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INTRODUCTION

The current and MMF airgap harmonics present in an induction

motor produce detrimental effects on the motor performance.

These effects include additional heating losses in the primary
and secondary circuits and core losses in the magnetic circuit.
The mechanical power developed by the motor is also reduced by
braking torques associated with the harmonics propagating in a
backward direction. These adverse effects may be minimized if
they are taken into account in the design of the motor. The
purpose of this report is to present the results of a study
relating induction motor performance to the relative harmonic

content in the current and MMF airgap waveforms.

The effects caused by time-harmonics are best treated
separately from the effects of ripple due to nonsinusoidal dis-
tribution of the secondary current. The MMF airgap harmonics
depend solely on the geometry of the machine and occur with

purely sinusoidal terminal voltages.l

The first part of this report deals with time-harmonics
that result when thyristors are used to control the speed of a
rotary induction motor. A computer analysis is undertaken for
a specific example of a rotary induction motor controlled by
symmetrically triggered thyristors. The current and phase volt-
age waveforms are computed and resolved into Fourier components
using numerical integration. Expressions for the instantaneous
currents and phase voltages are derived by determining the
appropriate eigenstate solutions of the characteristic matrix
valid for each system state. The average torque-slip character-
istics are then calculated for two examples of induction motors
at different thyristor hold-off angles. This is followed by an
evaluation of the torque-harmonics and their effect on the

performance characteristics of the motor.



The second part of this report considers spatial-harmonics
in linear induction motors. The importance of the end-effect
waves on the thrust-slip characteristics of linear induction
motors is discussed and calculations are presented for a parti-
cular motor showing the reduction in motor thrust caused by end-
effect waves with different damping constants. The change in
the effective secondary resistance produced by these waves 1is
next reviewed and the secondary resistance components associated
with motor thrust and secondary heating losses are computed as
a function of motor slip. An estimate is then given of the
relative efficiency of the linear induction motor being analyzed
with that of an equivalent rotary induction motor when both are
operating under rated-load conditions.

The third section of the report discusses the combined
effect of time- and space-harmonics on the operational character-
istics of the linear induction motor. Spatial-harmonics (end-
effect contribution) are included in the analytical treatment by
using the effective secondary resistance previously computed for
the linear induction motor in place of the fixed value of second-
ary resistance assumed for the rotary induction motor. The
final section summarizes the different conclusions reached as a
result of this study on the effect of harmonics on induction

motor performance.



TECHNICAL DISCUSSION

ROTARY-VERSUS-LINEAR INDUCTION MOTORS

The principle difference between the rotary induction motor
and the linear induction motor is the fact that the airgap is
closed in the former, while it is open in the 1atter.2 The
rotary induction motor can be regarded as a linear motor of
infinite length with a fixed spatial periodicity; only one
traveling wave is needed to describe its operation. The linear
induction motor, on the other hand, because of its finite length
requires additional current-flux waves to satisfy the boundary
conditions at the motor ends. These extra end-effect waves pro-

duce braking thrusts and reduce the motor's efficiency.

Equivalent circuits for the rotary and linear induction
motors are shown in Figures 1 and 2 respectively. Since trans-
former technology is used in this report, the stator and rotor
elements will be referred to as the primary and secondary. The
equivalent circuits differ only as regards the effective second-
ary impedance seen by the primary circuit. In the linear induc-
tion motor, the effective secondary impedance varies in a com-
plicated manner3 with motor slip due to the end-effect waves
present in the airgap. Furthermore, the effective resistance
associated with the output thrust, Ré(l—s)/s, and the effective
resistance RE associated with heating losses in the secondary
circuit vary differently with slip. Only in the limit of unity
slip (zero speed) when Ré equals R5 do the equivalent circuits
become identical. The secondary reactance in the linear in-
duction motor is found by equating the time-rate-of-change of
the airgap flux to the voltage drop across the secondary impe-
dance. The mutual reactance given by ij is the effective re-

actance transformed from a 3-phase to an equivalent 2-phase
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Figure 1. Schematic and Equivalent Circuit of
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Figure 2. Schematic and Equivalent Circuit of
Linear Induction Motor



system. It is equal to 3/2 times the specific mutual reactance4

of a 3-phase winding, or the reactance measured between two in-

puts of the stator winding with the third open.

The equivalent circuits in Figures 1 and 2 represent one
phase of the motor and the total force computed from the equiva-
lent circuit must be multiplied by the number of phase windings
in the motor. For a linear induction motor having primary wind-
ings on both sides of the reaction rail, the total thrust is
twice the force computed for one side.

The secondary impedance as defined in the equivalent cir-
cuits corresponds to the transformed secondary impedance as seen
by the primary circuit. For a linear induction motor having a
linear reaction rail as the secondary element, the effective
secondary impedance is related to the specific resistance Py and

reactance szz of the reaction rail by3(p. 4-12).

3% C2K2(n)p
R. = 1 W 2 (1)
2 Pt
P
_ PprL22
X, = 5 (2)
3£1C Kw(n)

where Kw(n) is the winding distribution factor5 associated with
the n-th harmonic, T_ is the pole pitch, Kl is the winding
stack height, and C is the number of conductors per phase.

The equivalent circuits in Figures 1 and 2 are valid at
each harmonic frequency of a repetitive input signal if the re-
active impedances are multiplied by the harmonic number, n, and

the slip, s, is replaced by an effective slip, s*, (see note below)

s* (n-1+s)/n for slip of harmonics with positive sense of
rotation
(n+l-s)/n for slip of harmonics with negative sense of

rotation

1l



for the respective harmonic. At the higherl (p. 157)
frequencies, it is necessary to include the increase in motor
resistance caused by the skin effect. Since the latter depends
upon the physical parameters characterizing the particular
motor, corrections for this effect will not be attempted in the

report.

In order to study in a quantitative manner the effect of
harmonics on the performance of induction motors, it is helpful
to examine in detail the characteristics of several specific
induction machines. The induction motors chosen for this study
include a Class A linear induction motor designed for use in a
tracked-air-cushion-research-vehicle (Motor #1l), a Class D
rotary induction motor characterized by a high starting torque
(Motor #2), and an additional Class D rotary induction motor
which presently is being used for laboratory tests in the Power
and Propulsion Branch of TSC (Motor #3). The number of poles in
the above motors is equal to four. The results of the analysis
on these motors are compatible and lead to conclusions which

are valid for different classes of induction motors.

The impedance parameters on a per-unit-basis are given

below for the three examples of induction motors.6’7’8
Motor #1 Rl = ,0185 R2 = .0386 Xl = ,144
X2 = .053 Xm = 1.215
Motor #2 R, = .0566 R, = .125 Xl = .063
X2 = ,063 Xm = 1.032
Motor #3 R, = .0088 R, = .125 X, = .09
X2 = ,09 Xm = 2,53

The sections which follow are devoted to a computer study
of the rotary and linear induction motors based on the equivalent
circuits of Figures 1 and 2. Time-harmonics in a rotary induc-
tion motor will be considered first using the model of a 3-

phase, Wye connected motor as the basis for the study analysis.



TIME-HARMONICS IN A ROTARY INDUCTION MOTOR

This treatment of time-harmonics in a 3-phase, Wye connected
induction motor follows the analysis by T. A. Lipo7 on this sub-
ject. Each phase winding of the primary motor is assumed to be
connected through back-to-back pairs of thyristors to a balanced
3-phase power source. Stator (primary) voltage control is
achieved by alternately open-circuiting the three stator phases

at instants of zero current.

