section (6.1)

penalty weight used in

penalty weight used in the kth iteration of the Penalty
function method as a solution brocedure for NLP

the cheapest path (in terﬂi of the lin%hcost defined
as the pseudo link cost, .) for the k O-D pair,
in the ith jteration of tha proposed solution pro-
cedure for the HOP in section (6.1)

the Lagrange multipliers (scalar) of the constraints
(4.5)

the link time vector, of dimension NL

the total amount of time each vehicle spends in
traveling through link i

the average free flow speed on link i
the average transit time on link i

the average waiting time on link i due to queuing
at the traffic signal on link i

Section

(5.1]

[4.2]
[4.2]
[4-?]
[6.1]

[6.1]
[6.1]

" 13.3]
[6.1]
[5.1}

[5.1]

[6.1]

[4.1.2])

[2.1]

[2.1]
[2.1.3]

[2.1.3]

(2.1.3]






Symbol

|~

|

k*

%

t
the path time vector, of dimension lPkl of the k h

O-D pair

the ith element of Tk and representing the path time
on the ith path of the k 0-D pair

tgﬁ travel time along the fastest path connecting the
k O-D pair

a scalar defined in (4.24)
the total number of traffic control parameters

a vector of dimension IPkI with all elements having
a value of 1

. , th
the transformed unconstrained problem in the k
iteration of the augmented Lagrangian method as a
solution algorithm for NLP

the m% imum node time vector (of dimension NN) for
the k™ 0-D pair

t
the i h element of z&; represents the minimumtﬁime
taken to go from O, the origin node of the k
0-D pair, to node i

the traff%ﬁ requirement vector, of dimension NN,
for the k O-D pair

an n-dimensional vector of decision variables of
a general nonlinear minimization problem (NLP)

an n-dimensional vector which represents the op-

timal solution °€hUP + the transformed unconstrained
problem in the k iteration of the augmented Lagrangian
method

an N-dimensional vector of Lagrange multipliers
associated with the equality constraints, {¢i}

the Lagrange multiplier associated with the
equality constraint ¢5 of NLP

the N-dimensional vector of Lagrange multipliers
associated wi the equality constraints, {¢.},

used in the k iteration of the augmented Lagrangian
method

t
the path pseudo cost along the i h path of the
k 0-D pair

Section

[2.1]

[2.1)

[3.2.1]
(4.2.4]

[2.1.2]

(4.1.1}

(5.1]1

(3.2.2)

[3.2.2]

[2.1.1]

[5.1]

(5.1]

[5.1]

[5.1]

[5.1]

(4.2}






Symbol

c . t ;
z, the minimum path pseudo cost for the k h 0O-D pair

T an M-dimensional vector of Lagrange multipliers
associated with the inequality constraints, {wi}

gi the Lagrange multiplier associated with the
inequality constraint wi of NLP

k . . .o

4 the M-dimensional vector of Lagrange multipliers

associated wiER the inequality constraints, {w.},
used in the k iteration of the augmented Lagrangian
method as a solution procedure for NLP.

Section

[4.2]
[5.1]

[5.1]

[5.1]






APPENDIX B: REPORT OF NEW TECHNOLOGY

There are no inventions or other patentable items in this work. However,
certain advances in the technology of traffic-signal-setting are reported here.
In particular, a new formulation and analysis of the optimal-signal-setting
problems are presented in Sections 2 and 4. Also two new algorithms are de-
veloped for the numerical solution of this problem. These algorithms as well

as a preliminary discussion of their practicality are detailed in Section 6.
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