Several assumptions are made. 1) The power source is re-
presented by a set of balanced sinusoidal 3-phase voltages having
zero impedance. 2) The six thyristors have identical character-
istics, with infinite impedance in the blocking mode and zero
impedance in the conductive mode. 3) Balanced sets of currents
flow in the motor windings and produce a single sinusoidal MMF
propagating wave in space. 4) Machine parameters are assumed
constant and saturation of the magnetic circuit is neglected.

The phase relationships describing the current conduction
in the motor windings are shown in Figure 3. The phase current
typically lags its respective line-to-neutral voltage by a phase
angle ¢ (assuming an inductive load), and the delay from the
point of zero phase voltage to the conduction of the succeeding
thyristor in that phase is the delay angle a. The hold-off
angle y=a-¢ , is the phase angle measured from the instant the
phase current reaches zero to the firing of the succeeding thy-
ristor. The decrease in thyristor angle measured with respect
to the point of initial current conduction in the phase winding
is B. It is related to the hold-off angle Yy according to

y + 28 = 120° (3)



Phase Primary
<} o > Voltage Current

Figure 3. Current Phase Relationships in Thyristor-Controlled
Induction Motor

In the discussion that follows, reference will be made to
three System States: System State 1, current flows in all three
windings, System State 2, current flow in one phase winding is
zero, and current flow in the other two windings is nonzero,
and System State 3, current flow in all three phase windings is

Z€Xxo.,.

It is useful to transform9 the equations which describe the
behavior of the machine to d-q axes fixed on the primary. This
replaces time-varying coefficients in the differential equations
with constant coefficients. The four simultaneous equations
relating the current components along the orthoginal axes to

the applied voltage V, can be written in matrix form as7 (p. 517)

=X .41 .
V-—ws dt+RI (4)

where X and R are 4 x 4 reactance and resistance matrices, V and
I are 4-dimensional voltage and current vectors, and W is the
angular frequency of the power supply. The solution of Equation

4 1is the exponential matrixl0



x(wt) = e x(wto) (5)
. T . . . T
with X = [lqs’lds’lqr’ldr’vqs’vds] (6)
|

xLr! xtec
A=f----r-o-- (7)

0 : 0 1

p —1 0

The explicitformsof these matrices are given in Appendix A for
the different System States. The final waveform solution given
by Equation 5 must satisfy the boundary conditions for each
System State as well as the rotational symmetry properties

characterizing the 3-phase rotary induction motor.

A computer program was written in 7094 language to calcu-
late the boundary state wavefunctions for each System State and
compute, by an iterative process, the instantaneous phase cur-
rents and voltages within the System States. Included in the
computer program is a subroutine to evaluate the first six
Fourier harmonics of the primary current and phase voltage

supplied to the motor.
Current-vVoltage waveforms

The instantaneous phase currents and voltages were computed
at 2.5 degree phase intervals for Motor #1 for different values
of thyristor hold-off angle and motor slip. Figure 4 shows the
primary and secondary currents for hold-off angles of 15, 30,
45, and 60 degrees and a slip of 0.2. The waveforms computed
for other values of motor slip differ only in amplitude from
those presented in Figure 4. This is primarily attributable to
the fact that the impedance seen by the higher current-harmonics
tends to be independent of slip. The distortion in current wave-
form accompanying the decrease in motor current is apparent. The
average phase current (as well as average torque) becomes Very

small for thyristor hold-off angles greater than 60 degrees.
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The amplitude of the 1lst harmonic (primary current) at the thy-
ristor hold-off angle of 60 degrees is only 9 percent of its

original amplitude at zero thyristor hold-off angle.

Additional waveforms were computed to illustrate the rela-
tive effect of motor slip on the shape of the voltage and current
waveforms. Figure 5 shows the instantaneous phase voltage and
current waveforms computed for Motor #1 for the thyristor hold-
off angle of 60 degrees and motor slips of 0.03 and 0.8. The
figure illustrates the pronounced effect of motor slip on the
voltage waveform. Near zero slip or speeds approaching syn-
chronous velocity, the voltage waveform approximates roughly
that of the input supply voltage, shown as the dotted curve in
the figure. At unity slip, the voltage waveform differs con-
siderably from the supply voltage waveform and consists of sinu-

soidal segments displaced in phase with respect to each other.

MOTOR #1

~ e Primary Current
/7 N\ S N Y

1h \ \
h \IE\ \ suIp = o.e/l /
B \

Primary
Phase Voltage

Primary Current

SLIP = .03

PRIMARY CURRENT AND PHASE VOLTAGE

1 1 1 I 1 1 1 I 1 1 L

60 120 180 240 300 360

RELATIVE TIME (DEGREES)
Figure 5. Phase Voltage and Current Waveforms Computed
for Motor #1 at Slip of .03 and 0.8
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The current waveform can be expressed in closed form as the
sum of damped sinusoids representing the eigenstate solutions of
the characteristic matrix A defined in Egquation 7 . The com-
plex eigenroots, A=krijli, specify the damping constant, Ar’ and
the angular frequency, Ai, characterizing the eigenstate solu-
tion. Figures 6 and 7 show the six eigenroots of the character-
istic matrix computed for Motor #1 for System States 1 and 2
respectively. The values of slip at 0.2 intervals are indicated
in the figure. The eigenroots are symmetric about the real axis
and are excluded from the positive half of the real domain.

The 6 x 6 characteristic matrix describing System State #1
is reduceable to two 3 x 3 submatrices when the current-voltage
vectors, defined in Equation 4 , are expressed in terms of
symmetrical components5 (p. 404). The phase currents in State
#1 can then be written as the sum of the three eigenstate solu-
tions of the reduced matrix. In System State 2, a similiar
reduction of the characteristic matrix using symmetrical com-
ponents is not possible. The phase currents must therefore, be
expressed by a linear combination of all the eigenstate solu-

tions of the unreduced matrix.

The expressions for the primary and secondary phase currents
were determined by finding the combination of eigenstate solu-
tions satisfying the required boundary conditions for each
System Statelo. The waveforms shown in Figure 5 were chosen for
representation in closed form. The equations describing the
currents for Motor #1 (thyristor hold-off angle = 60 degrees;
slip = 0.03, 0.8) are given in Table 1 for the phase interval
O<wt< m/3. The equivalent relations valid in the other phase
regions are found using the transformations prescribed in the

figure.

The primary and secondary current can be expressed as the
sum of three terms comprising a damped and undamped sinusoid
plus a damped exponential. The angular frequency of the damped

12
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TABLE 1. EQUATIONS FOR PRI

IN PHASE WINDINGS

MARY AND SECONDARY
OF MOTOR #1

CURRENTS

Hold-Off Angle (y) = gg° Slip (s) = 0.8 B v 19 = 72 sin(wst+58.31
1. 0 < w ¢ < 60°
- gt _
las(wst) =0
—.0871wst -.164w t
ipg (wgt) = - 6.01 cos (w_t-15.9°) + 9.18e cos (.127w_t+1.0°) + 15.0e S
s's s s
lcs(mst) = - lbs(wst)
-.087uw t —.164wst
: — - oy — oy _
lar(wst) B .042 cos(mst 12.4°) 2.02e cos(.l27wst+29.l ) 1.75e
-.087wst —.164wst
3 . - [ °y -
lbr(wst) = 5.78 cos(wst 14.1°) + 8.88e cos(.127mst+0.6 ) 14 .5e
-.087w _t —.l64ws
1 = - - oy _ o
1cr(wst) = 5.78 cos (wst 14,1°) 10.67e cos(.l27wst+5.7 ) + 16.22e
2. 60° < wst < 120°
. - —E0oy . - C_fnoy . s . F Cno
las(wst) = lbs(wst 60°); lps(wst) lcs(wst 60°); lcs(wst) las(wst 60°)
s = =0 —~6A0°Y . 4 P — —£0N°%Y . <+ == 4 —ENno
lar(wst) E lbr(wst 60°); lbr(wst) lcr(wst 60°); lcr(wst) lar(wst 60°)
3. 120° < wst < 180°
, . _ ol o L5 s _ - . . °
las(wst) B lcs(wst 120°); lbs(wst) las(wst 120°); lcs(wst) lbs(wst 120°)
. . . P =5 N D e . o
lar(wst) = lcr(wst 120°); lbr(wst) lar(wst 120°); lcr(wst) lbr(wst 120°)
- = 60° i = = V72 si
Hold~Off Angle (y) 60 Slip (s) 0.03 Vsupply V2 51n(wst+48.l)
(-]
1. 0« wst < 60
las(wst) =0
-.121w t —.096wst
3 = - _0_ . o
lbs(wst) = 2.10 cos(wst 8.9°) 3.28e cos(.957wst 41.5°) + 4.53e
1eg (ugt) = - lpg (wgt)
~.121lw _t —.096w5t
. - _ N oy
1ar(wst) = .812 cos(wst+37.4 + ,608e cos(.957wst+37.6 ) .157e
-.121w _t -.096wst
i, _(w t) = 2.34 cos (w_t+19.3°) + 3.60e cos (.957w_t-51.8°) - 4,27e
br'’s s s
—.l2lwst -.096w5t
i, (w_t) = ~ 1.13 cos (w_t-13.3°) - 3.82e cos (.957w_t-33.3°) + 4.43e
cr''s s s
2. 60° < w,t < 120°
. - o) . - _ P _ T O
las(wst) B lbs(wst 60°); lps(wst) lcs(wst 60°); lcs(wst) las(wst 60°)
iar(wst) = - ibr(wst—60°); ibr(wst) = - icr(mst—GO ): lcr(mst) = - 1ar(wst—60 )
3. 120° < w_t < 180°
s P . s 1 =' =120}y « < =' -12Nn0
las(wst) = lcs(wst 120°); lbs(wst) las(mst 120°); lcs(wst) lbs(wst 120°)
1 = 1 -120°). 4 = 3 =-120°). 3 = i ~120°
lar(wst) = lcr(wst 120°); lbr(wst) lar(wst 120°); lcr(mst) lbr(mst 120°)
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sinusoid is roughly proportional to the angular velocity of the
motor. The form of the current equations depends critically on
slip, as shown by comparing the coefficients in the equations
for the two values of slip. At unity slip, some simplification
results in the form of the solution for System State 2 since in
this case the eigenroots consist of a pure imaginary term plus
two real terms. The currents are then given by two damped

exponentials and one undamped sinusoid.

Next, the corresponding expressions for the primary phase
voltages were derived for this example of a Wye-connected rotary
induction Motor #1. The derivation makes use of the fact that
the sum of the phase voltages in all three windings is zero. In
System State 1 (current flows in all windings), the phase vol-
tages are equal to the input 1ine-to-ground supply voltages. In
System State 2 (current flow in one phase winding is zero) , the
phase voltage across the primary winding in the blocked mode is

equal to the induced voltage

Xm di -
Va = G‘; —H—dt (8)

The sum of the amplitudes of the remaining two phase voltages
is /3 times the d component of phase voltage. In System State
3 (current flow in all three primary windings is zero), the

primary phase voltages are given by

e
o
'..I.

- _m_ Jr
Va = g dt (9)

X
_ma (1 _ﬁ-
Vp T G at ( 7 qr 2ldr) (10)
X
_ md I 3.
Ve = @ a ( 3 lqr“‘Vzldr) ()
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The equations for the primary voltage waveforms shown in
Figure 5 are summarized in Table 2 for Motor #l with the thyris-
tor hold-off angle of 60 degrees and slips of .03 and .80. The
phase voltages depend considerably on the voltages induced in
the primary windings. When the latter are small, the voltage
equations can be approximated by sinusoids having a phase dis-
placement angle ¢. This approximation becomes better at small

slips or motor speeds approaching synchronous speed.
Torque-Slip Characteristic

The instantaneous torque with peak rated line-to-neutral
voltage and peak rated line current chosen as base quantities

g7 (Pe517)

T = Xm(iqs-idr—iqr-ids) (12)
where the d-g current components are found from the solution of
Equation 5. The average torque is found by time-averaging the
instantaneous torque over one period. Figure 8 shows the
average torque-slip characteristic computed for Motor #1 for
different thyristor hold-off angles. As the hold-off angle is
increased, the average torque decreases and the peak average-
torque shifts towards smaller motor slips. Figure 8 also com-
pares a thyristor-control characteristic with a corresponding
line-voltage characteristic. The dashed curve gives the average
torque with the line-voltage reduced by 15 percent. At large

motor slips, the decrease in average torque with thyristor-
control is noticeably greater than with line-voltage-control.

To study the effect of thyristor-control on the output
characteristics of other classes of induction motors, torque
calculations were made of the Class D induction motor (Motor
#2) prescribed in the second section. Figure 9 shows the torque-

slip characteristics computed for this motor at different
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TABLE 2. EQUATIONS FOR PRIMARY PHASE
VOLTAGES IN MOTOR #1
Hold-Off Angle (y) = 60° Slip (s) = 0.8 Vaupply = 72 Sin(w t+58.3°)
1. 0 < mst < 60°
-.087uw_t -.164w_t
v__(w_t) = .051 sin(w _t-12.4°) - .377e S cos(.127w_t-26.5°) + .349¢ s
as' s s s
-.087w_t -.164w_t
vbs(wst) = ~-1.22 cos(wst+55.8°) + .188e cos(.127wst—26.5°) - .175e N
-.087w_t -.164w_t
vcs(mst) = 1.22 cos(wst+6l.8) + .188e cos(.l27wst—26.5°) - .175e s

2. 60° < w t < 120°

Vas(wst) = - vbs(wst-60°)
vbs(wst) = - vcs(wst—60°)
= - - =]
vcs(wst) vas(wst 60°)
3. 120° < wst < 180°
v, (w t) = v__ (w_t-120°)
as''s cs ' s
— - o
Vbs(wst) = vas(wst 210°)
vcs(wst) = vbs(wst—120°)
Hold-Off Angle (y) = 60° Slip (s) = 0.03 vSupply = V2 51n(wst+48.l°)
1. 0 < wst < 60°
~.121w_t —.096wst
v_ (w t) = .986 sin(w_t+37.4°) - ,.713e cos (.957w_t-45.2°) + ,018e
as' s s s
—.lzlwst —.096wst
N (w_t) = - 1.40 cos(w_t+68.4°) + .357e cos(.957w_t-45.2°) - ,009e
s''s s s
—.121wst —.096wst
v (w t) = 1.23 cos(w_t+24.8°) + ,357e cos (.957w_t-45.2°) - ,009e
cs ' s s s
2, 60 < wt < 120°
vas(wst) = - vbs(wst—60°)
= - o
vbs(wst) = vcs(wst 60°)
= - - o
vcs(wst) = vas(wst 60°)

3, 120° < w
- s

180°

A

vas(wst)
Vbs(wst)

vcs(wst)

v (w_t-120°)
cs ' s

- o

vas(wst 120°)

. o
Vbs(wst 120°)
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AVERAGE TORQUE -

Figure 8. Torque—Slip Characteristics of Rotary Induction
Motor #1 with Thyristor—Control. Dashed curve
Corresponds to Line Voltage—Control with Supply
Voltage Reduced by 15 Percent
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AVERAGE TORQUE - T

SLIP - S

Figure 9. Torque-S1ip Characteristic for Rotary
Induction Motor #2
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thyristor hold-off angles. As in the previous motor example,

the peak average-torque shifts towards smaller values of slip
with increasing hold-off angles. This is primarily attributable
to the increase in the fundamental voltage harmonic with decreas-
ing slip, which tends to make the fundamental current component

and average torque independent of slip.
Current, Voltage, and Input Power Harmonics

The instantaneous phase current and phase voltage can be
represented by Fourier series whose coefficients correspond to
the amplitudes of the harmonic components. 1If spatial-harmonics

are assumed absent, the current and voltage functions are given
by

i(t)

z; I(n)cos[hwst+¢l(nq (13)

v(t)

Zn: V(n)cos [nwst+¢v(n)] (14)

The coefficients in the above series are found by integrating
the product of the respective time varying functions and the
harmonic sinusoid function over a period. If advantage is taken
of the rotational Symmetry properties possessed by the 3-phase
rotary induction motor, the Fourier coefficients, I(n), V(n),

expressed in terms of d-q components are

_ 3 ,
1 nm - ._nm . nmo= nm
SRS ﬁ\/[zn °q®°%3§ * cdslnm] *[Zn N °a°°sw]

(15)

where C(n) represents the generalized Fourier coefficient, cp,

cq are the instantaneous d-g components, and N specifies the
number of waveform samples taken in a 7m/3 phase interval. The
upper and lower signs refer respectively to forward (3n+1) and
backward (3n-1) propagating waves. The derivation of Equation
15 is given in Appendix B.
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The primary current and phase voltage harmonics were com-
puted according to Equation 15 for Motor #1l at 15 degree intervals
of thyristor hold-off angle and slips of 0.1 and .03. Table 3
summarizes the harmonic amplitudes and phase displacement angles
corresponding to the 1st, sth, 7th, 11th, 13th, ang 17t0 har-
monics. The supply voltage was taken to be V2 sin(w t+o ),
where ¢o is the phase angle defined in Figure 3. The phase
angles ¢1(n), ¢v(n) measure the phase displacement of the current
voltage harmonics given by Equations 13 and 14 with reference to
the position of zero phase current. When normalized to the
fundamental harmonic, the current harmonics are almost independ-
ent of slip in contrast to the voltage harmonics which depend
markedly upon slip. A comparison of the 18t harmonic amplitudes
of the current and voltage for the thyristor hold-off angle of
60 degrees shows that while the current harmonic decreases by
22 percent in going from a slip of 1.0 to a slip of .03, the
voltage harmonic increases 380 percent. This increase of the
voltage fundamental with decreasing slip tends to make the

current fundamental less dependent on slip.

The instantaneous input power can be expressed as

p(t) = 2: P(n)-COSQth)—¢V(n0
’ v

+ E P(ﬁ)cos (2nwst+¢I(n)+¢V(n)) (16)
n

P(n) = 0.5 I(n)-V(n)
Since the second term in the series is zero when averaged over
a period, only the first term need by considered here. The last
column in Table 4 labeled Preal gives the power harmonics asso-
ciated with the time-independent term in Equation 16. The
higher harmonics in general fall off rapidly with increasing
harmonic order. However, at large hold-off angles, i.e., y = 60
degrees, the 5th harmonic component is not negligibly small

compared with the fundamental. The power losses due to the
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i(t)

TABLE 3.

HARMONIC AMPLITUDES AND PHA

ANGLES COMPUTED FOR MOTOR #1

SE DISPLACEMENT

. Z I(n)cos{nw t + ¢y (n) vit) = > V(n)COS(nwst + ¢v (n)>
n=1 = n=1
= ﬁéi Preal Vsupply = /2 sln(wst + ¢O)
Hold-Off Angle (y) = 15° Slip (s) = 1.0 ¢0 = 70.96°
n I(n) ¢ (n) V(n) ¢, (n) P (n) op () Peal
1 5.32 -97.3 1.07 -22.8 2.85 74.5 .765
.329 55.3 L322 142.0 .053 86.7 .003
.220 39.3 .301 127.0 .033 87.7 .0015
11 .113 8.1 .241 96.6 .014 88.5 .0003
13 . 082 -7.4 .205 81.3 .008 88.7 .0002
17 .039 -38.4 .127 50.6 .003 89.0 -
Hold-Off Angle (y) = 15° Slip (s) = .03 ¢O = 48.47°
1 1.360 -97.3 1.34 -13.0 .910 84.3 .091
.985 54,9 .082 141.6 .0035 86.7 .0002
7 .056 39.6 .077 127.5 .0022 87.9 .0001
11 .029 8.0 .062 96.5 .0009 88.5 -
13 .021 ~7.2 .052 81.6 .0005 88.8 -
17 .010 -38.2 .032 50.9 .0002 89.1 -
Hold-Off Angle (y) = 60° Slip (s) = 1.0 ¢o = 58.53°
.627 -119.7 .123 -45.2 .0386 74.5 ( .0105
.301 -58.3 .293 28.4 .044 86.7 .0026
7 .108 63.7 .147 151.4 .0080 87.7 .0003
11 .056 -60.1 .118 28.4 .0033 88.5 .0001
13 .034 62.7 .085 151.4 .0015 88.7 -
17 .023 ~-60.6 .075 28.4 .0008 89.0 -
Hold-Off Angle (y) = 60° Slip (s) = .03 ¢O = 48.8°
I
1 .486 ~-114.8 .469 -30.5 114 84.3 .0114
5 .233 -58.4 .227 28.3 .0265 86.7 .0015
7 .084 63.6 .114 151.5 .0048 87.9 .0002
11 . 043 -60.1 .092 28.4 .0020 88.5 .0001
13 .026 62.5 .066 151.3 .0008 88.8 -
17 . 018 -60.6 .058 28.5 .0005 89.1 -
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TABLE 4.

COMPARISON OF MEASURED AND COMPUTED CURRENT-VOLTAGE
HARMONIC AMPLITUDES (FUNDAMENTAL HARMONIC AMPLITUDES

NORMALIZED TO UNITY)

Hold-Off Angle = 60° Slip = 1.0
N Itheory Imeas. Vtheory Vmeas.
1 ]1.00 1.00 1.00 1.00
5 .480 .46 2,12 1,38

.173 .156 1.06 .71

11 .094 .083 .85 .55

13 .055 .029 .62 .23

17 .037 .017 .54 .05

Hold-Off Angle = 90° Slip = 1.0
- Itheory Imeas. Vtheory Vmeas.
1]1.00 1.00 1.00 1.00

. 849 .81 3.99 2,86
.714 .56 4.68 2.62

11 .395 .24 4.04 1.67

13 .242 .144 2.91 .81

17 .013 .036 .119 .095

Hold-Off Angle = 60° Slip = .03
n Itheory Imeas. vtheory Vmeas.
1]1.00 1.00 1.00 1.00
5 . 480 .56 .194 .19
7 gl 73 .20 .098 .12

11 .089 .09 .078 .043

13 .055 .046 .056 .05

17 .037 .018 .049 .031
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harmonics are greatest when the motor is operated at reduced

input power levels by increasing the thyristor blocking angle.

An experimental study of harmonic phenomena occuring in a
thyristor-controlled induction motor was next undertaken using
the 15 hp rotary induction motor available in the Power and Pro-
pulsion Laboratory at TSC. The 15%, 5B, 7th j,th j.th
17th harmonic of line current and line-to-ground phase voltage
were measured at the input terminals to the motor with the motor
stopped and with the motor running at maximum speed. The latter
measurement made under unloaded conditions corresponds to
a slip of 0.03. The data of current harmonics were corrected
for the low frequency dispersion of the current probe. In con-
junction with the measurements, a computer analysis of the motor
was undertaken based upon the impedance parameters given in the
second section for Motor #3. While the computed voltage
harmonics describe voltages developed across the phase windings
and the measurements involve line-to-ground voltages, it can be
shown that the neutral-to-ground voltage has no higher-harmonic
which interacts with the primary current harmonics. Consequently,
the amplitude to the neutral-to-ground voltage harmonics is zero

for the harmonic orders with which we are concerned.

Table 4 summarizes the measured amplitudes of the current
and voltage harmonics at unity slip for thyristor hold-off
angles of 60 and 90 degrees and at a slip of 0.03 (unloaded
motor) for the thyristor hold-off angle of 60 degrees. Also
shown in the table are the computed harmonics for the same
operating conditions. Good agreement exists between the computed
and measured current harmonics, though the agreement between the
corresponding voltage harmonics is only fair. A general corre-
lation in the relative amplitude of the voltage harmonics with
harmonic order is seen to exist, however. At unity slip, this
correlation is improved considerably if the harmonic amplitudes

are normalized to a larger fundamental harmonic. If allowance
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is made for experimental errors and errors introduced by the
choice of the particular impedance parameters used to describe
the motor, the agreement between the computed and measured data

is considered adequate.

The equivalent circuit of an induction motor at a harmonic
frequency can be determined from measurements of amplitude of
relative phase of the primary current and voltage harmonics.
Since the impedance at a given harmonic is independent of the
thyristor hold-off angle, the measurements can be made at re-
duced input power levels by increasing the thyristor hold-off
angles. If the exciting current is neglected, then a measure-
ment of amplitude and phase of the current and voltage at unity
slip gives sufficient information to determine the total leakage
reactances, Xl + X2, and the total input resistance( Rl + R2.
The performance of the motor is affected relatively little by
the way in which the total leakage reactance is distributed

4(p. 48) By using available

between primary and secondary.
tablesll giving an empirical distribution of the leakage re-
actance induction motors, the separate primary and secondary
leakage reactance can be found. Since the primary resistance

can be determined from a direct measurement of the stator re-
sistance, subtracting this from the total input resistance

yields the secondary resistance. The magnetizing reactance can be
evaluated either by measuring the primary current under no-load
conditions or by repeating the measurement of the current and
voltage harmonic at no-load or at small motor slips. If separate
tests are made at each harmonic frequency, the equivalent cir-
cuits of the induction motor can be found for each of the har-

monic frequencies.

The amplitudes of the primary current harmonics, normalized
to the fundamental harmonic at zero hold-off angle, are shown

plotted in Figure 10 as a function of thyristor hold-off angle
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HARMONIC CURRENT AMPLITUDE - I(n)

7.
1

.0
0 30 60 90

THYRISTOR HOLD-OFF ANGLE - Yy (DEGREES)

Figure 10. Amplitude of Primary Current Harmonics as a
Function of Thyristor Hold-Off Angle
Computed for Motor #1

for the case of Motor #1 with a slip of 0.2. The data is re-
plotted in Figure 11 using the thyristor delay angle for the
abscissa. Since the relative amplitudes of the harmonics are
almost independent of slip for this example of a Class A motor,
the data presented in the figures should be reasonably valid
for all values of slip. At a hold-off angle of 45 degrees, the
5-th harmonic has a peak amplitude equal to 10 percent of the
fundamental amplitude (at zero hold-off angle). Since torgue is
proportional to the square of the current, the contribution of
the harmonic torques to the net average torque of the motor is
expected to be very small.

The dependence of the fundamental primary current harmonic
on the thyristor hold-off angle is presented in Figure 12 for
Motor #1. At a slip, s = 1.0, the primary current harmonic
decreases almost linearly with increasing hold-off angle, while

at a slip, s = 0.0, the primary harmonic remains almost constant.
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HARMONIC CURRENT AMPLITUDE - I(n)

0 30 60 90 120

THYRISTOR FIRING DELAY ANGLIT = «« (DEGRERS)

Figure 11. Amplitude of Primary Current Harmonics as a
Function of Thyristor Firing-Delay Angle
Computed for Motor #1

PRIMARY CURRENT (FUNDAMENTAL-HARMONIC) -I (1)

15 30 45 60

THYRISTOR HOLD-OFF ANGLE - Y (DEGREFSY

Figure 12. Amplitude of Primary Current Fundamental as a
Function of Thyristor Hold-Off Angle
Computed for Motor # 1
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At hold-off angles approaching 60 degrees, the primary current
is almost independent of slip. When the hold-off angle exceeds
60 degrees, or equivalently when the firing-delay angle is

greater than 118 degrees, the primary current approaches zero.

Torque Harmonics

The torque harmonics can be found in the same manner used
to determine the primary current harmonics, by resolving the
instantaneous torque given by Equation 12 into its Fourier com-
ponents using numerical integration. As an alternate method,
the torque-harmonics, T(n), can be calculated from the known
values of the primary current-harmonics, 1I(n), and the effec-

tive harmonic slip s* using,

2
2 (R I%(n)
=Xm(2/s*) s . 3P
R 2 2 ws

2\ + [x.+x
m

S £

T (n) (17)

The impedance parameters in the above equation are defined in

Figure 1.

Table 5 lists the relative magnitudes of the torque har-
monics (normalized to a fundamental amplitude of 100) computed
for Motor #l1 for thyristor hold-off angles of 15 and 60 degrees
and slips equal to 0.1 and 0.9. As the table indicates, the
higher-harmonic torques are extremely small compared with the
fundamental, except at large hold-off angles and slips near
unity. An induction motor operating at rated load and small
slips would not be expected to be greatly affected by higher-
harmonics. In such instances, an estimate of motor torque
based on the fundamental harmonic should yield results which are
reasonably accurate if the impedance parameters have been pro-

perly chosen for the induction motor.
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TABLE 5.

AMPLITUDE OF TORQUE HARMONICS COMPUTED

FOR MOTOR #1 FOR THYRISTOR HOLD-OFF
ANGLES OF 15 AND 60 DEGREES

Hold-0ff Angle = 15° Hold-Off Angle = 60°
Delay _ o| Delay _ o| Delay _ ol Delay _ d
0 Angle 85.1 Angle - 53.9 Angle 111.6 Angle 118.4
s = 0.1 s = 0.9 s = 0.1 s = 0.9
100 100 100 100
.0073 .069 .44 4.19
.0032 .023 .057 .415
11 .00046 .0041 .0081 .072
13 .00024 .0019 .0032 .025
17 .00004 .0004 .0011 .0094

Rotary Induction Motor Output Characteristics

The : computer program was written to provide data on the
12R heating losses in the primary and secondary circuits, the
mechanical output power of the motor, and motor efficiency for
the different values of slip and thyristor hold-off and firing-
delay angles. The computer results are summarized in Table 6
for the example of the Class A induction Motor #l. Only heating
losses were included in the calculation of the motor efficiency.
The motor efficiency is seen to decrease somewhat with the
thyristor hold-off angle; this is due to the additional IzR

heating losses associated with the higher-harmonics.
SPATIAL HARMONICS IN ROTARY INDUCTION MOTOR

The subject of the harmonics in the airgap flux resulting
from nonsinusoidal current distributions in 3-phase motor wind-
ings will now be considered. The primary current can be written
guite generally in terms of a Fourier series whose coefficients

are the Fourier components of the time- and space-harmonics

Zz I (k,n)cos (nw t—]iw—X +6 (n, k))

P

(18)
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TABLE 6.,

OUTPUT CHARACTERISTICS OF ROTARY INDUCTION MOTOR #1

Hold-Off Delay Slip Stator | Rotor Mech. Average [Efficiency
Angle ¥y Angle ¢ Loss Loss Power Torqgue
(degrees) | (degrees) (p.u.) | (p.u.) (p.u.) (p.u.) (percent)
0 49.1 .2 .3239 .6064 2.4265 6.066 72.3
62.1 .4 .5341 1.0172 1.5259 5.0864 49.6
68.6 .4 .6152 1.1755 .7837 3.9184 30.4
72.3 .8 .6524 1.2480 .3120 3.1200 14.1
74.6 1.0 .6724 1.2870 .0000 2.5740 0.0
15 63.8 .2 .2357 .4413 1.7540 4.3850 72.1
75.8 .4 .3397 .6471 .9643 3.2143 49 .4
81.2 .6 .3731 .7130 .4721 2.3606 30.3
84.1 .8 .3873 . 7410 .1840 1.8398 14.0
86.0 1.0 .3947 .7555 .0000 1.5005 0.0
30 79.9 .2 .1400 .2623 1.0207 2.5519 71.7
89.7 .4 .1757 .3346 .4882 1.6272 48.9
93.7 .6 .1851 .3538 .2293 1.1463 29.8
95.7 .8 .1889 .3614 .0878 .8777 13.8
97.0 1.0 .1908 .3653 .0000 .7090 0.0
45 97.2 .2 .0554 .1039 .3875 .9688 70.9
103.5 .4 .0615 L1172 .1638 .5461 47.8
105.9 .6 .0629 .1202 .0745 .3726 28.9
107.1 .8 .0634 .1213 .0281 .2814 13.2
107.8 1.0 .0637 .1219 .0000 .2255 0.0
60 115.1 .2 .0067 .0127 .0391 .0978 66.9
117.2 .4 .0069 .0131 .0151 .0505 43.1
117.9 .6 .0069 .0132 .0067 .0336 25.0
118.3 .8 .0069 .0132 .0025 .0250 11.0
118.5 1.0 .0069 .0133 .0000 .0198 0.0
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The amplitude of the torque harmonics for the case when higher
spatial-harmonics are neglected was given by Equation 17. The
corresponding expression12 for the spatial-harmonic torque com-

ponents when time-harmonics are assumed absent is

( )2 (ws ) 2
X_/k R — = w_J-I7(k,s)
T(k) = 3p LM 2 \k m/__s (19)

2 2
22 4 (F2 ) (Y _
2 k k m

where W is the angular velocity of the motor. The Fourier

current harmonic, Is(k,s), of the primary current is a function
of harmonic number k, and motor slip s. The sign of the harmonic
torque is negative for flux waves propagating in the backward
direction, i.e., k = 3n-1. The form of Equation 19 expresses

the fact that both the speed of propagation and amplitude of

the airgap flux wave vary inversely with harmonic number k.

The torgque components associated with the phase-belt har-
monics of a particular primary winding configuration will now be
calculated. The primary winding is assumed to have a coil pitch
of 2/3, and the number of poles equal to 5. The relative ampli-
tude of the first eight winding current-harmonics in a 3-phase

winding having zero current in one phase is13
I(l)=1.0 I(3)=0.0 I(5)=-.2 I(7)=-.14 1I(9)=0.0
I(11)=-.09 1I(13)=.078 (20)

The values of the harmonic amplitudes given above are based
on a fundamental spatial wavelength equal to twice the pole
pitch. A sketch of harmonic thrust T (k) versus slip computed
for Motor #l1 for the first several harmonics is shown in Figure
13. The largest contribution of the higher-harmonics to the
average torque occurs near unity slip; for the Class A induction
motor being considered, the reduction in torque at s = 1.0

amounts to almost 10 percent.
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MOTOR #1

THRUST HARMONIC AMPLITUDE - T (k)

0 L L Il

0.8 0.6 0.4 0.2 0.0
SLIP - S

Figure 13. Amplitude of Thrust Harmonics as a
Function of Slip

SPATIAL-HARMONICS IN LINEAR INDUCTION MOTORS

This section considers spatial harmonics in linear induc-
tion motors and their effect on the thrust developed by the
motor. Spatial variations in the airgap flux density can result
from nonsinusoidal winding current distributions (phase belt
harmonics), perturbations in the magnetic permeance caused by
changing airgap thickness (slot harmonics), and the decay of the
airgap flux to zero in the region beyond the motor (end-effect).
The latter factor will be the main concern of this section,
since it represents one of the major effects contribution to
nonuniform flux density in short primary type induction motors.

Figure 14 shows a sketch of the instantaneous flux in the
airgap of a linear induction motor. The flux is assumed to
consist of two waves, a normal wave of constant amplitude travel-
ing at a speed Ul with respect to the primary element, and an end-

effect wave moving at motor speed with respect to the primary
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element. The assumption of a constant speed U2 for the end-
effect wave is valid only in a high speed approximation.2 (p.4)
With respect to the secondary (reaction rail), the end-effect
wave is stationary and typically described by a sinusoid func-
tion decaying exponentially with the distance from the motor
end. The decay constant describing the propagation distance
required for the end-effect wave to decay to 1l/e of its initial

amplitude will be taken to be

(X +x)
o = 1,0, = %g (ﬁiiﬁfj U, (21)

This expression for the damping constant was taken from the

Garrett Report.3 (p. 4-10)
.= 0
5 REACTTION RATL Urall J
End-effect Normal Secondary

flux wave current

lux wave

|
|
1

|
rol
|

U2-q— PRIMARY

Figure 14. Schematic Showing Flux Distribution in Airgap
of Linear Induction Motor.
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Effective Secondary Resistance in the LIM

The instantaneous thrust developed by the linear induction
motor is equal to the product of the instantaneous secondary
current and airgap flux integrated over the length of the motor.
The average thrust, found by integrating the instantaneous
thrust over a period, can be equated to the ratio of power con-
sumed in the effective secondary resistance Ré(l—s)/s to the
velocity of the motor.

The effective secondary resistance associated with the
motor thrust, assuming the absence of higher-harmonics (other

than those comprised in the end-effect wave), is given by3 (p-
4-15)

-Pt_/T,U P
" _ 1 p"272_. ws _ .
Rp =5z 12 BT _Gose D | © Sin\1-g = Og* sin O¢

(22)
where P is the number of poles per side, Tp is the pole pitch,

R2 is the static secondary resistance seen by the primary, and

D is a quantity which depends on the motor slip. The term in
the parentheses is primarily a function of the relative distance
traveled by the end-effect wave, i.e., T2U2/PTP, the slip, s,

and the phase angle, ef given by

sX
ef = tan_l E—z + tan 1 Tiﬁﬁ (23)
2 22

The effective resistance associated with the heating losses

in the secondary circuit is

Z2 Z
" o 2e . 2e 1
Ry = Ry 1L+ 24 X2 + 4 X -PT /T2U2 (24)
m M o1-e P

where the term in the parentheses is again primarily a function

of the relative distance traveled by the end-effect wave.
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Figure 15 gives Ré and RE as a function of motor slip for
Motor #1 for different values of time constant T2 as defined by
Equation 21. At unity slip, the effective resistances R, and R
2° As the slip

decreases to zero, the effective resistance associated with the

2
are equal and given by the static resistance R

motor thrust Ré decreases while the effective resistance asso-
ciated with the heating losses in resistance characteristic
representing Motor #1 corresponds to the curve with a time con-

stant equal to .003.

R "
n2
3
0
o
(=]
(=)

MOTOR # 1

EFFECTIVE SECONDARY RESISTANCES - R},
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Figure 15. Effective Secondary Resistances, Ré
as a Function of Slip

and R;,

An indication of the relative efficiency of a linear in-
duction compared with a rotary induction motor can be obtained
from Figure 15. If the approximation is made that the secondary
current remains unchanged when the end-effect waves are included
in the analysis, then the reduction in motor efficiency caused

by the end-effect waves is directly proportional to the relative
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decrease in the resistance Ré. Referring to Figure 15, a sub-
stantial reduction in Ré occurs at small motor slips with in-
creasing time constant T, . The lower motor efficiency when
operated at rated load conditions suggests the advisability of
using some form of compensating windings at the motor extremi-

ties to reduce the end-effect flux waves.

The dependence of motor thrust on T2 is next explored.
Figure 16 gives the thrust-slip characteristics of a LIM for

different values of T, using the resistance functions presented

in Figure 17 to describe the effective secondary resistance.

The curve for T2 = 0.0 corresponds to complete damping of the
end-effect wave at the motor boundary. The decrease in motor
thrust with increasing time-constant is largest at small slips.
The shift in the position of peak thrust in the direction of
larger slips is related to the greater effectiveness of the end-

effect wave in reducing motor thrust at small slips.

T,=,000

AVERAGE THRUST - T

SLIP - S

Figure 16. Thrust-Slip Characteristics of Motor #1
for Different Values of Time Constant T2
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TIME-HARMONICS IN THE LINEAR INDUCTION MOTOR

The output characteristics of a LIM controlled by symmetri-
cally triggered thyristors will now be considered using the same
mathematical approach adopted for the time-harmonic analysis of
the rotary induction motor. The fixed impedance parameters
which describe the secondary impedance of the rotary induction
motor are replaced by their effective secondary impedance equiv-
alents given by Equations 15 and 17. This greatly simplifies
the calculations of the instantaneous motor currents but also
introduces a slight error since the expressions for the effec-
tive resistances are exact only for the fundamental-harmonic.
The magnitude of this error can be estimated from the data pre-
sented in Figure 8 together with the functional dependence of
Ré on motor slip as given by Equation 15. The maximum error in
the value of the 5-th and 7-th resistance harmonics was estimated
to be less than four percent; this is sufficiently small to be

neglected in the calculation of average motor thrust.

The average thrust of the LIM was determined by first cal-
culating the amplitude of the instantaneous secondary current
using the secondary resistance given by Ré(l—s)/s+Rg as shown in
Figure 2. The instantaneous thrust was next computed based on
the effective resistance (thrust) Ré and the instantaneous
values were then integrated over one period to give average
thrust. Figure 17 shows the computed thrust-slip characteristics
for the thyristor-controlled LIM based on the impedance param-
eters of Motor #1. The value of the time-constant, Tz, used in
the calculations is 0.0033. A comparison of these thrust
characteristics with the corresponding characteristics for the
rotary induction motor (Figure 8) shows that the LIM has a lower
thrust output in the region of small slips. The two motor
characteristics approach the same limiting values at unity slip
since the end-effect losses disappear in the thrust calculations

for the LIM.

38
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Figure 17. Thrust-Slip Characteristics of Linear

Induction Motor with Thyristor-Control
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CONCLUS IONS

The effect of time- and space-harmonics on the operating
characteristics of rotary and linear induction motors has been
considered in this report. The study has consisted of a theo-
retical analysis of the effect of harmonics on motor performance
plus laboratory measurements of harmonics in a thyristor-
controlled rotary induction motor. The results of the computer
analysis and the results of the laboratory tests were found to

be in reasonable agreement.
ROTARY INDUCTION MOTOR

A computer study was undertaken on a Wye-connected rotary
induction motor to determine the dependence of motor torque on
the harmonics present in the motor and to relate the motor out-
put characteristics to changes in thyristor blocking angles
(hold-off and firing-delay angles). The primary current and
phase voltage waveforms were computed for different thyristor
blocking angles and gave a visual indication of the amount of
waveform distortion accompanying thyristor-control. A Fourier
analysis of the current and voltage waveforms led to explicit
values for the current and voltage harmonics. The current har-
monics were found to be almost independent of motor slip, while
the corresponding voltage harmonics were found to vary consider-
ably with motor slip. The decrease in the current fundamental
was seen to be approximately proportional to an increase in the

thyristor firing-delay angle.

The average torque becomes relatively small for thyristor
hold-off angles exceeding 60 degrees. In general, the amplitude
of the harmonic torques are much less than the amplitude of the
fundamental torque and cause only a slight reduction in the net
average motor torque. Under most adverse conditions, namely
small motor speeds and large thyristor hold-off angles, the

higher torgque harmonics cause a reduction of 3 to 5 percent in
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motor efficiency for the machine examples considered in this
report. The motor losses were mainly attributable to increases
in heating losses in the primary and secondary circuits caused

by the harmonic currents.

The torque-slip characteristics of an induction motor with
thyristor-control are different in form from those with line
voltage-control. 1In the latter case, the position of peak
average-torque remains fixed when the line voltage is varied,
while in the former case the position of peak average-torque
shifts toward smaller slips with increasing thyristor hold-off
angles. In addition, at large hold-off angles approaching 60
degrees, the average torque tends to remain constant and inde-
pendent of slip. This behavior is attributable to the increase
in voltage fundamental with increasing motor speed which causes
the primary current fundamental to remain almost constant with

slip.

The measurement of current and voltage harmonics at re-
duced power levels offers a convenient means for determining
the impedance parameters in the equivalent circuit of the motor.
Since the motor parameters are independent of the means used to
control the motor, thyristors can be used to reduce the input
power to the motor. By making two separate measurements of the
primary current and voltage harmonics, one at unity slip and the
other under no-load conditions, sufficient data is available to
evaluate the impedance parameters of the motor. Measurements
made at each harmonic frequency permit the motor characteristics

to be defined by equivalent circuits valid at each frequency.
LINEAR INDUCTION MOTOR

The subject of the end-effect flux waves and their effect
on the thrust-slip characteristics of a linear induction motor
has been considered. It is shown that the end-effect wave can

be described in terms of an effective secondary resistance which
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is both slip and frequency dependent. This effective secondary
resistance is equal to the static secondary resistance at a slip
of unity, but becomes smaller in value as the motor slip is
reduced. The two factors governing the propagation of the end-
effect wave are the damping constant, which defines the extent

of wave propagation along the airgap region of the motor, and

the propagation wavelength, which determines the speed of the
end~effect wave. The effective secondary resistance was computed
for different values of damping constant and a family of resis-
tance characteristics was presented to illustrate the dependence

of this resistance on damping constant.

The thrust-slip characteristics of a Class A linear induc-
tion motor were computed for different damping constants (time
constants) and showed the large decrease in motor thrust caused
by the end-effect waves. The largest reduction in motor thrust
occurs at small slips. As a result, motors operating at full
speed or at rate load will be most adversely affected by the

end-effect waves.

A family of thrust-slip curves were computed for a thyristor-
controlled Class A linear induction motor using the same mathe-
matical approach previously applied to analyze the rotary induc-
tion motor. The end-effect contribution was included in the
analysis by substituting for the static secondaryjresistance
term, the effective secondary resistance described above. This
procedure offers one means for including both space- and time-
harmonics in the mathematical treatment of the linear induction
motor. It is hoped that the results can be used as a guide in
estimating the thrust developed by a thyristor-controlled linear

induction motor.
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GLOSSARY OF SYMBOLS

Number of series conductors per phase per side

Generalized Fourier coefficient in Fourier expansion of
instantaneous current, voltage, and power, defined by

Equation 16

Current vector (4-dimensional) formed from primary

current i, and secondary current i2 (referred to

. : _r: 1T _rs . . . arT
primary) given by I = [11 12] [lqs i3s 1qr 1dr]
Amplitude of primary phase current, amperes

Amplitude of secondary phase current, referred to

primary, amperes

Order of spatial-harmonic

Primary winding factor associated with n-th harmonic
Primary stack length, meters

Secondary leakage inductance per phase in terms of the
secondary in henries per meter of motor length per

meter of stack

Order of frequency-harmonic

Instantaneous power, defined by Equation 15, watts
Number of poles

Resistance matrix (4x4 dimensional) defined by

Equation A-5 in Appendix A
Primary resistance per phase, ohms

Secondary resistance per phase, referred to primary
ohms

Effective secondary resistance component associated

with motor thrust, referred to primary, ohms
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RII

Effective secondary resistance component associated

with secondary heating losses, referred to primary, ohms
Motor slip

Effective motor slip at harmonic frequency

Time, seconds

Torque, newton meters

Secondary time constant, seconds

Synchronous motor speed, meters per second

Motor speed, meters per second

PPrimary phase voltage across windings a, b, and

volts

Secondary phase voltage across windings a, b, and c,
volts

Voltage vector (2 dimensional) having components Vq

and v, along g and d coordinate axes

d
Reactance matrix (4x4 dimensional) defined by

Equation A-4 in Appendix A
Primary leakage reactance per phase, ohms

Secondary leakage reactance per phase referred to

primary, ohms

Magnetizing reactance per phase, ohms
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o Thyristor delay angle, defined in Figure 3, radians per

second

Y Thyristor hold-off angle, defined in Figure 3

$ Phase displacement angle, defined by Equation 18,
radians

B Thyristor half-conduction angle, defined in Figure 3,

radians per second

ef Phase displacement angle, defined by Equation 23,
radians

A Eigenroots of characteristic matrix A

Ar Real part of complex eigenroot X

Ai Imaginary part of complex eigenroot )

oy Secondary surface resistivity or resistance of a

secondary element 1 meter wide in the x-direction
one-half the secondary thickness in the y-direction

and one inch long in the z-direction

Tp Pole pitch of motor, meters
) Phase angle, defined in Figure 3, radians per second
¢, (n)
¢V(n) Phase displacement angles, defined by Equations
13, 14, and 16

(n
¢p )
W Motor angular frequency, radians per second
wg Synchronous angular frequency, radians per second
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APPENDIX A
MATRIX EQUATIONS DESCRIBING THYRISTOR-CONTROLLER
INDUCTION MOTOR

The determination of the instantaneous phase current over

a time interval of one period requires separate solutions of

Equation 4 for each System State.

voltage are written as vector

i

i

Equation 4 takes the following form in System States 1,

and 3.

System State 1

gs
ds

-

t 1
X 0 "
m
0 X
m
X 0
r
0 b'e
r-

If the current and phase

2,

(A-1)

(A-4)



(l—s)xm

System State 2

System State 3

0 0
0 0
R2 —(l—s)xr

-1
- X2-R-x + X2
0o o0 |
0 X
m
X 0
ey
0 X
r-
- X3 *Rex + X3
0 0
0 0
X 0
r
0 xr_

(A-5)

(A-7)



APPENDIX B
DERIVATION OF EQUATIONS FOR CURRENT AND
VOLTAGE HARMONIC AMPLITUDES

The instantaneous current and phase voltage can be expressed

by the Fourier series

i= 3 (Ai(n) cos 2§nm + B, (n) sin 2;;‘““) (B-1)
n=0

v = 2: (év(n) cos ZQnm + Bv(n) sin 2;nm) (B-2)
n=0

where M is the number of equally spaced time intervals in one
period, m is an integer which varies from 1 to M and specifies
the waveform sampler number, n is the harmonic number, and A(n),
B(n) are the amplitude coefficient of the Fourier series. For a
3-phase Wye connected motor the current in a given phase winding
over a 27 phase interval can be written in terms of the d-g cur-

rent components valid in a 7/3 phase interval according to

i(wt) = lq 0 < wt < m/3 (B-3)
il

iet) = 53 + Cg ig 3 < Wt < %l (B-4)

i

i(wt) = - fﬂ + fg id %E <wt <om (B-5)

. . 4

i(wt) = - 1q T < wt 5‘§ m (B-6)

. 9 /3, dn 5

i(wt) = - = = — ig 3— < wt < 3T (B-7)
i

iot) = 53 - ‘/—g e 2—“ < wt < 27 (B-8)



The Fourier coefficients in Equation B-~1 are given by

M
> i-cos 21\Tznm
A;(n) = E1 (B-9)
2 2mwnm
2: cos M
m=1
M
> i-sin 2§nm
B, (n) = =1 (B-10)
1 M
2: sinz 2mhm
m=1 M
Now
M M
2: cos2 2mTnm — 2: Sinz 2mnm _M (B-11)
o M M 2
m=1 m=1

Substituting (B-3) through (B-8) in (B-9) and (B-10) and making

use of the fact that i(wt+w) = - i(wt)
M/6 5
_ 4 2mnm |, q . V3 nm _
A, (n) =& é;ﬁ cos = [;q +(2 +i4 —7) cos 35— (B-12)




_ 4 v 2mnm | . 1 V3 . nm
. Bi(n) = [ sin —g [lq +(~ig + = i) cos 53— (B=-13)

Egquations B-12 and B-13 reduce to

N
_ 1 . mm . .omm _ .o
Ai(n) =% géﬁ i, cos 3x + iy sin 3¢ when n = 1,7,13,
- - (B-14)
_ 1 . mm T . ._omm _ o
Ai(n) e ﬁ-égﬁ lq cos §ﬁ'+ ig sin 3 when n = 5,11,17,
_1 [ .oomm oz T _
Bi(n) =3 Z lq sin =g + 14 COs = when n = 1,7,13,
3 - (B-15)
1 N mm mm
Bi(n) = ﬁ-ééi lq sin 3% + 14 cos 33 when n = 5,11,17," -
where N = % is the number of samples (taken at equal intervals)

of current i taken in a m/3 phase interval.

The amplitude of the n-th harmonic current is

I(n) = ‘/Ai(n) 0 Bi(n) (B-16)
1 4 mmw - mir N mm mn
= & mgl(lq cos % + iy sin W) +mz=:1<lq sin =% + i4 cos W)

A corresponding expression in terms of the d-g phase voltage
components gives the amplitude of the n-th harmonic of phase

voltage.
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